

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. IMAGING SCIENCES c© 2011 Society for Industrial and Applied Mathematics
Vol. 4, No. 3, pp. 807–826

Alternating Direction Method for Image Inpainting in Wavelet Domains∗

Raymond H. Chan†, Junfeng Yang‡, and Xiaoming Yuan§

Abstract. Image inpainting in wavelet domains refers to the recovery of an image from incomplete and/or
inaccurate wavelet coefficients. To reconstruct the image, total variation (TV) models have been
widely used in the literature, and they produce high-quality reconstructed images. In this paper,
we consider an unconstrained, TV-regularized, �2-data-fitting model to recover the image. The
model is solved by the alternating direction method (ADM). At each iteration, the ADM needs to
solve three subproblems, all of which have closed-form solutions. The per-iteration computational
cost of the ADM is dominated by two Fourier transforms and two wavelet transforms, all of which
admit fast computation. Convergence of the ADM iterative scheme is readily obtained. We also
discuss extensions of this ADM scheme to solving two closely related constrained models. We present
numerical results to show the efficiency and stability of the ADM for solving wavelet domain image
inpainting problems. Numerical results comparing the ADM with some recent algorithms are also
reported.

Key words. total variation, wavelet, inpainting, augmented Lagrangian method, alternating direction method,
fast Fourier transform, fast wavelet transform

AMS subject classifications. 68U10, 65J22, 65K10, 65T50, 90C25

DOI. 10.1137/100807247

1. Introduction. Image inpainting is an important image processing task in many appli-
cations, and it has been studied extensively in the literature; see, e.g., [19]. Image inpainting
refers to the problem of filling in missing or damaged regions in images, either in the pixel
domain or in a transformed domain, depending on how the image is damaged. Let u∗ be an
unknown image. Without loss of generality, we assume that u∗ is an n-by-n square image; our
discussions apply to nonsquare images as well. Following the standard treatment, we vectorize
two-dimensional images into one-dimensional vectors. Therefore, throughout this paper we
treat n-by-n images as vectors in R

n2
. In general, the image inpainting problem can be viewed

as recovering an unknown image u∗ from

f = (PT u∗ + ω) ∈ R
p,(1.1)

where T ∈ R
n2×n2

represents a transform matrix, P ∈ R
p×n2

is a projection/downsampling
matrix containing p (< n2) rows of the identity matrix of order n2, ω ∈ R

p contains the

∗Received by the editors September 1, 2010; accepted for publication (in revised form) June 13, 2011; published
electronically September 1, 2011.

http://www.siam.org/journals/siims/4-3/80724.html
†Department of Mathematics, the Chinese University of Hong Kong, Shatin, Hong Kong (rchan@math.

cuhk.edu.hk). This author’s research was supported by HKRGC grant CUHK 400510 and DAG grant 2060408.
‡Department of Mathematics, Nanjing University, Nanjing, Jiangsu, 210093, China (jfyang@nju.edu.cn). This au-

thor’s research was supported by National Science Foundation of China grant NSFC-11001123 and the Fundamental
Research Funds for the Central Universities grant 1117020305.

§Corresponding author. Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
(xmyuan@hkbu.edu.hk). This author’s research was supported by HKRGC grant HKBU 202610.

807

http://www.siam.org/journals/siims/4-3/80724.html
mailto:rchan@math.cuhk.edu.hk
mailto:rchan@math.cuhk.edu.hk
mailto:jfyang@nju.edu.cn
mailto:xmyuan@hkbu.edu.hk

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

808 RAYMOND H. CHANG, JUNFENG YANG, AND XIAOMING YUAN

contamination of noise introduced during both the process of observing the original image
and the subsequent transmissions of the transformed and compressed coefficients, and f ∈ R

p

denotes the remaining incomplete and inaccurate transformed coefficients. The positions of
the remaining (and thus those missed) transformed coefficients are determined by P .

In [6], Bertalmio et al. first considered image inpainting in the pixel domain; i.e., T is
the identity matrix, and f contains approximate values of the p remaining pixels. Inpainting
in the pixel domain is, in some sense, an interpolation problem, where values of the missed
pixels are approximated by using those of the remaining. Inpainting methods in the pixel
domain usually take advantage of the property that the missed pixels are local and hence
that their values can be estimated by utilizing neighboring information. We here list some
existing approaches in the literature. The authors of [6] used partial differential equations
to smoothly propagate information from the surrounding areas along the isophotes into the
inpainting domain. Subsequently, Ballester et al. proposed a variational inpainting model
based on a joint cost functional on the gradient vector field and gray values in [5]. Chan and
Shen considered a total variational (TV) inpainting model in [18] and the curvature driven
diffusion model in [17]. The TV inpainting model fills in the missing regions such that the TV
is minimized, and its use is motivated by the wide applications of TV in image restoration. In
[16], Chan, Kang, and Shen also introduced an inpainting technique using an Euler’s elastica
energy-based variational model. In [9], Cai, Chan, and Shen used a tight-frame approach for
inpainting and showed that it is equivalent to using an �1 regularization on the tight-frame
coefficients. All these works concentrate on image inpainting in the pixel domain.

Inpainting in transformed domains is totally different because each single corruption of
data can, in general, affect the whole image, and thus an inpainting region in the pixel domain
is not well defined. Transformed domain inpainting arises in practical applications because
images are usually formatted, transmitted, and stored in a transformed domain. For ex-
amples, in the JPEG standard images are transformed by cosine transforms, while in the
JPEG2000 standard images are transformed to a wavelet domain through wavelet transforms.
In such situations, the transform T is either a discrete cosine transform (DCT) or a discrete
wavelet transform (DWT). During storage and transmission, certain coefficients may be lost
or corrupted, which naturally leads to the transformed domain inpainting problem. In this
paper, we consider recovering the original image u∗ from incomplete and inaccurate wavelet
coefficients; i.e., T is an orthonormal wavelet transform.

In practical applications, the downsampling matrix P in (1.1) is usually determined ac-
cording to a certain “thresholding” rule; i.e., those transformed coefficients with magnitudes
bigger than some threshold value are kept, while the others are discarded. In this situation,
P is also known as a thresholding compressing operator. We note that, in addition to thresh-
olding based image compression, other compression approaches are certainly applicable in
practical applications. For example, P can be a “quantization”-based compressing operator,
in which case the binary representation of T u∗ is quantized so that only bits with order higher
than a prescribed value are kept, while the remaining bits of lower orders are discarded; see [10]
for details about an iterative frame-based algorithm for image inpainting in the bits domain.
In this paper, we concentrate on the case that P is a selection/downsampling operator.

1.1. Wavelet domain inpainting via TV regularization. Rane and coworkers [42, 43]
considered wavelet domain inpainting in wireless networks, where separated reconstruction

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADM FOR IMAGE INPAINTING IN WAVELET DOMAIN 809

techniques are used for image structures and textures. Inspired by the great success of TV
in image restoration, Chan, Shen, and Zhou in [20] proposed to utilize TV regularization for
image inpainting in wavelet domains. In [20], the following TV-regularized data-fitting model
was solved to approximately reconstruct the original image:

min
u

∑
i
‖Diu‖2 +

μ

2
‖PWu− f‖22,(1.2)

where W ∈ R
n2×n2

represents a discrete orthonormal wavelet transform matrix, f contains
those remaining inaccurate wavelet coefficients (given by (1.1) with T = W), ‖ · ‖2 represents
the �2-norm,

∑
i ‖Diu‖2 is a discretization of the TV of u where

∑
i is taken over all pixels,

and μ > 0 is a scalar balancing regularization and fidelity. In this paper, we assume that the
contamination of noise is random Gaussian, and thus the �2-norm square fidelity is used. In
section 2.3, we will briefly address a constrained alternative of (1.2), as well as an equality
constrained model which is suitable for noiseless data.

1.2. Some existing approaches for TV models. TV regularization was first proposed by
Rudin, Osher, and Fatemi in [45, 44] for image denoising and deconvolution. Subsequently, TV
regularization was studied extensively in image restoration; see, e.g., [11, 15] and references
therein. The advantage of TV regularization is that it can exploit blocky image structures
and preserve edges. The superiority of TV over Tikhonov regularization [50] is analyzed in
[1, 26] for recovering images containing piecewise smooth objects. Despite these advantages,
it is generally challenging to solve TV models efficiently in practice because imaging problems
are usually large scale, ill-conditioned, and moreover contain nonsmooth TV. Here we review
some existing approaches to TV models.

Early research on the numerical solution of TV models concentrated on smoothed TV
models, where the TV is approximated by

∑
i

√
‖Dix‖22 + ε with small ε > 0. As such,

ordinary optimization methods for smooth function minimization can be applied, e.g., the
time-marching scheme used in the pioneering work [45], or the linearized gradient method
proposed in [51] for denoising and in [52] for deconvolution. Another class of algorithms for
TV problems are those based upon the iterative shrinkage/thresholding (IST) operator; see,
e.g., [24, 28, 30, 47, 23]. At each iteration of IST-based algorithms, a TV denoising problem
needs to be solved, either exactly or approximately.

Recent approaches to TV models are based on appropriate splitting of the TV norm. A
novel splitting of the TV norm was proposed in [53], where the authors utilized the quadratic
penalty technique to derive an efficient alternating minimization algorithm. This splitting
of TV allows the use of a multidimensional shrinkage operator and fast Fourier transform
for deconvolution problems. Given its efficiency, the technique used in [53] was extended to
multichannel image deconvolution in [56] and impulsive noise elimination in [58]. Goldstein
and Osher [35] applied the classical augmented Lagrangian method [37, 41], where the au-
thors derived the algorithm based on the Bregman distance [8]. In [35], the authors used
an alternating strategy to minimize the augmented Lagrangian function; they proposed to
solve the inner subproblem approximately by only one alternating step, which reduces to the
classical ADM. Recently, the ADM has been applied to a set of imaging problems; see, e.g.,
[29, 46, 59, 2, 3, 39]. Also, recently, a first-order primal-dual algorithm was proposed in [13],
which is shown to have attractive convergence results for uniformly convex problems and is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

810 RAYMOND H. CHANG, JUNFENG YANG, AND XIAOMING YUAN

closely related to the Douglas–Rachford splitting algorithm [25] as well as the ADM [34, 31]
to be discussed in this paper.

For solving problem (1.2), an explicit gradient descent scheme was used in [16]. An
optimization transfer algorithm was recently proposed in [14], which is related to the half-
quadratic technique [32]. Recently, model (1.2) was extended in [60] to recover textures and
local geometry structures of natural images by utilizing a nonlocal TV regularizer, where the
Bregman iteration [40] and the operator splitting algorithms [22, 61] were applied to solving
the underlying problems. The main contribution of this paper is to introduce a simple yet
very efficient algorithm for solving (1.2) and some related problems as well. In addition, we
compare the proposed algorithm with the optimization transfer algorithm recently proposed
in [14] and the two-step IST algorithm in [7].

1.3. Notation and organization. Let the superscript “�” be the transpose operator for
real matrices or vectors. For vectors vi and matrices Ai, i = 1, 2, we let (v1; v2) = (v�1 , v

�
2)

�

and (A1;A2) = (A�
1 , A

�
2)

�. As used in (1.2), for each i, Di is a 2-by-n2 matrix such that the
two entries of Diu represent the horizontal and vertical local finite differences of u at pixel i
(boundary conditions will be specified later). The corresponding horizontal and vertical global
finite difference matrices are denoted by D(1) and D(2), respectively. As such, D(1) and D(2)

contain, respectively, the first and second rows of Di for all i’s. For the rest of the paper, we
let ‖ · ‖ = ‖ · ‖2. Additional notation will be defined when it occurs.

The paper is organized as follows. In section 2, we present the basic algorithm for solving
(1.2) and discuss its extensions to solving some related problems. Section 3 reports experi-
mental results in comparisons with the optimization transfer algorithm [14] and the two-step
iterative shrinkage/thresholding algorithm [7]. Finally, some concluding remarks are given in
section 4.

2. Basic algorithm and related work. The main difficulty in solving (1.2) is due to the
nondifferentiability of the involved TV norm. Analogous to [53], we shall first reformulate (1.2)
into a minimization problem with linear constraints. Then, we shall apply the influential ADM
[31] to solve the reformulation. In the following, we first present the reformulation and briefly
review the classical augmented Lagrangian method (ALM; see, e.g., [37, 41]), from which the
ADM is motivated. Then, we delineate the iterative scheme of the ADM for solving (1.2).
Finally, we discuss some extensions of the ADM to some other relevant models.

2.1. Reformulation and the ALM. By introducing auxiliary variables w = [w1, . . . ,wn2],
where each wi is a column vector in R

2, the model (1.2) is equivalent to

min
u,w

{∑
i

‖wi‖+
μ

2
‖Pv − f‖2

∣∣∣∣ v = Wu, wi = Diu ∀ i
}
.(2.1)

Here w = [w1, . . . ,wn2] is a 2-by-n2 matrix. For convenience, the jth row of w is denoted by
w�
j , j = 1, 2. Thus, the constraints {wi = Diu ∀i} are equivalent to wj = D(j)u, j = 1, 2,

or, more compactly, w = Du, where w = (w1;w2) and D = (D(1);D(2)). Since w and w
are the same variables with different ordering, in the following we use either w or w subject
to convenience. The motivation for considering the reformulation problem (2.1) is that the
selection operator P , the finite difference operator D, and the wavelet transform operator W

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADM FOR IMAGE INPAINTING IN WAVELET DOMAIN 811

are separated in such a way that their special structures can be fully utilized. This is actually
the key idea of the efficient implementation of the ADM algorithm to be presented.

The model (2.1) is a standard convex program with linear constraints, for which a classical
approach is the ALM (see, e.g., [37, 41]). More specifically, let the augmented Lagrangian
function of (2.1) be denoted by

LA(u, v, w, λ, η) :=
∑
i

(
‖wi‖ − λ�

i (wi −Diu) +
β1
2
‖wi −Diu‖2

)
(2.2)

+
μ

2
‖Pv − f‖2 − η�(v −Wu) +

β2
2
‖v −Wu‖2,

where λi ∈ R
2 (for all i) and η ∈ R

n2
are multipliers, and β1, β2 > 0 are penalty parameters.

The iterative scheme of the ALM for (2.1) is given by

⎧⎪⎨
⎪⎩
(u, v, w)k+1 = argminLA(u, v, w, λk , ηk),

λk+1
i = λk

i − γβ1(w
k+1
i −Diu

k+1) ∀i,
ηk+1 = ηk − γβ2(v

k+1 −Wuk+1),

(2.3)

where γ > 0 is a relaxation parameter. Note that at each iteration the ALM needs to solve a
joint minimization problem with respect to (u, v, w), either exactly or approximately.

2.2. Solving (2.1) using the ADM. Let us revisit the minimization task in (2.3) which
aims at solving all the variables (u, v, w) simultaneously. Note that the augmented Lagrangian
function LA(u, v, w, λ, η) of (2.2) has favorable separable structures. First, variables w and v
are completely separated from each other, and thus their minimization can be implemented in
parallel. Second, with fixed u, the minimization for w reduces to the minimization with each
wi, and the minimization for v is componentwise separable. Hence, the direct application
of the ALM, which minimizes the variables (u, v, w) jointly, treats (2.1) as a generic convex
program and completely ignores the favorable separable structure.

The influential ADM [31] takes full advantage of the separable structure and decomposes
the joint minimization task of the ALM into some smaller and easier ones in the alternating
order. In the literature, the ADM has been well studied especially in the context of convex
programming and variational inequalities. We refer to [33, 46] for the connection between the
ADM and the classical Douglas–Rachford splitting method [25], and to [27] for the relationship
of the ADM with the renowned proximal point algorithm. More specifically, with the given
(u, λ, η)k := (uk, λk, ηk), the iterative scheme of the ADM for (2.1) is as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(v,w)k+1 = argminv,w LA(uk, v, w, λk , ηk),

uk+1 = argminu LA(u, vk+1, wk+1, λk, ηk),

λk+1
i = λk

i − γβ1(w
k+1
i −Diu

k+1) ∀i,
ηk+1 = ηk − γβ2(v

k+1 −Wuk+1).

(2.4)

It is easy to see that the ADM inherits the spirit of the Gauss–Seidel iteration in the sense
that the minimization for u uses the most up-to-date iterates of v and w.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

812 RAYMOND H. CHANG, JUNFENG YANG, AND XIAOMING YUAN

Now, let us delineate the way of solving the subproblems of the ADM. Clearly, the v-
subproblem in (2.4) is equivalent to

min
v

μ

2
‖Pv − f‖2 + β2

2
‖v − ζk‖2,(2.5)

where ζk = Wuk + ηk/β2. We let vP (resp., vP̄) be the subvector of v formed by those entries
selected (resp., not selected) by P . Thus, Pv = vP . It is easy to show that the minimizer
vk+1 of (2.5) is given by

vk+1
P =

β2ζ
k
P + μf

β2 + μ
and vk+1

P̄
= ζkP̄ .(2.6)

For the minimization of w (or equivalently w) in (2.4), for each i ∈ {1, 2, . . . , n2} we let
ξki = Diu

k + λk
i /β1, and the minimization for wi is given by (see, e.g., [53, 35])

wk+1
i = argmin

wi

‖wi‖+
β1
2
‖wi − ξki ‖2 = max

{
‖ξki ‖ −

1

β1
, 0

}
× ξki
‖ξki ‖

,(2.7)

where we follow the convention 0× (0/0) = 0.
Finally, with fixed v = vk+1 and w = wk+1, the u-subproblem in (2.4) is a least-squares

problem whose normal equations are given by

Auk+1 = bk,(2.8)

where, by noting the orthnormality of W ,{
A = β1

∑
iD

�
i Di + β2I = β1D

�D + β2I,

bk = D�(β1wk+1 − λk) +W�(β2vk+1 − ηk).
(2.9)

Under the periodic boundary conditions, D�D is a blockwise circulant matrix with circulant
blocks and thus can be diagonalized by two-dimensional discrete Fourier transform. Therefore,
(2.8) can be easily solved by two FFTs (fast Fourier transforms). Specifically, uk+1 is given
by

uk+1 = F−1
(
F(bk)./diag(FAF−1)

)
,(2.10)

where F and F−1 represent, respectively, the two-dimensional forward and inverse Fourier
matrix, diag(·) takes the diagonal elements, and “./” denotes componentwise division. Al-
ternatively, under the Neumann boundary conditions, D�D is a block Toeplitz-plus-Hankel
matrix (see, e.g., [38]), and system (2.8) can be solved efficiently by two-dimensional DCTs.
Therefore, all the subproblems arising in the ADM for solving (2.1) have closed-form solu-
tions. This feature is very beneficial for achieving attractive numerical performance, as we
shall show in the next section.

Although one can circularly apply (2.6), (2.7), and (2.10) until LA(u, v, w, λk , ηk) is min-
imized jointly with respect to (u, v, w) and update the multipliers as in the ALM (2.3), we
choose to update λk and ηk immediately after merely one round of minimizations in the al-
ternating order. Now, we are ready to present the algorithm of ADM for solving (2.1) (or,
equivalently, (1.2)).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADM FOR IMAGE INPAINTING IN WAVELET DOMAIN 813

Algorithm 1. Input problem data P, f and model parameters μ > 0. Given β1, β2 > 0
and γ ∈

(
0, (
√
5 + 1)/2

)
. Initialize u = u0, λ = λ0, and η = η0. Set k = 0. Compute

Λ := F
(
β1D

�D + β2I
)
F−1.

While “not converged”, Do
(1) Compute vk+1 and wk+1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζk = Wuk + ηk/β2,

ξki = Diu
k + λk

i /β1 ∀i,

vk+1
P =

β2ζkP+μf
β2+μ ,

vk+1
P̄

= ζk
P̄
,

wk+1
i = max

{
‖ξki ‖ − 1

β1
, 0
}
× ξki

‖ξki ‖
∀i.

(2) Compute uk+1:{
bk = D�(β1wk+1 − λk) +W�(β2vk+1 − ηk),

uk+1 = F−1
(
F(bk)./diag(Λ)

)
.

(3) Update λk and ηk by{
λk+1
i = λk

i − γβ1(w
k+1
i −Diu

k+1) ∀i,
ηk+1 = ηk − γβ2(v

k+1
i −Wuk+1).

(4) k ← k + 1.

End Do
We note that the per iteration cost of this ADM framework is dominated by two DWTs

(one forward for computing Wuk, and one inverse DWT for computing bk) and two FFTs
(one forward and one inverse for computing uk+1). The complexity of each such computation
is O(N logN) for a vector of length N . All other computations have linear complexity. We
also note that this ADM framework is applicable if the isotropic TV in (1.2) is replaced by
an anisotropic TV of the form TV(u) =

∑
i ‖Diu‖1. In this case, the only modification of

Algorithm 1 lies in the computation for wk+1, which is given by

wk+1
i = max

{
|ξki | − 1/β1, 0

}
◦ sgn(ξki) ∀i,

where “sgn(·)” denotes the signum function, and | · | and “◦” represent, respectively, compo-
nentwise absolute value and multiplication.

It is easy to see that the fast and exact minimization of the u-subproblem in the ADM
framework (2.4) is attainable, provided that T is orthonormal and D�D is diagonalizable by
fast transforms. Therefore, the ADM framework (2.4) can be easily generalized to other prob-
lem scenarios including image inpainting from cosine transformed or tight-frame coefficients [9].

Implementation details of Algorithm 1 including stopping criteria, and choices of param-
eters will be specified in section 3. The convergence of the proposed algorithm can be found
in the literature of the ADM, e.g., [31, 33]. For succinctness, we present only the convergence
theorem without detailed proof.

Theorem 2.1. For any β1, β2 > 0 and γ ∈ (0, (
√
5 + 1)/2), the sequence {(uk, vk, wk)}

generated by Algorithm 1 from any starting point (u0, λ0, η0) converges to a solution of (2.1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

814 RAYMOND H. CHANG, JUNFENG YANG, AND XIAOMING YUAN

2.3. Extensions and remarks. In this subsection, we discuss extensions of the ADM to
solving two closely related TV models. The first one is the constrained alternative of (1.2),
i.e.,

min
u

{∑
i

‖Diu‖
∣∣ ‖PWu− f‖ ≤ δ

}
,(2.11)

where δ > 0 is related to the noise level. Note that, from optimization theory, it is easy to see
that (1.2) and (2.11) are equivalent in the sense that solving one of them can determine an
appropriate parameter for the other such that these two problems share common solutions.
Compared with (1.2), the advantage of (2.11) is that δ can be properly selected whenever
a reasonable estimation of the noise level is available. For noiseless data, we recover u∗ via
solving

min
u

{∑
i

‖Diu‖
∣∣ PWu = f

}
.(2.12)

In the following, we briefly sketch the ADM scheme for solving (2.11), where δ = 0 is also
permitted and the resulting algorithm solves (2.12).

By introducing auxiliary variables, problem (2.11) is clearly equivalent to

min
u,v,w

{∑
i

‖wi‖+ IV(v)
∣∣ v = Wu, wi = Diu ∀ i

}
,(2.13)

where V � {v ∈ R
n2

: ‖Pv− f‖ ≡ ‖vP − f‖ ≤ δ} and IV(v) is the indicator function of V, i.e.,

IV(v) =
{
0 if v ∈ V,
+∞ otherwise.

(2.14)

The augmented Lagrangian function LIA(u, v, w, λ, η) of (2.13) is given by

LIA(u, v, w, λ, η) :=
∑

i

(
‖wi‖ − λ�

i (wi −Diu) +
β1
2
‖wi −Diu‖2

)
(2.15)

+ IV(v)− η�(v −Wu) +
β2
2
‖v −Wu‖2.

Given λk and ηk, the ADM applied to (2.13) is an iterative algorithm based on the iteration

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(v,w)k+1 = argminv,w LIA(uk, v, w, λk , ηk),

uk+1 = argminu LIA(u, vk+1, wk+1, λk, ηk),

λk+1
i = λk

i − γβ1(w
k+1
i −Diu

k+1) ∀i,
ηk+1 = ηk − γβ2(v

k+1 −Wuk+1).

(2.16)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADM FOR IMAGE INPAINTING IN WAVELET DOMAIN 815

The only difference between (2.16) and (2.4) lies in the minimization for v. It is easy to see
that the v-subproblem of (2.16) is equivalent to minv∈V ‖v − ζk‖, where ζk = Wuk + ηk/β2.
Let PV be the projection onto V. Clearly, vk+1 = PV(ζk) or, equivalently, vk+1

P̄
= ζk

P̄
and

vk+1
P = f +min

(
‖ζkP − f‖, δ

) ζkP − f

‖ζkP − f‖
.(2.17)

Therefore, by replacing the formula for computing vk+1
P in Algorithm 1 by (2.17), we obtain

an ADM algorithm for solving (2.13) or, equivalently, (2.11). We note that vk+1
P ≡ f when

δ = 0, and the resulting algorithm solves (2.12).
Based on previous discussions, it is easy to see that the ADM framework can be applied to

solving (2.11) and (2.12) with minor modifications. In fact, ADM is also easily applicable to
many other cases, e.g., local weighted and multichannel TV regularizations, nonnegativity, or
simple bound constraints, as well as models with the �1-norm data-fitting; see, e.g., [56, 59].
The most influential feature of the ADM approach is perhaps its great versatility and universal
effectiveness for a wide range of optimization problems in signal, image, and data analysis,
particularly for those involving �1-like regularizations such as TV, �1-norm, and nuclear-norm
(sum of singular values), which have been used in the literature to promote different properties
of the original signal. Due to its simplicity and efficiency, very recently ADM has found many
applications in diverse areas in addition to image restoration, such as compressive sensing [57],
semidefinite programming [54], sparse and low-rank matrix separation [55, 49], and magnetic
resonance imaging [59].

3. Numerical results. In this section, we present experimental results to show the practi-
cal efficiency of the proposed ADM scheme. In particular, we compare Algorithm 1 with the
optimization transfer algorithm [14] and the two-step IST algorithm [7]. We did not compare
with the gradient descent method [20] since it was shown in [14] that it is much slower and
less accurate than the optimization transfer algorithm. In the following, we abbreviate the
optimization transfer algorithm [14] and the two-step IST algorithm [7] as OpT and TwIST,
respectively, while Algorithm 1 will be refereed to as ADM. In all experiments, we initialized
u0 = W�P�f , and we call it “back projection”, λ0 = 0 and η0 = 0. The quality of recovered
images is measured by signal-to-noise ratio (SNR), defined by

SNR = 20 log10
‖u∗‖
‖u− u∗‖ ,

where u∗ and u are respectively the original and the reconstructed images.

3.1. Comparison with OpT. In [14], the authors proposed to solve (1.2) by an optimiza-
tion transfer or majorization algorithm. First, problem (1.2) was converted to an equivalent
problem of the form

min
u,v

{
TV(u) +

μ(1 + τ)

2τ

(
‖Pv − f‖2 + τ‖v −Wu‖2

)}
,(3.1)

where τ > 0 is a parameter. It can be shown that

‖PWu− f‖2 = min
v

1 + τ

τ

(
‖Pv − f‖2 + τ‖v −Wu‖2

)
.(3.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

816 RAYMOND H. CHANG, JUNFENG YANG, AND XIAOMING YUAN

10 20 30 40 50 60 70 80 90 100
1e4

2e4

5e4

1e5

2e5

4e5

6e5

Iteration

F
un

ct
io

n
va

lu
es

β

1
 = β

2
 ≡ 0.1

β
1
 = β

2
 ≡ 0.5

β
1
 = β

2
 ≡ 1

β
1
 = β

2
 ≡ 10

β
1
 = β

2
 ≡ 50

β
1
 = β

2
 ≡ 100

β
1
, β

2
 adaptive

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Iteration

S
N

R
 (

dB
)

β
1
 = β

2
 ≡ 0.1

β
1
 = β

2
 ≡ 0.5

β
1
 = β

2
 ≡ 1

β
1
 = β

2
 ≡ 10

β
1
 = β

2
 ≡ 50

β
1
 = β

2
 ≡ 100

β
1
, β

2
 adaptive

Figure 1. Convergence of ADM with different β values. Test image: Boat (the second image in Figure 6).

Therefore, (3.1) is equivalent to (1.2). The advantage of considering (3.1) is that alternating
minimization can be applied. For fixed u, the minimization of (3.1) with respect to v has a
closed-form solution. On the other hand, for fixed v the minimization of (3.1) with respect
to u is a TV denoising problem (because ‖Wu− v‖2 = ‖u−W�v‖2), and therefore it can be
solved efficiently by Chambolle’s dual approach [12].

In this comparison, we tested three images of different sizes: Cameraman (256-by-256),
Barbara (512-by-512), and Man (1024-by-1024). The intensity values of the original images are
scaled into [0,1] before generating f . In all experiments, we corrupted each original image with
random Gaussian noise of mean zero and standard deviation (std.) of 0.0392 (equivalent to
std. = 10 for images with intensity values varying between 0 and 255), and the model param-
eter μ was set to be 50. We used the Daubechies 7-9 biorthogonal wavelets with symmetric
extensions at the boundaries [4, 21]. For each image, we tested the algorithms with 30%, 50%,
and 70% randomly selected wavelet coefficients.

The parameter settings of ADM are as follows. We set γ = 1.618 in all experiments
because, based on our data, ADM is not sensitive to its choice. Although fixed values of β1
and β2 suffice for convergence, we chose to select them adaptively. Since β1 and β2 are penalty
parameters, we determine them in such a way that the variations of the constraints w = Du
and v = Wu are balanced. Specifically, for given β1 we determine β2 by

β2 = min

{
β1 ×

‖w −Du‖
‖v −Wu‖ , 2× 104

}
.(3.3)

We initialize β0
1 = 0.1 and set βk

1 = min{1.15βk−1
1 , 2 × 103} at the kth iteration. We note

that this dynamic parameter selection rule does not spoil the convergence theory of ADM;
see, e.g., [36] for a study of ADM with adaptive penalty parameters. In fact, the practical
performance of ADM is not very sensitive to the choices of β1 and β2, provided that they are
not extremely large or small. To illustrate this point, we tested several constant values of β1
and β2. The convergence of ADM with constant β-values, as well as the adaptive rule (3.3)
described above, in terms of function values and SNR values are given in Figure 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADM FOR IMAGE INPAINTING IN WAVELET DOMAIN 817

0 100 200 300 400 500 600 700
2e3

4e3

6e3

8e3

1e4

Iteration

F
un

ct
io

n
va

lu
e

ADM 30%
ADM 50%
ADM 70%
OpT 30%
OpT 50%
OpT 70%

0 100 200 300 400 500 600 700
0

5

10

15

20

25

Iteration

S
N

R
 (

dB
)

ADM 30%
ADM 50%
ADM 70%
OpT 30%
OpT 50%
OpT 70%

Figure 2. Comparison results for the ADM and OpT algorithms about the convergence behavior of function
values and SNR values. Test image: Cameraman; p/n2 = 30%, 50%, and 70%.

It can be seen from Figure 1 that the convergence speed of ADM is not very sensitive to
the values of β1 and β2 as long as they are relatively not too large or small. In particular,
for the tested problem, β1 and β2 can be randomly selected between, say, 0.5 and 30, and
the corresponding iteration numbers differ slightly. In fact, ADM with the self-adaptive rule
(3.3) is less sensitive to the scale of problem data, and the suitable values for β1 and β2 can
be found simultaneously.

In all experiments, we terminated Algorithm 1 when the relative change between two
consecutive points became small, i.e.,

‖uk − uk−1‖
‖uk−1‖ ≤ tol,(3.4)

where tol > 0 is a tolerance. For the OpT algorithm, we used the same settings as in [14]. All
the experiments were performed under Windows XP and Matlab v7.9 (R2009b) running on
a Dell desktop with an Intel Xeon CPU at 3GHz and 3Gb of memory.

To examine carefully the convergence behavior of ADM, we first tested the Cameraman
image with different percentages of available data. The ADM is terminated by (3.4) with
relatively stringent tolerance: tol = 10−5. The decrease of function values and the increase of
SNR values as functions of iteration numbers are illustrated in Figure 2, in comparison with
the OpT algorithm [14]. Note that in this test we set the maximum allowed iteration number
to be 10 for each call of Chambolle’s dual algorithm for solving the TV denoising subproblem
in OpT.

It can be seen form Figure 2 that ADM converges much faster than OpT. Specifically,
for all three tests ADM requires about 50 ∼ 60 iterations to reach the lowest function values
and the highest SNR values achievable by the model. In contrast, OpT improves the solution
quality continuously but at a much slower speed. OpT takes about 250 iterations at least
for the case of 70% available data. For the case of 30% available data, OpT takes more than
600 iterations to recover a solution of approximately the same quality as that obtained by the
ADM.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

818 RAYMOND H. CHANG, JUNFENG YANG, AND XIAOMING YUAN

256x256 512x512 1024x1024

5

10

15

20

25

Image size

S
N

R
 (

dB
)

ADM 30%
ADM 50%
ADM 70%
OpT 30%
OpT 50%
OpT 70%

256x256 512x512 1024x1024
0

1

2

3

4

5
x 10

4

Image size

F
un

ct
io

n
va

lu
e

ADM 30%
ADM 50%
ADM 70%
OpT 30%
OpT 50%
OpT 70%

256x256 512x512 1024x1024
0

500

1000

1500

2000

Image size

C
P

U
 ti

m
e

(s
)

ADM 30%
ADM 50%
ADM 70%
OpT 30%
OpT 50%
OpT 70%

Figure 3. Comparison results of SNR values, function values, and CPU times.

Given the above observations, in the next set of experiments we terminated ADM with a
looser tolerance: tol = 5 × 10−4. In this set of experiments, we tested all three images with
three levels of available data (30%, 50%, and 70%). The results of final objective function
values, SNR values, and the consumed CPU time are summarized in Figure 3.

From the first and the second plots in Figure 3, we can see that, for all tests, the final SNR
values and function values obtained by both algorithms are approximately the same, because
they solve the same model. However, from the third plot in Figure 3 it is clear that ADM
converges much faster than OpT. The faster convergence of ADM over OpT becomes more
evident when image size becomes large. For example, for the 1024-by-1024 “Man” image,
OpT takes up to 1, 900 seconds for the test on 30% data, while ADM takes only takes about
250 seconds. Another advantage of ADM over OpT is that its speed seems less sensitive to
the amount of available data. The CPU time consumed by ADM remains roughly the same
for the tests on 30%, 50%, and 70% data, while that taken by OpT becomes longer for less
data. These comparison results clearly demonstrate the superiority of the proposed ADM
approach. Recall that OpT applies the method in [12] to solve the resulting TV denoising
subproblem at each iteration. In this experiment, we set the maximal number of iterations as
5 for the inner iterations, as suggested in [14]. If the TV denoising subproblems are solved to
higher accuracy, OpT becomes even slower. The original images, back projections (W�P�f),
and those images recovered by both algorithms from 50% wavelet coefficients are presented in
Figure 4 along with the resulting SNR values and the consumed CPU times.

Now, we dig into the reason why OpT is slower than ADM. It is easy to show that, for
given u = uk, the minimizer vk+1 of (3.2) is given by

{
vk+1
P̄

= WP̄u
k,

vk+1
P = f+τWPuk

1+τ ,
(3.5)

where WP is the submatrix of W containing those rows with indices selected by P , and WP̄

contains the remaining rows. By plugging vk+1 into (3.1) and ignoring constant quantities,
we see that uk+1 generated by the OpT algorithm in [14] is the unique solution of

min
u

{
TV(u) +

μ(1 + τ)

2
‖u− ξk‖2

}
,(3.6)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADM FOR IMAGE INPAINTING IN WAVELET DOMAIN 819

Original image Original image Original image

Back Projection. 50% data Back Projection. 50% data Back Projection. 50% data

OpT. SNR: 18.08dB, CPU: 56.9s OpT. SNR: 16.47dB, CPU: 288.3s OpT. SNR: 17.58dB, CPU: 1214s

ADM. SNR: 18.09dB, CPU: 10.3s ADM. SNR: 16.66dB, CPU: 53s ADM. SNR: 17.66dB, CPU: 247.1s

Figure 4. Images recovered by both algorithms from 50% wavelet coefficients. First row: original images.
Second row: back projections. Third row: recovered by OpT. Bottom row: recovered by ADM.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

820 RAYMOND H. CHANG, JUNFENG YANG, AND XIAOMING YUAN

where ξk = W�vk+1. From (3.5) and W�
P WP +W �̄

P
WP̄ = I, it is easy to show that

ξk = W�vk+1 = W�
P vk+1

P +W �̄
P vk+1

P̄

=
W�

P f + τW�
P WPu

k

1 + τ
+W �̄

P WP̄u
k

=
1

1 + τ

(
W�

P f + τuk +W �̄
P WP̄u

k
)

= uk −
(
uk − 1

1 + τ

(
W�

P f + τuk +W �̄
P WP̄u

k
))

= uk − 1

1 + τ
W�

P

(
WPu

k − f
)
= uk − δgk,(3.7)

where δ = 1
1+τ and gk = W�

P (WPu
k−f) is the gradient of 1

2‖PWu−f‖2 at u = uk. From (3.6)
and (3.7), it is clear that the optimization transfer algorithm proposed in [14] is essentially
a proximal forward-backward operator splitting algorithm with the constant steplength 1

1+τ ,
which is strictly less than 1 since τ > 0. We note that in general the proximal forward-
backward operator splitting algorithm converges for varying steplengths δk, provided that the
sequence {δk}+∞

k=1 satisfies

0 < inf
k
{δk} ≤ sup

k
{δk} < 2/λmax(AA

�),

where, under the circumstances, A = PW for problem (1.2) and λmax(·) denotes the maximum
eigenvalue. We also note that in general bigger steplength δk leads to faster convergence. For
A = PW , it holds that λmax(AA

�) = λmax(PP�) = 1. Therefore, according to the conver-
gence theory of the proximal forward-backward operator splitting algorithm, the steplength
δ in (3.7) can be relaxed to a value as large as 2 without spoiling its convergence. On the
other hand, the ADM is a variant of the classical ALM, which has a close relationship with
Newton’s method. In fact, recent studies on semidefinite programs conducted in [48] show
that the ALM can be locally regarded as an approximate generalized Newton method applied
to a semismooth equation. This partially explains why the OpT algorithm converges more
slowly than does ADM. For details about the proximal forward-backward operator splitting
algorithm, we refer interested readers to [22] and the references therein.

3.2. Comparison with TwIST. Given the above observations, we next compare the ADM
with TwIST [7], which is actually a variant of the proximal forward-backward operator split-
ting algorithm. Note that TwIST solves the general problem:

(3.8) min
u

{
Φreg(u) +

μ

2
‖Au− b‖2

}
,

where Φreg(·) can be either TV or �1 regularization. Given uk, we let ξk = uk −A�(Auk − b)
and

(3.9) Ψ(ξk) := argmin
u

{
Φreg(u) +

μ

2
‖u− ξk‖2

}
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADM FOR IMAGE INPAINTING IN WAVELET DOMAIN 821

290x240 512x512 800x782
20

25

30

35

Image size

S
N

R
 (

dB
)

ADM 30%
ADM 50%
ADM 70%
TwIST 30%
TwIST 50%
TwIST 70%

290x240 512x512 800x782
0

0.5

1

1.5

2

2.5

3
x 10

4

Image size

F
un

ct
io

n
va

lu
e

ADM 30%
ADM 50%
ADM 70%
TwIST 30%
TwIST 50%
TwIST 70%

290x240 512x512 800x782
0

50

100

150

Image size

C
P

U
 ti

m
e

(s
)

ADM 30%
ADM 50%
ADM 70%
TwIST 30%
TwIST 50%
TwIST 70%

Figure 5. Comparison results of SNR values, function values, and CPU times.

Initialized at u0 and u1, the TwIST algorithm iterates as

(3.10) uk+1 = (1− α)uk−1 + (α− θ)uk + θΨ(ξk),

where α, θ > 0 are properly selected constant parameters. It is easy to see that (3.10) reduces
to (3.6) (with δ = 1 in (3.7)) if Φreg(u) = TV(u) and α = θ = 1. In the implementation of
TwIST, the parameters α and θ were determined carefully based on the spectral distribution
of AA�. In our case, A = PW , and the minimum and the maximum eigenvalues of AA� are
obviously 0 and 1, respectively. Therefore, we assigned a relatively small value 10−4 to the
TwIST parameter lam1 (which is used to compute α and θ), as recommended in the TwIST v2
documentation. In the TwIST codes, problem (3.9) is also solved by Chambolle’s denoising
algorithm [12]. To speed up TwIST, we set the maximum iteration number to be 5 for each
call of Chambolle’s algorithm to solve (3.9). TwIST is terminated when the relative change
in function values of two consecutive iterations falls below tolA= 10−5. For ADM, we set
tol = 10−4 and kept other parameter settings as used in section 3.1.

In this set of experiments, we used the Haar wavelet transform provided by the Rice
Wavelet Toolbox [62] with its default settings. The test results on three other images of
different sizes (Boy: 290 × 240, Boat: 512 × 512, and Bird: 800 × 782) with 30%, 50%, and
70% data are reported in Figure 5.

It can be seen from the left plot in Figure 5 that ADM reaches lower SNR values than
does TwIST for four of the nine tests. However, from the middle and the right plots, ADM
obtains smaller function values within less CPU times for all nine tests. Also, by comparing
the last plot in Figure 5 with that in Figure 3, we can see that TwIST is faster than OpT since
the gap in CPU time is narrowed to a large extent. The original images, back projections,
and images recovered by ADM and TwIST from 50% Haar wavelet coefficients are given in
Figure 6.

The convergence of ADM and TwIST in terms of function values and SNR values for the
512×512 sized Boat image are plotted in Figure 7. It can be seen from the left plot in Figure 7
that ADM is much faster than TwIST in decreasing function values. For TwIST to obtain
function values as good as those results of ADM, much stringent tolerance must be enforced.
In that case, the consumed iteration numbers by TwIST will increase greatly, which is not
required since the SNR values obtained by both methods are, roughly speaking, equally good,
as shown by the plot on the right-hand side in Figure 7.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

822 RAYMOND H. CHANG, JUNFENG YANG, AND XIAOMING YUAN

Original image Original image Original image

Back Projection. 50% data Back Projection. 50% data Back Projection. 50% data

ADM. SNR: 24.16dB, CPU: 4.9s ADM. SNR: 24.26dB, CPU: 17.4s ADM. SNR: 29.1dB, CPU: 46.2s

TwIST. SNR: 24.46dB, CPU: 5.9s TwIST. SNR: 24.22dB, CPU: 32.8s TwIST. SNR: 28.34dB, CPU: 92.6s

Figure 6. Results recovered by ADM and TwIST from 50% Haar wavelet coefficients. First row: original
images (from left to right: Boy, Boat, and Bird). Second row: back projections. Third row: recovered by ADM.
Bottom row: recovered by TwIST.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADM FOR IMAGE INPAINTING IN WAVELET DOMAIN 823

0 10 20 30 40 50

1e4

2e4

5e4

1e5

Iteration

F
un

ct
io

n
va

lu
e

ADM 30%
ADM 50%
ADM 70%
TwIST 30%
TwIST 50%
TwIST 70%

0 10 20 30 40 50
0

5

10

15

20

25

Iteration

S
N

R
 (

dB
)

ADM 30%
ADM 50%
ADM 70%
TwIST 30%
TwIST 50%
TwIST 70%

Figure 7. Convergence of ADM and TwIST in terms of function values and SNR values for the Boat
image; p/n2 = 30%, 50% and 70%.

4. Concluding remarks. In this paper, we proposed a fast alternating direction algorithm
for solving the TV wavelet domain inpainting problem. The proposed algorithm is a variant
of the classical augmented Lagrangian method which takes full advantage of the separable
structures of the problem. At each iteration, the main computational cost of the proposed
algorithm is dominated by two DWTs and two FFTs. Upon profiling the ADM algorithm in
Matlab, we found that about 60% of CPU time was consumed by the computation of fast
transforms (DWT, FFT, and their inverse transforms). The remaining time was consumed
by the computation of finite differences, function values, SNR values, overhead, etc. The
CPU time consumed by fast (forward and inverse) wavelet transforms versus that by (forward
and inverse) Fourier transforms is determined by the average speed of these transforms, since
the number of calls to each of the transforms is equal (ignoring overhead computations). Our
experimental results clearly demonstrate that the proposed ADM is stable, efficient, and much
faster than some existing methods, including the optimization transfer algorithm [14] and the
two-step iterative/shrinkage algorithm [7].

Acknowledgment. We are grateful to three anonymous referees for their valuable com-
ments and suggestions which have helped us improve the presentation of this paper.

REFERENCES

[1] R. Acar and C. R. Vogel, Analysis of total variation penalty methods, Inverse Problems, 10 (1994),
pp. 1217–1229.

[2] M. V. Afonso, J. Bioucas-Dias, and M. Figueiredo, Fast Image Recovery Using Variable Splitting
and Constrained Optimization, IEEE Trans. Image Processing, 19 (2010), pp. 2345–2356.

[3] M. V. Afonso, J. Bioucas-Dias, and M. Figueiredo, A Fast Algorithm for the Constrained Formulation
of Compressive Image Reconstruction and Other Linear Inverse Problems, in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing ICASSP’2010, Dallas, TX, 2010.

[4] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, Image coding using wavelet transform,
IEEE Trans. Image Process., 1 (1992), pp. 205–220.

[5] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera, Filling-in by joint interpo-
lation of vector fields and gray levels, IEEE Trans. Image Process., 10 (2001), pp. 1200–1211.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

824 RAYMOND H. CHANG, JUNFENG YANG, AND XIAOMING YUAN

[6] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, Image inpainting, in SIGGRAPH 2000,
Computer Graphics Proceedings, K. Akeley, ed., ACM Press/ACM SIGGRAPH/AddisonWesley Long-
man, New York, 2000, pp. 417–424.

[7] J. Bioucas-Dias and M. Figueiredo, A new TwIST: Two-step iterative thresholding algorithm for image
restoration, IEEE Trans. Image Process., 16 (2007), pp. 2992–3004.

[8] L. Bregman, The relaxation method of finding the common points of convex sets and its application to the
solution of problems in convex optimization, USSR Comput. Math. Math. Phys., 7 (1967), pp. 200–217.

[9] J.-F. Cai, R. Chan, and Z. Shen, A framelet-based image inpainting algorithm, Appl. Comput. Harmon.
Anal., 24 (2008), pp. 131–149.

[10] J.-F. Cai, H. Ji, F. Shang, and Z. Shen, Inpainting for compressed images, Appl. Comput. Harmon.
Anal., 29 (2010), pp. 368–381.

[11] A. Chambolle and P. L. Lions, Image recovery via total variation minimization and related problems,
Numer. Math., 76 (1997), pp. 167–188.

[12] A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision,
20 (2004), pp. 89–97.

[13] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications
to imaging, J. Math. Imaging Vision, 40 (2011), pp. 120–145.

[14] R. Chan, Y. W. Wen, and A. M. Yip, A fast optimization transfer algorithm for image inpainting in
wavelet domains, IEEE Trans. Image Process., 18 (2009), pp. 1467–1476.

[15] T. Chan, S. Esedoglu, F. Park, and A. Yip, Recent Developments in Total Variation Image Restora-
tion, CAM Report TR05–01, Los Angeles, CA, 2005.

[16] T. F. Chan, S. H. Kang, and J. Shen, Euler’s elastica and curvature-based inpainting, SIAM J. Appl.
Math., 63 (2002), pp. 564–592.

[17] T. Chan and J. Shen, Nontexture inpainting by curvature-driven diffusions, J. Vision Commun. Image
Represent., 12 (2001), pp. 436–449.

[18] T. F. Chan and J. Shen, Mathematical models for local nontexture inpaintings, SIAM J. Appl. Math.,
62 (2002), pp. 1019–1043.

[19] T. F. Chan and J. Shen, Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic
Methods, SIAM, Philadelphia, 2005.

[20] T. Chan, J. Shen, and H. Zhou, Total variation wavelet inpainting, J. Math. Imaging Vision, 25 (2006),
pp. 107–125.

[21] A. Cohen, I. Daubeches, and J. C. Feauveau, Biorthogonal bases of compactly supported wavelets,
Comm. Pure Appl. Math., 45 (1992), pp. 485–560.

[22] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale
Model. Simul., 4 (2005), pp. 1168–1200.

[23] I. Daubechies, M. Defriese, and C. De Mol, An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint, Comm. Pure Appl. Math., LVII (2004), pp. 1413–1457.

[24] C. De Mol and M. Defrise, A note on wavelet-based inversion algorithms, Contemp. Math., 313 (2002),
pp. 85–96.

[25] J. Douglas and H. Rachford, On the numerical solution of heat conduction problems in two and three
space variables, Trans. Amer. Math. Soc., 82 (1956), pp. 421–439.

[26] D. C. Dobson and F. Santosa, Recovery of blocky images from noisy and blurred data, SIAM J. Appl.
Math., 56 (1996), pp. 1181–1198.

[27] J. Eckstein and D. Bertsekas, On the Douglas-Rachford Splitting Method and the Proximal Point
Algorithm for Maximal Monotone Operators, Math. Program. 55, North–Holland, Amsterdam, 1992.

[28] M. Elad, Why simple shrinkage is still relevant for redundant representations?, IEEE Trans. Inform.
Theory, 52 (2006), pp. 5559–5569.

[29] E. Esser, Applications of Lagrangian-based Alternating Direction Methods and Connections to Split Breg-
man, CAM Report 09–31, UCLA, Los Angeles, CA, 2009.

[30] M. Figueiredo and R. Nowak, An EM algorithm for wavelet-based image restoration, IEEE Trans.
Image Process., 12 (2003), pp. 906–916.

[31] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via
finite-element approximations, Comput. Math. Appl., 2 (1976), pp. 17–40.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADM FOR IMAGE INPAINTING IN WAVELET DOMAIN 825

[32] D. Geman and C. Yang, Nonlinear image recovery with half-quadratic regularization, IEEE Trans. Image
Process., 4 (1995), pp. 932–946.

[33] R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator Splitting Methods in Nonlinear
Mechanics, SIAM Stud. Appl. Math. 9, SIAM, Philadelphia, 1989.

[34] R. Glowinski and A. Marrocco, Sur lapproximation par elements finis dordre un, et la resolution
par penalisation-dualite dune classe de problemes de Dirichlet nonlineaires, Rev. Francaise Automat.
Inform. Rech. Oper., R-2 (1975), pp. 41–76.

[35] T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM J. Imaging
Sci., 2 (2009), pp. 323–343.

[36] B. S. He, S. L. Wang, and H. Yang, A modified variable-penalty alternating directions method for
monotone variational inequalities, J. Comput. Math., 21 (2003), pp. 495–504.

[37] M. R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl., 4 (1969), pp. 303–320.
[38] M. K. Ng, R. H. Chan, and W.-C. Tang, A fast algorithm for deblurring models with Neumann

boundary conditions, SIAM J. Sci. Comput., 21 (1999), pp. 851–866.
[39] M. K. Ng, P. Weiss, and X. Yuan, Solving constrained total-variation image restoration and recon-

struction problems via alternating direction methods, SIAM J. Sci. Comput., 32 (2010), pp. 2710–2736.
[40] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, An iterative regularization method for total

variation-based image restoration, Multiscale Model. Simul., 4 (2005), pp. 460–489.
[41] M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Optimization, R.

Fletcher, ed., Academic Press, New York, 1969, pp. 283–298.
[42] S. Rane, J. Remus, and G. Sapiro, Wavelet-domain reconstruction of lost blocks in wireless image

transmission and packet-switched networks, in Proceedings of the IEEE International Conference in
Image Processing, Rochester, NY, 2002, pp. 309–312.

[43] S. Rane, G. Sapiro, and M. Bertalmio, Structure and texture filling-in of missing image blocks in
wireless transmission and compression applications, IEEE Trans. Image Process., 12 (2003), pp. 296–
303.

[44] L. Rudin and S. Osher, Total variation based image restoration with free local constraints, in Proceedings
of the 1st IEEE International Conference on Image Processing, Austin, TX, 1994, pp. 31–45.

[45] L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D,
60 (1992), pp. 259–268.

[46] S. Setzer, Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage, in Proceedings of the
2nd International Conference on Scale Space Methods and Variational Methods in Computer Vision,
Lecture Notes in Comput. Sci. 5567, Springer, New York, 2009, pp. 464–476.

[47] J. L. Starck, M. Nguyen, and F. Murtagh, Wavelets and curvelets for image deconvolution: A
combined approach, Signal Process., 83 (2003), pp. 2279–2283.

[48] D. F. Sun, J. Sun, and L. W. Zhang, The rate of convergence of the augmented Lagrangian method for
nonlinear semidefinite programming, Math. Program., 114 (2008), pp. 349–391.

[49] M. Tao and X. Yuan, Recovering low-rank and sparse components of matrices from incomplete and noisy
observations, SIAM J. Optim., 21 (2011), pp. 57–81.

[50] A. Tikhonov and V. Arsenin, Solution of Ill-Posed Problems, Winston, Washington, DC, 1977.
[51] C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput.,

17 (1996), pp. 227–238.
[52] C. R. Vogel and M. E. Oman, A fast, robust total variation based reconstruction of noisy, blurred

images, IEEE Trans. Image Process., 7 (1998), pp. 813–824.
[53] Y. Wang, J. Yang, W. Yin, and Y. Zhang, A new alternating minimization algorithm for total variation

image reconstruction, SIAM J. Imaging Sci., 1 (2008), pp. 248–272.
[54] Z. Wen, W. Yin, and D. Goldfarb, Alternating direction augmented Lagrangian methods for semi-

definite programming, Math. Program. Comput., 2 (2010), pp. 203–230.
[55] Z. Lin, M. Chen, L. Wu, and Y. Ma, The augmented Lagrange multiplier method for exact recovery of

a corrupted low-rank matrices, Math. Prog., submitted.
[56] J. Yang, W. Yin, Y. Zhang, and Y. Wang, A fast algorithm for edge-preserving variational multichan-

nel image restoration, SIAM J. Imaging Sci., 2 (2009), pp. 569–592.
[57] J. Yang and Y. Zhang, Alternating direction algorithms for �1-problems in compressive sensing, SIAM

J. Sci. Comput., 33 (2011), pp. 250–278.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

826 RAYMOND H. CHANG, JUNFENG YANG, AND XIAOMING YUAN

[58] J. Yang, Y. Zhang, and W. Yin, An efficient TVL1 algorithm for deblurring multichannel images
corrupted by impulsive noise, SIAM J. Sci. Comput., 31 (2009), pp. 2842–2865.

[59] J.-F. Yang, Y. Zhang, and W. Yin, A fast alternating direction method for TVL1-L2 signal reconstruc-
tion from partial Fourier data, IEEE J. Sel. Top. Signal Process., 4 (2010), pp. 288–297.

[60] X. Q. Zhang and T. Chan, Wavelet inpainting by nonlocal total variation, Inverse Problems and Imaging,
4 (2010), pp. 191–210.

[61] X. Zhang, M. Burger, X. Bresson, and S. Osher, Bregmanized nonlocal regularization for deconvo-
lution and sparse reconstruction, SIAM J. Imag. Sci., 3 (2010), pp. 253–276.

[62] R. Baraniuk, H. Choi, R. Neelamani, V. Ribeiro, J. Romberg, H. Guo, F. Fernandes, B. Hen-

dricks, R. Gopinath, M. Long, J. E. Odegard, and D. Wei, Rice Wavelet Toolbox, Version 2.4,
2002, http://www.dsp.rice.edu/software/rice-wavelet-toolbox.

http://dsp.rice.edu/software/rwt.shtml

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

