Parallel Iterative Methods for Linear Systems

6 Jacobi iterations
@ derivation of the formulas
@ parallel version with butterfly synchronization

@ a Parallel Implementation with MPI
@ the sequential program
@ gather-to-all with MPT_Allgather
@ the parallel program
@ analysis of the computation and communication cost

MCS 572 Lecture 19
Introduction to Supercomputing
Jan Verschelde, 5 October 2016

Introduction to Supercomputing (MCS 572) Parallel Iterative Methods L-19 5 October 2016 1/30

Parallel Iterative Methods for Linear Systems

0 Jacobi iterations
@ derivation of the formulas

Introduction to Supercomputing (MCS 572) Parallel lterative Methods L-19 5 October 2016 2/30

a fixed point formula

We want to solve Ax = b for A€ R"™" b € R”, for very large n.
Consider A= L+ D + U, where
© L=1[lj,¢ij=aji>jlij=0,i<j. Lislower triangular.
@ D= [d,',j], d,',,' = g 7& 0, d,',j =0, i 75] Dis diagonal.
© U=[ujjl,uij=ajj,i <j,uij=0,i>j. Uis upper triangular.
Then we rewrite Ax = b as
Ax=b < (L+D+U)x=Db
< Dx=b-Lx—Ux
& Dx=Dx+b—Lx— Ux— Dx
< Dx=Dx+b-— Ax
& x=x+D""(b- Ax).

The fixed point formula x = x + D~'(b — AXx) is well defined if a; ; # 0.

Introduction to Supercomputing (MCS 572) Parallel Iterative Methods L-19 5 October 2016 3/30

the Jacobi iterative method

The fixed point formula x = x + D~'(b — Ax) leads to

x(k+1) — x(0) 4 p1 (b_Ax(k)), k=0,1,...

AX
Writing the formula as an algorithm:

Input: A, b, x(O, ¢, N.
Output: x(9), k is the number of iterations done.

for k from 1 to N do
Ax = D' (b — Ax(0);
x(k+1) = x(K) 4 Ax;
exit when (||AX|| < e);
end for.

Introduction to Supercomputing (MCS 572) Parallel Iterative Methods L-19 5 October 2016

4/30

cost and convergence
Counting the number of operations in

for k from 1 to N do
Ax = D' (b — Ax(0);
x(k+1) . — x(K) + Ax;
exit when (||AX|| < e);
end for.

we have a cost of O(Nn?), O(n?) for Ax(%), if Ais dense.

Theorem

The Jacobi method converges for strictly row-wise or column-wise
diagonally dominant matrices, i.e.: if

]a,-,,-\ > Z]a,-,j] or \a,;,-\ > Z]aj,,-\, i=1,2,....n.
J#i J#i

Introduction to Supercomputing (MCS 572) Parallel Iterative Methods L-19 5 October 2016

5/30

Parallel Iterative Methods for Linear Systems

0 Jacobi iterations

@ parallel version with butterfly synchronization

Introduction to Supercomputing (MCS 572) Parallel lterative Methods L-19 5 October 2016 6/30

parallel version of Jacobi iterations

for k from 1 to N do
Ax := D7'(b — Ax(¥);
x(k+1) .= x(K) 4 Ax;
exit when (||AX|| < e);
end for.

To run the code above with p processors:
@ The nrows of A are distributed evenly (e.g.: p = 4):

Ax0] [plol A0l 41011 A02] Al0.3] x[01,(K)
. [ax] _ [of| [TARO AT AmA TS| X
Ax2 b2 AZOl AT a2 A3 X210
Ax b3l ABOl AT B2 ABS X310

@ Synchronization is needed for (||Ax|| < ¢).

Introduction to Supercomputing (MCS 572) Parallel lterative Methods L-19 5 October 2016 7/30

butterfly synchronization

For || - ||, use [|Ax]y = [Ax| + [AXp| + -+ + [AXnl.

[l a0l || ax]]; llaxE]|; [l axEl]|;
AxON [axtlylaxt+ax®; o [axBlHaxBl o axB)) axB),
[l axto]|; |laxt]|; || axEs]]|; || AaxEs]|

x|+ ax@l| [axOU]+{|axB[(| axB|+[axO)]; || axE]|; | axC]);

|| Axio123]]]4 || Ax(or23l]4 || Axio123]]]4 || Ax(OT23l]4

Introduction to Supercomputing (MCS 572) Parallel Iterative Methods L-19 5 October 2016 8/30

communication and computation stages

The communication stages:

@ At the start, every node must have x(©, ¢, N,
» a number of rows of the matrix A; and
» the corresponding part of the right hand side vector b.

@ After each update n/p elements of x(**1) must be scattered.
@ The butterfly synchronization takes log,(p) steps.
The scattering of x(K*1) can coincide with the butterfly synchronization.

The computation effort: O(n?/p) in each stage.

Introduction to Supercomputing (MCS 572) Parallel Iterative Methods L-19 5 October 2016 9/30

Parallel Iterative Methods for Linear Systems

9 a Parallel Implementation with MPI
@ the sequential program

Introduction to Supercomputing (MCS 572) Parallel lterative Methods L-19 5 October 2016 10/30

the test system

For the dimension n, we consider the diagonally dominant system:

n+1 1 1 X 2n
1 n+1 ... 1 Xo 2n
1 1 ooon+1 Xn 2n

The exact solutionis x: fori=1,2,...,n, x; = 1.
We start the Jacobi iteration method at x(©) = 0.

Parameters: ¢ = 104 and N = 2n?.

Introduction to Supercomputing (MCS 572) Parallel Iterative Methods L-19 5 October 2016

11/30

running the program

$ time /tmp/jacobi 1000

0 : 1.998e+03
1 : 1.994e+03

8405 : 1.000e-04
8406 : 9.982e-05

computed 8407 iterations

error : 4.986e-05

real Om42.411s
user Om42.377s
Sys Om0.028s

Introduction to Supercomputing (MCS 572)

Parallel lterative Methods

QR

C code to run Jacobi iterations

void run_jacobi_method
(int n, double *xA, double xb,
double epsilon, int maxit,
int *numit, double *x);

/%

+ Runs the Jacobi method for Axx = b.

*

* ON ENTRY

* n the dimension of the system;

* A an n-by-n matrix A[i][i] /= O;
* b an n-dimensional vector;

* epsilon accuracy requirement;

* maxit maximal number of iterations;

* X start vector for the iteration.
*

* ON RETURN

* numit number of iterations used;

* X approximate solution to A*x = b. */

Introduction to Supercomputing (MCS 572) Parallel Iterative Methods L-19 5 October 2016 13/30

local variables

void run_jacobi_method
(int n, double *xA, double xb,
double epsilon, int maxit,
int *numit, double *xx)

double xdx, *y;
dx = (doublex) calloc(n,sizeof (double));

y = (doublex) calloc(n,sizeof (double));

int 1i,3,k;

for (k=0; k<maxit; k++) { ... } /+ main loop =*/
*numit = k+1;

free (dx); free(y);

Introduction to Supercomputing (MCS 572) Parallel lterative Methods L-19 5 October 2016 14/30

the main loop in C

for (k=0; k<maxit; k++)
{
double sum = 0.0;
for (i=0; i<n; i++)
{
dx[1i] = b[i];
for (3=0; Jj<n; J++)
dx[i] —= A[i][31=*x[]];
dx[i] /= A[i][i]1;
yli] += dx[i];
sum += ((dx[i] >= 0.0) ? dx[i]
}
for (i=0; i<n; i++) x[i] = yI[i];

printf ("%3d

if (sum <= epsilon)

Introduction to Supercomputing (MCS 572)

%.3e\n", k, sum) ;

break;

Parallel lterative Methods

-dx[1i]);

L-19 5 October 2016

15/30

Parallel Iterative Methods for Linear Systems

9 a Parallel Implementation with MPI

@ gather-to-all with MPI_Allgather

Introduction to Supercomputing (MCS 572) Parallel lterative Methods L-19 5 October 2016 16/30

gather-to-all

Gathering the four elements of a vector to four processors:

Po [1]0]0]0] Po
P [0]2]0]0] P
P2 [0]0]3]0] Py
Ps [0]0]0]4] P2

Introduction to Supercomputing (MCS 572) Parallel Iterative Methods L-19 5 October 2016 17/30

the MPI_Allgather

The syntax of the gather-to-all command is

MPI_Allgather (sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, comm)

where the parameters are

sendbuf starting address of send buffer
sendcount number of elements in send buffer
sendtype data type of send buffer elements

recvbuf address of receive buffer
recvcount number of elements received from any process
recvtype data type of receive buffer elements

comm communicator

Introduction to Supercomputing (MCS 572) Parallel lterative Methods L-19 5 October 2016

18/30

running use_allgather

$ mpirun -np

data
data
data
data
data
data
data
data
$

at
at
at
at
at
at
at
at

node
node
node
node
node
node
node
node

4
0
1
2
3
3
0
1
2

/t

Introduction to Supercomputing (MCS 572)

mp/use_allgather

1

N = e o]

0

DD DNDDNDNDO ON

0

W wwwo wo
SO D s N O O O |

Parallel lterative Methods

L-19 5 October 2016

19/30

the code use_allgather.c

int i, 3j,p;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &i) ;
MPI_Comm_size (MPI_COMM_WORLD, &p) ;
{

int datalpl;

for (3J=0; J<p; Jj++) datalj] = 0;

data[i] = 1 + 1;

printf ("data at node %d :",1i);

for (§J=0; Jj<p; J++) printf (" %d",datal]jl);

printf ("\n");

MPI_Allgather (&datafli],1l,MPI_INT,

data,1l,MPI_INT,MPI_COMM_WORLD) ;

printf ("data at node %d :",1i);

for (§=0; j<p; j++) printf (" %d",datal[j]);

printf ("\n");

Introduction to Supercomputing (MCS 572) Parallel Iterative Methods

L-19 5 October 2016

20/30

Parallel Iterative Methods for Linear Systems

9 a Parallel Implementation with MPI

@ the parallel program

Introduction to Supercomputing (MCS 572) Parallel lterative Methods L-19 5 October 2016 21/30

running jacobi_mpi

$ time mpirun -np 10 /tmp/Jjacobi_mpi 1000

8405 : 1.000e-04
8406 : 9.982e-05
computed 8407 iterations
error : 4.986e-05

real Om5.617s
user Om45.711s
Sys Om0.883s

Recall the run with the sequential program:

real Om42.411s
user Om42.377s
SYys 0m0.028s

Speedup: 42.411/5.617 = 7.550.

Introduction to Supercomputing (MCS 572) Parallel Iterative Methods

L-19 5 October 2016

22/30

the parallel run_jacobi_method

void run_jacobi_method
(int id, int p,
int n, double *xA, double xb,
double epsilon, int maxit,
int *numit, double *xx)

double xdx, *y;

dx = (doublex) calloc(n,sizeof (double));
y = (doublex) calloc(n,sizeof (double));
int i, 3,k;

double sum[p];

double total;

int dnp = n/p;

int istart = idxdnp;

int istop = istart + dnp;

EN

Introduction to Supercomputing (MCS 572) Parallel lterative Methods L-19 5 October 2016 23/30

the main loop in jacobi_mpi.c

for (k=0; k<maxit; k++)
{
sum([id] = 0.0;
for (i=istart; i<istop; i++)
{
dx[1i] = b[i];
for (3=0; Jj<n; J++)
dx[i] —-= A[i][J1xx[J];
dx[1i] /= A[i]1[i];
y[i] += dx[i];
sum[id] += (dx[i] >= 0.0) ? dx[i] -dx[1i]);
}
for (i=istart; i<istop; i++) x[i] = yI[il];

Introduction to Supercomputing (MCS 572)

Parallel lterative Methods

L-19 5 October 2016

24/30

the all-to-all communication

MPI_Allgather(&x[istart],dnp,MPI_DOUBLE, x,dnp,
MPI_DOUBLE,MPI_COMM_WORLD) ;
MPI_Allgather (&sum[id],1,MPI_DOUBLE, sum, 1,
MPI_DOUBLE,MPI_COMM_WORLD) ;
total = 0.0;
for (i=0; i<p; i++) total += sum[i];
if(id == 0) printf("$3d : %.3e\n",k,total);
if (total <= epsilon) break;
}
*numit = k+1;
free (dx);

Introduction to Supercomputing (MCS 572) Parallel lterative Methods L-19 5 October 2016 25/30

Parallel Iterative Methods for Linear Systems

9 a Parallel Implementation with MPI

@ analysis of the computation and communication cost

Introduction to Supercomputing (MCS 572) Parallel lterative Methods L-19 5 October 2016 26/30

analysis

Computing xkt1 .= x(®) + D=1(b — Ax(¥)) with p processors costs

n(2n+ 3)

5

We count 2n + 3 operations because of
@ one — and one x when running over the columns of A; and
@ one /, one + for the update and one + for the || - ||1.

tcomp =

The communication cost is
n
feomm = P (tstanup + l_)tdata> .

In the examples, the time unit is the cost of one arithmetical operation.
Then the costs farp and tya are multiples of this unit.

Introduction to Supercomputing (MCS 572) Parallel lterative Methods L-19 5 October 2016 27/30

finding the p with the minimum total cost

cost for n = 1000, tdata = 50, tstartup = 10000
— T T T P B S A——

1000000 R O ... — computation cost
i | — communication cost
— total cost

800000 -

600000 -

number of operations

A00000 -5 N N

200000 -

o) S S S S N SN S SN SN S S S N
2 4 6 8 10 12 14 16 18 20 22 24 20 28 30 32
number of processors p, for p from 2 to 32

The computation, communication, and total cost for p from 2 to 32,
for 1 iteration, n = 1,000, farup = 10,000, and ty,, = 50.

Introduction to Supercomputing (MCS 572) Parallel Iterative Methods L-19 5 October 2016 28/30

investigating the scalability

1le7 cost for n = 10000, tdata = 50, tstartup = 10000
— T T T T P S S S— — T

—— computation cost
| — communication cost
— total cost

o o I
[=)] [o2] (=]
:

number of operations

o
=
T

0.0 I i i 1 i i i I I I 1 i i I
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
number of processors p, for p from 16 to 256

The computation, communication, and total cost for p from 16 to 256,
for 1 iteration, n = 10,000, farwp = 10,000, and fg = 50.

Introduction to Supercomputing (MCS 572) Parallel Iterative Methods L-19 5 October 2016 29/30

Summary + Exercises

We covered §6.3.1 in the book of Wilkinson and Allen.
Because of its slow convergence, the Jacobi method is seldomly used.

Exercises:
@ Use OpenMP to write a parallel version of the Jacobi method.
Do you observe a better speedup than with MP1?

© The power method to compute the largest eigenvalue of a
matrix A uses the formulas y := Ax(*); x(K+1) .= y/||y||.
Describe a parallel implementation of the power method.

© Consider the formula for the total cost of the Jacobi method
for an n-dimensional linear system with p processors.
Derive an analytic expression for the optimal value of p.
What does this expression tell about the scalability?

Introduction to Supercomputing (MCS 572) Parallel lterative Methods L-19 5 October 2016 30/30

	Jacobi iterations
	derivation of the formulas
	parallel version with butterfly synchronization

	a Parallel Implementation with MPI
	the sequential program
	gather-to-all with MPI_Allgather
	the parallel program
	analysis of the computation and communication cost

