数学系 Department of Mathematics, Nanjing University
Chinese
  • Home
  • About us
  • Teachers
Zhi Qian (Associate Professor )

University Address:
22# Hankou Road, Nanjing
Contact:
南京市汉口路22号南京大学数学系/ Department of Mathematics, Nanjing University, 22# Hankou Road, Nanjing
Email:
zqian@nju.edu.cn
Education:

B.Sc.,   Dept.of Math., Lanzhou University, Jun., 2003, supervisor:Chuli Fu

M.Sc.,  Dept.of Math., Lanzhou University, Jun., 2005, supervisor:Chuli Fu

Ph.D.,  Dept.of Math., Lanzhou University, Jun., 2008, supervisor:Chuli Fu

Experience:

Postdoc,  Dept.  of Math., Nanjing Univ. 2008.6-2010.6, supervisor:Jiangong You

Lecturer,  Dept. of Math.,  Nanjing Univ. 2010.6-2011.12

Associate Professor,  Dept.of Math., Nanjing Univ. 2012.1-

Research Interests:

Inverse Problems and Ill-posed Problems in Mathematical Physics

List of Publications:
1. “Time discretization of a tempered fractional {F}eynman-{K}ac equation with measure data” Deng, Weihua|Li, Buyang|Qian, Zhi|Wang, Hong (2018) SIAM J. Numer. Anal. 56(2018) : 3249--3275.
2. “A mollification method for a {C}auchy problem for the {H}elmholtz equation” Li, Z. P.|Xu, C.|Lan, M.|Qian, Z. (2018) Int. J. Comput. Math. 95(2018) : 2256--2268.
3. “An a posteriori wavelet method for solving two kinds of ill-posed problems” Feng, Xiaoli|Qian, Zhi (2018) Int. J. Comput. Math. 95(2018) : 1893--1909.
4. “A regularization framework for mildly ill-posed problems connected with pseudo-differential operator” Xiong, Xiangtuan|Zhuang, E.|Xue, Xuemin|Qian, Zhi (2018) J. Comput. Appl. Math. 341(2018) : 1--11.
5. “A new generalized {T}ikhonov method based on filtering idea for stable analytic continuation” Qian, Zhi (2018) Inverse Probl. Sci. Eng. 26(2018) : 362--375.
6. “A modified iterative regularization method for ill-posed problems” Xiong, Xiangtuan|Xue, Xuemin|Qian, Zhi (2017) Appl. Numer. Math. 122(2017) : 108--128.
7. “A fractional Tikhonov method for solving a Cauchy problem of Helmholtz equation” Qian, Zhi|Feng, Xiaoli (2017) Appl. Anal. 96(2017) : 1656--1668.
8. “Numerical solution of two-dimensional radially symmetric inverse heat conduction problem” Qian, Zhi|Hon, Benny Y. C.|Xiong, Xiang Tuan (2015) J. Inverse Ill-Posed Probl. 23(2015) : 121--134.
9. “A quasi-boundary-value method for a {C}auchy problem of an elliptic equation in multiple dimensions” Feng, Xiaoli|Ning, Wantao|Qian, Zhi (2014) Inverse Probl. Sci. Eng. 22(2014) : 1045--1061.
10. “Numerical solution of a 2{D} inverse heat conduction problem” Qian, Zhi|Feng, Xiaoli (2013) Inverse Probl. Sci. Eng. 21(2013) : 467--484.
11. “Regularization methods for the sideways heat equation and the idea of modifying the ``kernel'' in the frequency domain” Qian, Zhi (2012) Commun. Appl. Math. Comput. 26(2012) : 298--311.
12. “Differential-difference regularization for a 2D inverse heat conduction problem” Qian, Zhi|Zhang, Qiang (2010) Inverse Problems 26(2010) : 095015.
13. “Numerical pseudodifferential operator and {F}ourier regularization” Fu, Chu-Li|Qian, Zhi (2010) Adv. Comput. Math. 33(2010) : 449--470.
14. “Wavelets and high order numerical differentiation” Fu, Chu-Li|Feng, Xiao-Li|Qian, Zhi (2010) Appl. Math. Model. 34(2010) : 3008--3021.
15. “Optimal modified method for a fractional-diffusion inverse heat conduction problem” Qian, Zhi (2010) Inverse Probl. Sci. Eng. 18(2010) : 521--533.
16. “Regularization methods for a {C}auchy problem for a parabolic equation in multiple dimensions” Qian, Zhi (2009) J. Inverse Ill-Posed Probl. 17(2009) : 891--911.
17. “The {F}ourier regularization for solving the {C}auchy problem for the {H}elmholtz equation” Fu, Chu-Li|Feng, Xiao-Li|Qian, Zhi (2009) Appl. Numer. Math. 59(2009) : 2625--2640.
18. “An optimal modified method for a two-dimensional inverse heat conduction problem” Qian, Zhi (2009) J. Math. Phys. 50(2009) : 023502, 9.
19. “A simple regularization method for stable analytic continuation” Fu, Chu-Li|Dou, Fang-Fang|Feng, Xiao-Li|Qian, Zhi (2008) Inverse Problems 24(2008) : 065003, 15.
20. “Optimal filtering regularization method for a non-standard backward heat equation” Gao, Xiang|Fu, Chu Li|Qian, Zhi|Xiong, Xiang Tuan|Yan, Liang (2008) Gongcheng Shuxue Xuebao 25(2008) : 35--43.
21. “Fourier regularization method for solving a {C}auchy problem for the {L}aplace equation” Fu, C.-L.|Li, H.-F.|Qian, Z.|Xiong, X.-T. (2008) Inverse Probl. Sci. Eng. 16(2008) : 159--169.
22. “Two regularization methods for a spherically symmetric inverse heat conduction problem” Cheng, Wei|Fu, Chu-Li|Qian, Zhi (2008) Appl. Math. Model. 32(2008) : 432--442.
23. “Two regularization methods for a {C}auchy problem for the {L}aplace equation” Qian, Zhi|Fu, Chu-Li|Li, Zhen-Ping (2008) J. Math. Anal. Appl. 338(2008) : 479--489.
24. “Numerical approximation of solution of nonhomogeneous backward heat conduction problem in bounded region” Feng, Xiao-Li|Qian, Zhi|Fu, Chu-Li (2008) Math. Comput. Simulation 79(2008) : 177--188.
25. “Semi-discrete central difference method for determining surface heat flux of {IHCP}” Qian, Zhi|Fu, Chu-Li (2007) J. Korean Math. Soc. 44(2007) : 1397--1415.
26. “On three spectral regularization methods for a backward heat conduction problem” Xiong, Xiang-Tuan|Fu, Chu-Li|Qian, Zhi (2007) J. Korean Math. Soc. 44(2007) : 1281--1290.
27. “A modified {T}ikhonov regularization method for a spherically symmetric three-dimensional inverse heat conduction problem” Cheng, Wei|Fu, Chu-Li|Qian, Zhi (2007) Math. Comput. Simulation 75(2007) : 97--112.
28. “Regularization strategies for a two-dimensional inverse heat conduction problem” Qian, Zhi|Fu, Chu-Li (2007) Inverse Problems 23(2007) : 1053.
29. “A modified method for determining the surface heat flux of {IHCP}” Qian, Z.|Fu, C.-L.|Xiong, X.-T. (2007) Inverse Probl. Sci. Eng. 15(2007) : 249--265.
30. “Fourier regularization for a backward heat equation” Fu, Chu-Li|Xiong, Xiang-Tuan|Qian, Zhi (2007) J. Math. Anal. Appl. 331(2007) : 472--480.
31. “A modified method for a backward heat conduction problem” Qian, Zhi|Fu, Chu-Li|Shi, Rui (2007) Appl. Math. Comput. 185(2007) : 564--573.
32. “A modified method for high order numerical derivatives” Qian, Zhi|Fu, Chu-Li|Feng, Xiao-Li (2006) Appl. Math. Comput. 182(2006) : 1191--1200.
33. “A modified method for a non-standard inverse heat conduction problem” Qian, Zhi|Fu, Chu-Li|Xiong, Xiang-Tuan (2006) Appl. Math. Comput. 180(2006) : 453--468.
34. “Fourier truncation method for high order numerical derivatives” Qian, Zhi|Fu, Chu-Li|Xiong, Xiang-Tuan|Wei, Ting (2006) Appl. Math. Comput. 181(2006) : 940--948.
35. “Two numerical methods for solving a backward heat conduction problem” Xiong, Xiang-Tuan|Fu, Chu-Li|Qian, Zhi (2006) Appl. Math. Comput. 179(2006) : 370--377.
36. “Error estimates of a difference approximation method for a backward heat conduction problem” Xiong, Xiang-Tuan|Fu, Chu-Li|Qian, Zhi|Gao, Xiang (2006) Int. J. Math. Math. Sci. (2006) : Art. ID 45489, 9.
37. “Fourth-order modified method for the {C}auchy problem for the {L}aplace equation” Qian, Zhi|Fu, Chu-Li|Xiong, Xiang-Tuan (2006) J. Comput. Appl. Math. 192(2006) : 205--218.
38. “Semidiscrete central difference method in time for determining surface temperatures” Qian, Zhi|Fu, Chu-Li|Xiong, Xiang-Tuan (2005) Int. J. Math. Math. Sci. (2005) : 393--400.
39. “A {F}ourier regularization method with logarithmic stability for a non-standard inverse heat conduction problem” Fu, Chu Li|Zhao, Hua|Qian, Zhi (2005) Math. Appl. (Wuhan) 18(2005) : 238--243.
Nju logo2 Nju logo1 地址:中国南京市汉口路22号鼓楼校区西大楼 邮编:210093 电话:86-25-83592861
Copyright© All Rights Reserved 南京大学数学系版权所有 苏ICP备10085945号 苏公网安备32011302320427号 南信备267号