
SIAM J. SCI. COMPUT. c© 2011 Society for Industrial and Applied Mathematics
Vol. 33, No. 1, pp. 250–278

ALTERNATING DIRECTION ALGORITHMS FOR �1-PROBLEMS IN
COMPRESSIVE SENSING∗

JUNFENG YANG† AND YIN ZHANG‡

Abstract. In this paper, we propose and study the use of alternating direction algorithms for
several �1-norm minimization problems arising from sparse solution recovery in compressive sensing,
including the basis pursuit problem, the basis pursuit denoising problems of both unconstrained and
constrained forms, and others. We present and investigate two classes of algorithms derived from
either the primal or the dual form of �1-problems. The construction of the algorithms consists of
two main steps: (1) to reformulate an �1-problem into one having blockwise separable objective
functions by adding new variables and constraints; and (2) to apply an exact or inexact alternating
direction method to the augmented Lagrangian function of the resulting problem. The derived
alternating direction algorithms can be regarded as first-order primal-dual algorithms because both
primal and dual variables are updated at every iteration. Convergence properties of these algorithms
are established or restated when they already exist. Extensive numerical experiments are performed,
using randomized partial Walsh–Hadamard sensing matrices, to demonstrate the versatility and
effectiveness of the proposed approach. Moreover, we present numerical results to emphasize two
practically important but perhaps overlooked points: (i) that algorithm speed should be evaluated
relative to appropriate solution accuracy; and (ii) that when erroneous measurements possibly exist,
the �1-fidelity should generally be preferable to the �2-fidelity.

Key words. compressive sensing, �1-minimization, primal, dual, augmented Lagrangian func-
tion, alternating direction method

AMS subject classifications. 65F22, 65J22, 65K10, 90C25, 90C06

DOI. 10.1137/090777761

1. Introduction. In the last few years, algorithms for finding sparse solutions of
underdetermined linear systems have been intensively studied, largely because solving
such problems constitutes a critical step in an emerging methodology in digital signal
processing—compressive sensing or sampling (CS). In CS, a digital signal is encoded
as inner products between the signal and a set of random (or random-like) vectors
where the number of such inner products, or linear measurements, can be significantly
fewer than the length of the signal. On the other hand, the decoding process requires
finding a sparse solution, either exact or approximate, to an underdetermined linear
system. What makes such a scheme work is sparsity; i.e., the original signal must
have a sparse or compressible representation under some known basis. Throughout
this paper we will allow all involved quantities (signals, acquired data, and encoding
matrices) to be complex. Let x̄ ∈ C

n be an original signal that we wish to capture.
Without loss of generality, we assume that x̄ is sparse under the canonical basis; i.e.,
the number of nonzero components in x̄, denoted by ‖x̄‖0, is far fewer than its length.

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section November
19, 2009; accepted for publication (in revised form) November 5, 2010; published electronically
February 3, 2011.

http://www.siam.org/journals/sisc/33-1/77776.html
†Department of Mathematics, Nanjing University, 22 Hankou Road, Nanjing, 210093, People’s

Republic of China (jfyang@nju.edu.cn). This author was supported by the Natural Science Founda-
tion of China NSFC-11001123, NSFC-10971095.

‡Department of Computational and Applied Mathematics, Rice University, 6100 Main Street,
MS-134, Houston, TX 77005 (yzhang@rice.edu). This author was supported in part by NSF DMS-
0811188 and ONR grant N00014-08-1-1101.

250

ALTERNATING DIRECTION ALGORITHMS FOR �1-PROBLEMS 251

Instead of sampling x̄ directly, in CS one first obtains a set of linear measurements

b = Ax̄ ∈ C
m,(1.1)

where A ∈ Cm×n (m < n) is an encoding matrix. The original signal x̄ is then recon-
structed from the underdetermined linear system Ax = b via a certain reconstruction
technique. Basic CS theory presented in [9, 11, 17] states that it is extremely proba-
ble to reconstruct x̄ accurately or even exactly from b provided that x̄ is sufficiently
sparse (or compressible) relative to the number of measurements, and the encoding
matrix A possesses certain desirable attributes.

In the rest of this section, we briefly review the essential ingredients of the CS
decoding process and some existing methods for the relevant optimization problems,
summarize our main contributions in this paper, and describe the notation and orga-
nization of the paper.

1.1. Signal decoding in CS. To make CS successful, two ingredients must be
addressed carefully. First, a sensing matrix Amust be designed so that the compressed
measurement b = Ax̄ contains enough information for a successful recovery of x̄.
Second, an efficient, stable, and robust reconstruction algorithm must be available
for recovering x̄ from A and b. In the present paper, we will concentrate only on the
second aspect.

In order to recover the sparse signal x̄ from the underdetermined system (1.1),
one could naturally consider seeking among all solutions of (1.1) the sparsest one, i.e.,
solving

min
x∈Cn
{‖x‖0 : Ax = b},(1.2)

where ‖x‖0 is the number of nonzeros in x. Indeed, with overwhelming probability
decoder (1.2) can recover sparse signals exactly from a very limited number of random
measurements (see, e.g., [3]). Unfortunately, this �0-problem is combinatorial and
generally computationally intractable. A fundamental decoding model in CS is the
so-called basis pursuit (BP) problem [14]:

(1.3) min
x∈Cn
{‖x‖1 : Ax = b}.

Minimizing the �1-norm in (1.3) plays a central role in promoting solution sparsity. In
fact, problem (1.3) shares common solutions with (1.2) under some favorable condi-
tions (see, for example, [18]). When b contains noise, or when x̄ is not exactly sparse
but only compressible, as is the case in most practical applications, certain relaxation
to the equality constraint in (1.3) is desirable. In such situations, common relaxations
to (1.3) include the constrained basis pursuit denoising (BPδ) problem [14],

(1.4) min
x∈Cn
{‖x‖1 : ‖Ax− b‖2 ≤ δ},

and its variants, including the unconstrained basis pursuit denoising (QPμ) problem

min
x∈Cn

‖x‖1 + 1

2μ
‖Ax− b‖22,(1.5)

where δ, μ > 0 are parameters. From optimization theory, it is well known that
problems (1.4) and (1.5) are equivalent in the sense that solving one will determine

252 J.-F. YANG AND Y. ZHANG

a parameter value in the other so that the two share the same solution. As δ and μ
approach zero, both BPδ and QPμ converge to (1.3). In this paper, we also consider
the use of an �1/�1 model of the form

min
x∈Cn

‖x‖1 + 1

ν
‖Ax− b‖1(1.6)

whenever b might contain erroneous measurements. It is well known that unlike (1.5),
where squared �2-norm fidelity is used, the �1-norm fidelity term makes (1.6) an exact
penalty method in the sense that it reduces to (1.3) when ν > 0 is less than some
threshold.

It is worth noting that problems (1.3), (1.4), (1.5), and (1.6) all have their “non-
negative counterparts” where the signal x is real and nonnegative. These nonnegative
counterparts will be briefly considered later. Finally, we mention that aside from �1-
related decoders, there exist alternative decoding techniques such as greedy algorithms
(e.g., [52]) which, however, are not a subject of concern in this paper.

1.2. Some existing methods. In the last few years, numerous algorithms have
been proposed and studied for solving the aforementioned �1-problems arising in CS.
Although these problems are convex programs with relatively simple structures (e.g.,
the BP problem is a linear program when x is real), they do demand dedicated
algorithms because standard methods, such as interior-point algorithms for linear and
quadratic programming, are simply too inefficient for them. This is the consequence of
several factors, most prominently the fact that the data matrix A is totally dense while
the solution is sparse. Clearly, the existing standard algorithms were not designed to
handle such a feature. Another noteworthy structure is that encoding matrices in CS
are often formed by randomly taking a subset of rows from orthonormal transform
matrices, such as DCT (discrete cosine transform), DFT (discrete Fourier transform),
or DWHT (discrete Walsh–Hadamard transform) matrices. Such encoding matrices
do not require storage and enable fast matrix-vector multiplications. As a result,
first-order algorithms that are able to take advantage of such a special feature lead
to better performance and are highly desirable. In this paper we derive algorithms
that take advantage of the structure (AA∗ = I), and our numerical experiments are
focused on randomized partial transform sensing matrices.

One of the earliest first-order methods applied to solving (1.5) is the gradient pro-
jection method suggested in [24] by Figueiredo, Nowak, andWright, where the authors
reformulated (1.5) as a box-constrained quadratic program and implemented a gra-
dient projection method with line search. To date, the most widely studied class of
first-order methods for solving (1.5) is variants of the iterative shrinkage/thresholding
(IST) method, which was first proposed for wavelet-based image deconvolution (see
[41, 16, 23], for example) and then independently discovered and analyzed by many
others (for example, [21, 48, 49, 15]). In [31] and [32], Hale, Yin, and Zhang de-
rived the IST algorithm from an operator splitting framework and combined it with a
continuation strategy. The resulting algorithm, which is named fixed-point continua-
tion (FPC), is also accelerated via a nonmonotone line search with Barzilai–Borwein
steplength [4]. A similar sparse reconstruction algorithm called SpaRSA was also
studied by Wright, Nowak, and Figueiredo in [58]. Recently, Beck and Teboulle pro-
posed a fast IST algorithm (FISTA) in [5] which attains the same optimal convergence
in function values as Nesterov’s multistep gradient method [40] for minimizing com-
posite convex functions. Lately, Yun and Toh also studied a block coordinate gradient
descent (CGD) method in [63] for solving (1.5).

ALTERNATING DIRECTION ALGORITHMS FOR �1-PROBLEMS 253

There also exist algorithms for solving constrained �1-problems (1.3) and (1.4).
Bregman iterations, proposed in [42] and now known to be equivalent to the aug-
mented Lagrangian method, were applied to the BP problem by Yin et al. in [60].
In the same paper, a linearized Bregman method was also suggested and was an-
alyzed subsequently in [7, 8, 61]. In [54], Van den Berg and Friedlander proposed
a spectral projection gradient method (SPGL1), where (1.4) is solved by a root-
finding framework applied to a sequence of LASSO problems [51]. Moreover, based
on a smoothing technique studied by Nesterov in [39], a first-order algorithm called
NESTA was proposed by Becker, Bobin, and Candès in [6] for solving (1.4).

1.3. Contributions. After years of intensive research on �1-problem solving,
it would appear that most relevant algorithmic ideas have been either tried or, in
many cases, rediscovered. Yet, interestingly, until very recently the classic idea of
alternating direction method (ADM) had not, to the best of our knowledge, been
seriously investigated.

The main contributions of this paper are to introduce the ADM approach to the
area of solving �1-problems in CS (as well as solving similar problems in image and
signal processing) and to demonstrate its usefulness as a versatile and powerful algo-
rithmic approach. From the ADM framework we have derived first-order primal-dual
algorithms for models (1.3)–(1.6) and their nonnegative counterparts where signals
are real and nonnegative. For each model, an ADM algorithm can be derived based
on either the primal or the dual. Since the dual-based algorithms appear to be slightly
more efficient when sensing matrices are orthonormal, we have implemented them in a
MATLAB package called YALL1 (short for Your ALgorithm for L1). Currently, YALL1
[64] can effectively solve eight different �1-problems: models (1.3)–(1.6) and their
nonnegative counterparts, where signals can be real (and possibly nonnegative) or
complex, and orthonormal sparsifying bases and weights are also permitted in the �1-
regularization term, which takes the more general form ‖Wx‖w,1 �

∑n
i=1 wi|(Wx)i|

for any W ∈ Cn×n with W ∗W = I and w ∈ Rn with w ≥ 0.
In this paper, we present extensive computational results to document the numer-

ical performance of the proposed ADM algorithms in comparison to several state-of-
the-art algorithms for solving �1-problems under various situations, including FPC,
SpaRSA, FISTA, and CGD for solving (1.5), and SPGL1 and NESTA for solving
(1.3) and (1.4). As by-products, we also address a couple of related issues of practical
importance, i.e., choices of optimization models and proper evaluation of algorithm
speed.

1.4. Notation. We let ‖ · ‖ be the �2-norm and PΩ(·) be the orthogonal projec-
tion operator onto a closed convex set Ω under the �2-norm. Superscripts “�” and
“∗” denote, respectively, the transpose and the conjugate transpose operators for real
and complex quantities. We let Re(·) and | · | be, respectively, the real part and
the magnitude of a complex quantity, which are applied componentwise to complex
vectors. Further notation will be introduced wherever it occurs.

1.5. Organization. This paper is organized as follows. In section 2, we first re-
view the basic idea of the classic ADM framework and then derive alternating direction
algorithms for solving (1.3), (1.4), and (1.5). We also establish convergence of the
primal-based algorithms, while that of the dual-based algorithms follows from classic
results in the literature when sensing matrices have orthonormal rows. In section 3, we
illustrate how to reduce model (1.6) to (1.3) and present numerical results to compare
the behavior of model (1.6) to that of models (1.4) and (1.5) under various scenarios

254 J.-F. YANG AND Y. ZHANG

of data noise. In section 4, we first re-emphasize the sometimes overlooked common
sense on appropriate evaluations of algorithm speed and then present extensive nu-
merical results on the performance of the proposed ADM algorithms in comparison
to several state-of-the-art algorithms. Finally, we conclude the paper in section 5 and
discuss several extensions of the ADM approach to other �1-like problems.

2. ADM-based first-order primal-dual algorithms. In this section, based
on the classic ADM technique, we propose first-order primal-dual algorithms that
update both primal and dual variables at each iteration for the solution of �1-problems.
We start with a brief review of the general framework of ADM.

2.1. General framework of ADM. Let f(x) : Rm → R and g(y) : Rn → R

be convex functions, A ∈ Rp×m, B ∈ Rp×n, and b ∈ Rp. We consider the structured
convex optimization problem

min
x,y
{f(x) + g(y) : Ax+By = b} ,(2.1)

where the variables x and y appear separately in the objective and are coupled only
in the constraint. The augmented Lagrangian function of this problem is given by

LA(x, y, λ) = f(x) + g(y)− λ�(Ax+By − b) +
β

2
‖Ax+By − b‖2,(2.2)

where λ ∈ Rp is a Lagrangian multiplier and β > 0 is a penalty parameter. The
classic augmented Lagrangian method [36, 44] iterates as follows: given λk ∈ Rp,{

(xk+1, yk+1)← argminx,y LA(x, y, λk),
λk+1 ← λk − γβ(Axk+1 +Byk+1 − b),

(2.3)

where γ ∈ (0, 2) guarantees convergence, as long as the subproblem is solved to
an increasingly high accuracy at every iteration [46]. However, an accurate joint
minimization with respect to both x and y can become costly. In contrast, ADM
utilizes the separability structure in (2.1) and replaces the joint minimization by two
simpler subproblems. Specifically, ADM minimizes LA(x, y, λ) with respect to x and
y separately via a Gauss–Seidel-type iteration. After just one sweep of alternating
minimization with respect to x and y, the multiplier λ is updated immediately. In
short, given (yk, λk), ADM iterates as follows:⎧⎨

⎩
xk+1 ← argminx LA(x, yk, λk),
yk+1 ← argminy LA(xk+1, y, λk),
λk+1 ← λk − γβ(Axk+1 +Byk+1 − b).

(2.4)

In the above, the domains for the variables x and y are assumed to be Rm and Rn,
respectively, but the derivation will be the same if these domains are replaced by
closed convex sets X ⊂ Rm and Y ⊂ Rn, respectively. In that case, the minimization
problems in (2.4) will be over the sets X and Y , respectively.

The basic idea of ADM goes back to the work of Glowinski and Marocco [29]
and Gabay and Mercier [26]. Let θ1(·) and θ2(·) be convex functionals, and let A be
a continuous linear operator. The authors of [26] considered minimizing an energy
function of the form

min
u

θ1(u) + θ2(Au).

ALTERNATING DIRECTION ALGORITHMS FOR �1-PROBLEMS 255

By introducing an auxiliary variable v, the above problem was equivalently trans-
formed to

min
u,v
{θ1(u) + θ2(v) : Au − v = 0} ,

which has the form of (2.1) and to which the ADM approach was applied. Subse-
quently, ADM was studied extensively in optimization and variational analysis. In
[28], ADM is interpreted as the Douglas–Rachford splitting method [19] applied to a
dual problem. The equivalence between ADM and a proximal point method is shown
in [20]. The works applying ADM to convex programming and variational inequali-
ties include [53, 25, 35], to mention just a few. Moreover, ADM has been extended to
allowing inexact minimization (see [20, 34], for example).

In (2.4), a steplength γ > 0 is attached to the update of λ. Under certain
technical assumptions, convergence of ADM with a steplength γ ∈ (0, (

√
5 + 1)/2)

was established in [27, 28] in the context of variational inequality. The shrinkage in
the permitted range from (0, 2) in the augmented Lagrangianmethod to (0, (

√
5+1)/2)

in ADM is related to relaxing the exact minimization of LA(x, y, λk) with respect to
(x, y) to merely one round of alternating minimization.

Interestingly, the ADM approach was not widely utilized in the field of image and
signal processing (including compressive sensing) until very recently when a burst
of works applying ADM techniques appeared in 2009, including our ADM-based �1-
solver package YALL1 (see [64], published online in April 2009) and a number of
ADM-related papers (see [22, 59, 30, 43, 1, 2], for example). The rest of the paper
presents the derivation and performance of the proposed ADM algorithms for solving
the �1-models (1.3)–(1.6) and their nonnegative counterparts, many of which have
been implemented in YALL1.

2.2. Applying ADM to primal problems. In this subsection, we apply ADM
to primal �1-problems (1.4) and (1.5). First, we introduce auxiliary variables to re-
formulate these problems in the form of (2.1). Then, we apply alternating min-
imization to the corresponding augmented Lagrangian functions, either exactly or
approximately, to obtain ADM-like algorithms.

With an auxiliary variable r ∈ Cm, problem (1.5) is clearly equivalent to

min
x∈Cn, r∈Cm

{
‖x‖1 + 1

2μ
‖r‖2 : Ax+ r = b

}
,(2.5)

which has an augmented Lagrangian subproblem of the form

min
x∈Cn, r∈Cm

{
‖x‖1 + 1

2μ
‖r‖2 −Re(y∗(Ax+ r − b)) +

β

2
‖Ax+ r − b‖2

}
,(2.6)

where y ∈ C
m is a multiplier and β > 0 is a penalty parameter. Given (xk, yk), we

obtain (rk+1, xk+1, yk+1) by applying alternating minimization to (2.6). First, it is
easy to show that, for x = xk and y = yk fixed, the minimizer of (2.6) with respect
to r is given by

rk+1 =
μβ

1 + μβ

(
yk/β − (Axk − b)

)
.(2.7)

Second, for r = rk+1 and y = yk fixed, simple manipulation shows that the minimiza-
tion of (2.6) with respect to x is equivalent to

min
x∈Cn

‖x‖1 + β

2
‖Ax+ rk+1 − b − yk/β‖2,(2.8)

256 J.-F. YANG AND Y. ZHANG

which itself is in the form of (1.5). However, instead of solving (2.8) exactly, we
approximate it by

min
x∈Cn

‖x‖1 + β

(
Re((gk)∗(x− xk)) +

1

2τ
‖x− xk‖2

)
,(2.9)

where τ > 0 is a proximal parameter and

gk � A∗(Axk + rk+1 − b− yk/β)(2.10)

is the gradient of the quadratic term in (2.8) at x = xk excluding the multiplication
by β. The solution of (2.9) is given explicitly by (see, e.g., [15, 31])

xk+1 = Shrink

(
xk − τgk,

τ

β

)
� max

{
|xk − τgk| − τ

β
, 0

}
xk − τgk

|xk − τgk| ,(2.11)

where all the operations are performed componentwise and 0 ∗ 0
0 = 0 is assumed.

When the quantities involved are all real, the set of componentwise operation defined
in (2.11) is well known as the one-dimensional shrinkage (or soft thresholding). Finally,
we update the multiplier y by

yk+1 = yk − γβ(Axk+1 + rk+1 − b),(2.12)

where γ > 0 is a constant. In short, ADM applied to (1.5) produces the iteration

⎧⎨
⎩

rk+1 = μβ
1+μβ

(
yk/β − (Axk − b)

)
,

xk+1 = Shrink(xk − τgk, τ/β),
yk+1 = yk − γβ(Axk+1 + rk+1 − b).

(2.13)

We note that (2.13) is an inexact ADM because the x-subproblem is solved approxi-
mately. The convergence of (2.13) is not covered by the analysis given in [20], where
each ADM subproblem is required to be solved more and more accurately as the
algorithm proceeds. On the other hand, the analysis in [34] does cover the conver-
gence of (2.13) but only for the case γ = 1. A more general convergence result for
(2.13) that allows γ > 1 is established below. This is a meaningful extension since
our experiments show that γ > 1 generally leads to faster convergence than γ = 1.
Consequently, γ > 1 will always be used in our tests presented in section 4.

Theorem 2.1. Let τ, γ > 0 satisfy τλmax + γ < 2, where λmax denotes the maxi-
mum eigenvalue of A∗A. For any fixed β > 0, the sequence {(rk, xk, yk)} generated by
(2.13) from any starting point (x0, y0) converges to (r̃, x̃, ỹ), where (r̃, x̃) is a solution
of (2.5).

Proof. The proof is given in Appendix A.
A similar alternating minimization idea can also be applied to problem (1.4),

which is equivalent to

min
x∈Cn, r∈Cm

{‖x‖1 : Ax+ r = b, ‖r‖ ≤ δ} ,(2.14)

and has an augmented Lagrangian subproblem of the form

min
x∈Cn, r∈Cm

{
‖x‖1 −Re(y∗(Ax + r − b)) +

β

2
‖Ax+ r − b‖2 : ‖r‖ ≤ δ

}
.(2.15)

ALTERNATING DIRECTION ALGORITHMS FOR �1-PROBLEMS 257

Similar to the derivation of (2.13), applying inexact alternating minimization to (2.15)
yields the following iteration scheme:⎧⎨

⎩
rk+1 = PBδ

(
yk/β − (Axk − b)

)
,

xk+1 = Shrink(xk − τgk, τ/β),
yk+1 = yk − γβ(Axk+1 + rk+1 − b),

(2.16)

where gk is defined as in (2.10), and PBδ
is the orthogonal projection (in the Euclidean

norm) onto the set Bδ � {ξ ∈ Cm : ‖ξ‖ ≤ δ}. This algorithm also has a similar
convergence result to that of (2.13).

Theorem 2.2. Let τ, γ > 0 satisfy τλmax + γ < 2, where λmax denotes the max-
imum eigenvalue of A∗A. For any fixed β > 0, the sequence {(rk, xk, yk)} generated
by (2.16) from any starting point (x0, y0) converges to (r̃, x̃, ỹ), where (r̃, x̃) solves
(2.14).

The proof of Theorem 2.2 is similar to that of Theorem 2.1 and thus is omitted.
We point out that, when μ = δ = 0, both (2.13) and (2.16) reduce to{

xk+1 = Shrink
(
xk − τA∗(Axk − b− yk/β), τ/β

)
,

yk+1 = yk − γβ(Axk+1 − b).
(2.17)

It is easy to show that xk+1 given in (2.17) is a solution of

min
x
‖x‖1 −Re((yk)∗(Ax− b)) +

β

2τ
‖x− (xk − τA∗(Axk − b))‖2,(2.18)

which approximates at xk the augmented Lagrangian subproblem of (1.3),

min
x
‖x‖1 −Re((yk)∗(Ax − b)) +

β

2
‖Ax− b‖2,

by linearizing 1
2‖Ax−b‖2 and adding a proximal term. Therefore, (2.17) is an inexact

augmented Lagrangian algorithm for the BP problem (1.3). The only difference be-
tween (2.17) and the linearized Bregman method proposed in [60] lies in the updating
of the multiplier. The advantage of (2.17) is that it solves (1.3), while the linearized
Bregman method solves a penalty approximation of (1.3); see, e.g., [61]. We have the
following convergence result for the iteration scheme (2.17).

Theorem 2.3. Let τ, γ > 0 satisfy τλmax + γ < 2, where λmax denotes the
maximum eigenvalue of A∗A. For any fixed β > 0, the sequence {(xk, yk)} generated
by (2.17) from any starting point (x0, y0) converges to (x̃, ỹ), where x̃ is a solution of
(1.3).

Proof. A sketch of the proof of this theorem is given in Appendix B.
Since we applied the ADM idea to the primal problems (1.3), (1.4), and (1.5),

we name the resulting algorithms (2.13), (2.16), and (2.17) primal-based ADMs or
PADMs for short. In fact, these algorithms are really of primal-dual nature because
both the primal and the dual variables are updated at each and every iteration. In
addition, these are obviously first-order algorithms.

2.3. Applying ADM to dual problems. Similarly, we can apply the ADM
idea to the dual problems of (1.4) and (1.5), resulting in equally simple yet more
efficient algorithms when the sensing matrix A has orthonormal rows. Throughout
this subsection, we will make the assumption that the rows of A are orthonormal,
i.e., AA∗ = I. At the end of this section, we will extend the derived algorithms to
matrices with nonorthonormal rows.

258 J.-F. YANG AND Y. ZHANG

Simple computation shows that the dual of (1.5) or equivalently (2.5) is given by

max
y∈Cm

min
x∈Cn,r∈Cm

{
‖x‖1 + 1

2μ
‖r‖2 −Re(y∗(Ax+ r − b))

}

= max
y∈Cm

{
Re(b∗y)− μ

2
‖y‖2 + min

x∈Cn
(‖x‖1 −Re(y∗Ax)) +

1

2μ
min
r∈Cm

‖r − μy‖2
}

= max
y∈Cm

{
Re(b∗y)− μ

2
‖y‖2 : A∗y ∈ B∞

1

}
,(2.19)

where B∞
1 � {ξ ∈ Cn : ‖ξ‖∞ ≤ 1}. By introducing z ∈ Cn, (2.19) is equivalently

transformed to

max
y∈Cm

{
fd(y) � Re(b∗y)− μ

2
‖y‖2 : z −A∗y = 0, z ∈ B∞

1

}
,(2.20)

which has an augmented Lagrangian subproblem of the form

min
y∈Cm,z∈Cn

{
−Re(b∗y) +

μ

2
‖y‖2 −Re(x∗(z −A∗y)) +

β

2
‖z −A∗y‖2, z ∈ B∞

1

}
,(2.21)

where x ∈ Cn is a multiplier (in fact, the primal variable) and β > 0 is a penalty
parameter. Now we apply the ADM scheme to (2.20). First, it is easy to show that,
for x = xk and y = yk fixed, the minimizer zk+1 of (2.21) with respect to z is given
explicitly by

zk+1 = PB∞
1
(A∗yk + xk/β),(2.22)

where, as in the rest of the paper, P represents an orthogonal projection (in the
Euclidean norm) onto a closed convex set denoted by the subscript. Second, for
x = xk and z = zk+1 fixed, the minimization of (2.21) with respect to y is a least
squares problem, and the corresponding normal equations are

(μI + βAA∗)y = βAzk+1 − (Axk − b).(2.23)

Under the assumption AA∗ = I, the solution yk+1 of (2.23) is given by

yk+1 =
β

μ+ β

(
Azk+1 − (Axk − b)/β

)
.(2.24)

Finally, we update x as follows:

xk+1 = xk − γβ(zk+1 −A∗yk+1),(2.25)

where γ ∈ (0, (
√
5 + 1)/2). Thus, the ADM scheme for (2.20) is as follows:⎧⎨

⎩
zk+1 = PB∞

1
(A∗yk + xk/β),

yk+1 = β
μ+β

(
Azk+1 − (Axk − b)/β

)
,

xk+1 = xk − γβ(zk+1 −A∗yk+1).

(2.26)

Similarly, the ADM technique can also be applied to the dual of (1.4) given by

max
y∈Cm

{b∗y − δ‖y‖ : A∗y ∈ B∞
1 }(2.27)

ALTERNATING DIRECTION ALGORITHMS FOR �1-PROBLEMS 259

and produces the iteration scheme⎧⎨
⎩

zk+1 = PB∞
1
(A∗yk + xk/β),

yk+1 = S (Azk+1 − (Axk − b)/β, δ/β
)
,

xk+1 = xk − γβ(zk+1 −A∗yk+1),
(2.28)

where S(v, δ/β) � v−PBδ/β
(v) with Bδ/β being the Euclidean ball in Cm with radius

δ/β.
Under the assumption AA∗ = I, (2.26) is an exact ADM in the sense that each

subproblem is solved exactly. From convergence results in [27, 28], for any β > 0 and
γ ∈ (0, (

√
5+ 1)/2), the sequence {(xk, yk, zk)} generated by (2.26) from any starting

point (x0, y0) converges to (x̃, ỹ, z̃), which solves the primal-dual pair (1.5) and (2.20).
Similar arguments apply to (2.28) and the primal-dual pair (1.4) and (2.27).

Derived from the dual problems, we name the algorithms (2.26) and (2.28) dual-
based ADMs or simply DADMs. Again we note these are in fact first-order primal-dual
algorithms.

It is easy to show that the dual of (1.3) is given by

max
y∈Cm

{Re(b∗y) : A∗y ∈ B∞
1 } ,(2.29)

which is a special case of (2.19) and (2.27) with μ = δ = 0. Therefore, both (2.26)
and (2.28) can be applied to solve (1.3). Specifically, when μ = δ = 0, both (2.26)
and (2.28) reduce to ⎧⎨

⎩
zk+1 = PB∞

1
(A∗yk + xk/β),

yk+1 = Azk+1 − (Axk − b)/β,
xk+1 = xk − γβ(zk+1 −A∗yk+1).

(2.30)

We note that the last equality in (2.19) holds if and only if r = μy. Therefore,
the primal-dual residues and the duality gap between (2.5) and (2.20) can be defined
by ⎧⎨

⎩
rp � Ax+ r − b ≡ Ax + μy − b,

rd � A∗y − z,

Δ � fd(y)− fp(x, r) ≡ Re(b∗y)− μ‖y‖2 − ‖x‖1.
(2.31)

In computation, algorithm (2.26) can be terminated by

Res � max
{‖rp‖/‖b‖, ‖rd‖/√m, Δ/fp(x, r)

} ≤ ε,(2.32)

where ε > 0 is a stopping tolerance for the relative optimality residue.
When AA∗
= I, the solution of (2.23) could be costly. In this case, we take a

steepest descent step in the y direction and obtain the following iteration scheme:⎧⎨
⎩

zk+1 = PB∞
1
(A∗yk + xk/β),

yk+1 = yk − α∗
kg

k,
xk+1 = xk − γβ(zk+1 −A∗yk+1),

(2.33)

where gk and α∗
k are given by

gk = μyk +Axk − b+ βA(A∗yk − zk+1) and α∗
k =

(gk)∗gk

(gk)∗ (μI + βAA∗) gk
.(2.34)

260 J.-F. YANG AND Y. ZHANG

In our experiments, algorithm (2.33) converges very well for random matrices where
AA∗
= I, although its convergence remains an issue worthy of further research. Sim-
ilar arguments apply to (2.27).

The ADM idea can also be easily applied to �1-problems for recovering real and
nonnegative signals. As an example, we consider model (1.5) plus nonnegativity
constraints:

min
x∈Rn

{
‖x‖1 + 1

2μ
‖Ax− b‖2 : x ≥ 0

}
,(2.35)

where (A, b) can remain complex, e.g., A being a partial Fourier matrix. A derivation
similar to that for (2.19) shows that a dual problem of (2.35) is equivalent to

max
y∈Cm

{
Re(b∗y)− μ

2
‖y‖2 : z −A∗y = 0, z ∈ F

}
,(2.36)

where F � {z ∈ Cn : Re(z) ≤ 1}. The only difference between (2.36) and (2.20)
lies in the changing of constraints on z from z ∈ B∞

1 to z ∈ F . Applying the ADM
idea to (2.36) yields an iterative algorithm with the same updating formulae as (2.26)
except the computation for zk+1 is replaced by

zk+1 = PF(A∗yk + xk/β).(2.37)

It is clear that the projection onto F is trivial. The same procedure applies to the
dual problems of other �1-problems with nonnegativity constraints as well. Currently,
with simple optional parameter settings, our MATLAB package YALL1 [64] can be
applied to models (1.3)–(1.6) and their nonnegative counterparts.

3. Choice of denoising models. In this section, we make a digression to
emphasize an important issue in choosing denoising models in CS. In practical ap-
plications, measured data are usually contaminated by noise of different kinds or
combinations. To date, the most widely used denoising models in CS are (1.4) and
its variants that use the �2-fidelity, implicitly assuming that the noise is Gaussian. In
this section, we aim to demonstrate that the model (1.6) with �1-fidelity is capable of
handling several noise scenarios.

First, it is easy to observe that (1.6) can be reformulated into the form of the basis
pursuit model (1.3). Clearly, (1.6) is equivalent to minx,r {ν‖x‖1 + ‖r‖1 : Ax+ r = b},
which can be rewritten as

min
x̂
{‖x̂‖1 : Âx̂ = b̂}, where Â =

[A νI]√
1 + ν2

, b̂ =
νb√
1 + ν2

, x̂ =

(
νx
r

)
.

Moreover, we note that ÂÂ∗ = I whenever AA∗ = I, allowing model (1.6) to be
effectively solved by the ADM scheme (2.17) or (2.30).

In the following we provide evidence to show that model (1.6) can potentially
be dramatically better than (1.4) whenever the observed data may contain large
measurement errors (see also [57]). We conducted a set of experiments comparing
�2-fidelity based models with (1.6) on random problems with n = 1000, m = 300, and
‖x̄‖0 = 60, using the solver YALL1 [64] that implements the dual ADMs described in
subsection 2.3. In our experiments, each model is solved for a sequence of parameter
values (δ, μ, and ν in (1.4), (1.5), and (1.6), respectively) varying in (0, 1). The sim-
ulation of data acquisition is given by b = Ax̄+ pW + pI ≡ bW + pI , where matrix A

ALTERNATING DIRECTION ALGORITHMS FOR �1-PROBLEMS 261

is random Gaussian with its rows orthonormalized by QR factorization, pW and pI
represent white and impulsive noise, respectively, and bW is the data containing white
noise only. White noise is generated appropriately so that data b attains a desired
signal-to-noise ratio (SNR), while impulsive noise values are set to ±1 at random
positions of b, which is always scaled so that ‖b‖∞ = 1. The SNR of bW is defined as
SNR(bW) = 20 log10(‖bW −E(bW)‖/‖pW‖), where E(bW) represents the mean value
of bW . The severity of impulsive noise is measured by percentage. For a computed
solution x, its relative error to x̄ is defined as RelErr(x) = ‖x− x̄‖/‖x̄‖ × 100%. For
notational convenience, we will use BPν to refer to model (1.4) with δ replaced by ν
in the figures and discussions of this section.

Figure 3.1 presents three types of results, i.e., impulsive noise only (first row), both
white and impulsive noise (second row), and white noise only (third row). From the
first row of Figure 3.1, it is quite clear that model (1.6) is able to recover the exact
solution x̄ to a high accuracy for a range of ν values (although the range for high
quality recovery shrinks when the corruption rate increases), while model (1.4) with
the same parameter values is not, even though in all cases it reduces relative errors
by about 5% when ν is close to 1 (we tried even larger ν values but the achievable
improvement soon saturates at that level). The results from model (1.5) (μ varies from
10−3 to 0.3) are generally similar to those of (1.4) and thus are omitted. Therefore, it
is evident that in the presence of erroneous measurements, no matter how small the
percentage might be, model (1.6) can be potentially much better than models (1.4)
and (1.5) provided that ν is chosen properly.

For the case when data contain both white and impulsive noise, let us examine
results given in the second row of Figure 3.1, where (1.6) is compared with (1.4) with
data satisfying SNR(bW) = 40dB and pI varies from 1% to 10%. Similar to the case
free of white noise, evidence strongly suggests that (1.6) should be the model of choice
whenever there might be erroneous measurements or impulsive noise in data even in
the presence of white noise. We did not present the results of (1.5) since they are
similar to those of (1.4). We also tested higher white noise levels and obtained similar
results, except the quality of reconstruction deteriorates.

Is model (1.6) still appropriate without impulsive noise? The bottom row of
Figure 3.1 contains results obtained from data with only white noise of SNR(bW) =
30 dB, 20 dB, and 10 dB, respectively. Loosely speaking, these three types of data
can be characterized as good, fair, and poor, respectively. As can be seen from the left
plot, on good data (1.4) offers no improvement whatsoever to the BP model (ν = 0)
as ν decreases. On the contrary, it starts to degrade the quality of solution once
ν > 0.25. On the other hand, model (1.6) essentially does no harm until ν > 0.7.
From the middle plot, it can be seen that on fair data both models start to degrade
the quality of solution after ν > 0.7, while the rate of degradation is faster for model
(1.6). Only in the case of poor data (the right plot), model (1.4) always offers better
solution quality than model (1.6). However, for poor data the recovered solution
quality is always poor. At ν = 1, the relative error for model (1.4) is about 38%,
representing a less than 5% improvement over the relative error 42% at ν = 0.05,
while the best error attained from model (1.6) is about 40%. The results of (1.5)
are generally similar to those of (1.4) provided that model parameters are selected
properly.

The sum of the computational evidence suggests the following three guidelines,
at least for random problems of the type tested here: (i) whenever data may contain
erroneous measurements or impulsive noise, �1-fidelity used by model (1.6) should

262 J.-F. YANG AND Y. ZHANG

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

ν values

R
el

at
iv

e
E

rr
or

. (
%

)

Impulsive noise only: 1%

BPδ
L1L1

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

ν values

R
el

at
iv

e
E

rr
or

. (
%

)

Impulsive noise only: 1%

BPν
L1L1

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

ν values

5%

BPδ
L1L1

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

ν values

5%

BPν
L1L1

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

ν values

10%

BPδ
L1L1

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

ν values

10%

BPν
L1L1

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

ν values

R
el

at
iv

e
E

rr
or

. (
%

)

White (40dB) + Impulsive (1%)

BPν
L1L1

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

ν values

White (40dB) + Impulsive (5%)

BPν
L1L1

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

ν values

White (40dB) + Impulsive (10%)

BPν
L1L1

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

ν values

R
el

at
iv

e
E

rr
or

. (
%

)

White noise only: 30dB

BPν
L1L1

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

ν values

20dB

BPν
L1L1

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

ν values

10dB

BPν
L1L1

Fig. 3.1. Comparison results of models (1.4) and (1.6). First row: Results from data cor-
rupted by impulsive noise only (from left to right, the percentage of impulsive noise is 1%, 5%, and
10%). Second row: Results from data corrupted by both white and impulsive noise. Third row: Results
from data contaminated by white noise only (from left to right, the SNR of bW is 30 dB, 20 dB,
and 10 dB). In all plots, the x-axes represent the parameter value in (1.4) and (1.6), and the y-axes
represent relative errors of recovered solutions to the true sparse signals.

naturally be preferred over the �2-one used by model (1.4) and its variants; (ii) without
impulsive noise, �1-fidelity basically does no harm to solution quality, as long as data
do not contain a large amount of white noise and ν remains reasonably small; and
(iii) when data are contaminated by a large amount of white noise, then �2-fidelity
should be preferred. In the last case, however, high-quality recovery should not be
expected regardless of what model is used.

4. Numerical results. In this section, we compare the proposed ADM algo-
rithms, referred to as PADM and DADM, corresponding to the primal- and dual-based
algorithms, respectively, with several state-of-the-art algorithms. In section 4.1, we
give numerical results to emphasize a simple yet often overlooked point that algorithm
speed should be evaluated relative to solution accuracy. In section 4.2, we describe our
experiment settings, including parameter choices, stopping rules, and the generation
of problem data under the MATLAB environment. In section 4.3, we compare PADM
and DADM with FPC-BB [31, 32]—a fixed-point continuation method with a non-
monotone line search based on the Barzilai and Borwein (BB) steplength [4], SpaRSA
[58]—a reconstruction algorithm designed for more general regularizers than the �1-
regularizer, FISTA [5]—a fast IST algorithm that attains an optimal convergence rate
in function values, and CGD [63]—a block coordinate gradient descent method for

ALTERNATING DIRECTION ALGORITHMS FOR �1-PROBLEMS 263

minimizing �1-regularized convex smooth function. In section 4.4 we compare PADM
and DADM with SPGL1 [54] — a spectral projected gradient algorithm for (1.4), and
NESTA [6]—a first-order algorithm based on Nesterov’s smoothing technique [39].
We also compare DADM with SPGL1 on the BP problem in section 4.5. All experi-
ments were performed under Windows Vista Premium and MATLAB v7.8 (R2009a)
running on a Lenovo laptop with an Intel Core 2 Duo CPU at 1.8 GHz and 2 GB of
memory.

4.1. Relative error versus optimality. In algorithm assessment, the speed of
an algorithm is often taken as an important criterion. However, speed is a relative
concept and should be measured in company with appropriate accuracy, which clearly
varies with situation and application. A relevant question here is what accuracy is
reasonable for solving compressive sensing problems, especially when data are noisy,
as is the case in most real applications. To address this question, we solved (1.3) with
noiseless data and (1.5) with data contaminated by white noise of small to moderate
levels. In this experiment, the measurement matrix was constructed by orthogonal-
izing and normalizing the rows of a 330 by 1000 standard Gaussian random matrix.
The true signal x̄ has 60 nonzeros whose positions are determined at random, and
the nonzero values are random Gaussian. Both problems (1.3) and (1.5) were solved
by DADM to a relative high accuracy (from an optimization rather than recovery
standpoint). The results of relative error and optimality residue (defined in (2.32))
are given in Figure 4.1.

0 50 100 150 200 250

10
−8

10
−6

10
−4

10
−2

10
0

Iteration No.

Noiseless data

RelErr
Res

0 50 100 150 200 250

10
−3

10
−2

10
−1

10
0

Iteration No.

SNR(b): 40dB

RelErr
Res

0 20 40 60 80

10
−3

10
−2

10
−1

10
0

Iteration No.

SNR(b): 20dB

RelErr
Res

Fig. 4.1. Relative error versus optimality for noiseless and noisy data. The x-axes represent
the number of iterations, and y-axes represent the magnitude of the relative error (RelErr) and the
optimality residue (Res) as defined in (2.32).

It is clear from Figure 4.1 that solving �1-problems to increasingly high accuracy
improves solution quality only when the observed data are free of noise. In the left plot
of Figure 4.1 where noiseless data were used in (1.3), both relative error and optimality
measured by residue decrease as DADM proceeds. For noisy data, a relatively low
accuracy is sufficient to give the best relative error that an �1-denoising model can
possibly reach, e.g., in the middle plot of Figure 4.1, where low level noisy data were
used in (1.5), relative error does not decrease further after the residue is reduced to
about 10−2 in about 40 iterations. This phenomenon becomes more obvious for noisy
data of higher levels, as is shown in the right plot of Figure 4.1. These experiments
clearly demonstrate that when observed data are noisy (which is common in practice),
solving �1-problems to excessively high accuracy is unnecessary. This well-known fact
is often refereed to as the Morozov discrepancy principle [38] in solving inverse and
ill-posed problems (also see [33] for a discussion on solving ill-posed linear inverse
problems). We choose to emphasize this rather mundane point because such common

264 J.-F. YANG AND Y. ZHANG

sense has sometimes been ignored in algorithmic studies in the applications of CS. In
our numerical comparison below, whenever noisy data are used we will compare not
how fast algorithms achieve a high accuracy, but how fast they achieve an appropriate
accuracy that is consistent with the noise level of data.

4.2. Experiment settings. Now we describe parameter selections, stopping
rules, and generation of data in our numerical experiments. In order to test the pro-
posed algorithms under conditions as realistic as practically feasible, which requires
us to test sufficiently large problems and perform multiple runs for each test case,
we chose to use randomized partial transform matrices in our experiments. Par-
tial transform matrices do not require explicit storage and permit fast matrix-vector
multiplications, which are the main computational tasks in all algorithms compared,
allowing us to do more realistic experiments with relatively large-scale signals. Be-
cause of their low demands in computer resources and comparable recoverability with
random matrices, randomized partial-transform matrices, such as DFT, DCT, and
DWHT matrices, are arguably the most suitable for large-scale applications, as is
pointed out in [6]. The proposed ADMs have the ability to take advantage of the
orthonormality condition AA∗ = I, which allows easy choice of parameters in PADM
and exact minimization of subproblems in DADM. In our experiments we set τ = 0.8,
γ = 1.199, and β = 2m/‖b‖1 in (2.13) and (2.16), which guarantee the convergence
of PADM given that λmax(A

∗A) = 1 and also work quite well in practice (although
suitably larger τ and γ seem to accelerate convergence most of the time). For DADM,
we used the default settings in YALL1, i.e., γ = 1.618 and β = ‖b‖1/m. As described
in subsection 4.1, high accuracy is not always necessary in CS problems with noisy
data. Thus, when comparing with other algorithms, we simply terminated PADM
and DADM when the relative change of two consecutive iterates became small, i.e.,

RelChg � ‖x
k+1 − xk‖
‖xk‖ < ε,(4.1)

where ε > 0 is a tolerance, although more complicated stopping rules, such as the one
based on optimality conditions defined in (2.32), are possible. Parametric settings
of FPC-BB, SpaRSA, FISTA, CGD, SPGL1, and NESTA will be specified when we
discuss individual experiments.

In all experiments, we generated data b by MATLAB scripts b = A*xbar +

sigma* randn(m,1), where A is a randomized partial Walsh–Hadamard transform
matrix whose rows are randomly chosen and columns randomly permuted, xbar rep-
resents a sparse signal that we wish to recover, and sigma is the standard deviation
of additive Gaussian noise. Specifically, the Walsh–Hadamard transform matrix of
order 2j is defined recursively by

H20 = [1] , H21 =

[
1 1
1 −1

]
, . . . , H2j =

[
H2j−1 H2j−1

H2j−1 −H2j−1

]
.

It can be shown that H2jH
�
2j = 2jI. In our experiments, encoding matrix A contains

random selected rows from 2j/2H2j , where 2j/2 is a normalization factor. A fast
Walsh–Hadamard transform is implemented in C language with a MATLAB mex-
interface available to all codes compared. In all tests, we set n = 8192 and tested
various combinations of m and p (the number of nonzero components in xbar). In
all the test results given below, we used the zero vector as the starting point for all
algorithms unless otherwise specified.

ALTERNATING DIRECTION ALGORITHMS FOR �1-PROBLEMS 265

4.3. Comparison with FPC-BB, SpaRSA, FISTA, and CGD. In this
subsection, we present comparison results of PADM and DADMwith FPC-BB [31, 32],
SpaRSA [58], FISTA [5], and CGD [63], all of which were developed in the last two
years for solving (1.5). In this test, we used random Gaussian spikes as xbar; i.e.,
the location of nonzeros are selected uniformly at random while the values of the
nonzero components are i.i.d. standard Gaussian. The standard deviations of additive
noise sigma and the model parameter μ in (1.5) are, respectively, set to 10−3 and
10−4. Since different algorithms use different stopping criteria, it is rather difficult
to compare their relative performance completely fairly. Therefore, we present two
classes of comparison results. In the first class of results, we run all the algorithms
for about 1000 iterations by adjusting their stopping rules. Then we examine how
relative errors and function values decrease as each algorithm proceeds. In the second
class of results, we terminate the ADM algorithms by (4.1), while the stopping rules
used for other algorithms in comparison will be specified below.

Since FPC-BB implements continuation on the regularization parameter but not
on stopping tolerance, we set all parameters as default, except that in the last step
of continuation we let xtol = 10−5 and gtol = 0.02, which is more stringent than
the default setting xtol = 10−4 and gtol = 0.2 because the latter usually produces
solutions of lower quality than that of other algorithms in comparison. For SpaRSA,
we used its monotonic variant, set continuation steps to 20, and terminated it when
the relative change in function value fell below 10−7. The FISTA algorithm [5] is a
modification of the well-known IST algorithm [23, 41, 16]. Started at x0, FISTA iter-
ates as follows: xk+1 = Shrink

(
yk − τA∗(Ayk − b), τ/μ

)
, where τ > 0 is a parameter,

and

yk =

{
x0 if k = 0,

xk +
tk−1−1

tk
(xk − xk−1) otherwise,

where

tk =

{
1 if k = 0,
1+
√

1+4t2k−1

2 otherwise.

It is shown in [5] that FISTA attains an optimal convergence rate O(1/k2) in de-
creasing the function value, where k is the iteration counter. We set τ ≡ 1 in the
implementation of FISTA. For the comparison with CGD, we used its continuation
variant (the code CGD cont in the MATLAB package of CGD) and set all parameters
as default, except we set the initial μ value to be max(0.01‖A�b‖∞, 2μ), which works
better than the default setting in our tests when μ is small.

Since the per-iteration cost is roughly two matrix-vector multiplications for all
compared algorithms, it is meaningful to examine the decreasing behavior of relative
errors and function values as functions of the iteration number. Figure 4.2 presents
the results of two cases of m and p. Each result is the average of 50 runs on randomly
generated data.

As can be seen from Figure 4.2, PADM and DADM usually decrease relative
errors and function values faster than both FPC-BB and SpaRSA throughout the
entire iteration process. Without using continuation and line search techniques as
in FPC-BB and SpaRSA, FISTA is generally much slower than the others. In this
set of experiments FISTA decreased function values faster at the very beginning but
fell behind eventually. On the other hand, it was the slowest in decreasing relative

jy
高亮

jy
高亮

266 J.-F. YANG AND Y. ZHANG

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

Iteration

R
el

at
iv

e
E

rr
or

m/n: 0.30, p/m: 0.20, μ: 1.0e−004

PADM
DADM
SpaRSA
FPC_BB
FISTA
CGD

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

Iteration

R
el

at
iv

e
E

rr
or

m/n: 0.20, p/m: 0.10, μ: 1.0e−004

PADM
DADM
SpaRSA
FPC_BB
FISTA
CGD

10
0

10
1

10
2

10
3

10
3

10
4

10
5

Iteration

F
un

ct
io

n
va

lu
e

m/n: 0.30, p/m: 0.20, μ: 1.0e−004

PADM
DADM
SpaRSA
FPC_BB
FISTA
CGD

10
0

10
1

10
2

10
3

10
3

10
4

10
5

Iteration

F
un

ct
io

n
va

lu
e

m/n: 0.20, p/m: 0.10, μ: 1.0e−004

PADM
DADM
SpaRSA
FPC_BB
FISTA
CGD

Fig. 4.2. Comparison results of PADM, DADM, SpaRSA, FPC-BB, FISTA, and CGD on (1.5)
(average of 50 random runs; standard deviation of Gaussian noise is 10−3). The x-axes represent
the number of iterations, and the y-axes represent relative errors (plots at the top) or function values
(plots at the bottom), both in logarithmic scale.

errors almost throughout the entire iteration process. We have found that the slow
convergence of FISTA becomes even more pronounced when μ is smaller. On the first
test set represented by the first column of Figure 4.2, both ADMs converge faster
than CGD in decreasing both the relative error and the function value throughout
the iteration process. On the second test set represented by the second column of
Figure 4.2, CGD performed more competitively. However, CGD appeared to be sen-
sitive to the choice of starting points. To demonstrate this, we tested the algorithms
with another starting point x0 = A�b with all the other settings unchanged. The
results for relative errors are given in Figure 4.3. By comparing Figure 4.3 with the
first row of Figure 4.2, we observe that all algorithms exhibited consistent patterns of
convergence except CGD, whose convergence is slower for x0 = A�b than for x0 = 0.

It is worth noting that within no more than 100 iterations PADM and DADM
reached lowest relative errors and then started to increase them, which reflects a prop-
erty of model (1.5) rather than that of the algorithms given the fact that the function
value kept decreasing. It is also clear that all algorithms eventually attained nearly
equal relative errors and function values at the end. We point out that the perfor-
mance of SpaRSA, FPC-BB, FISTA, and CGD is significantly affected by the value
of μ. In general, model (1.5) becomes more and more difficult for continuation-based

ALTERNATING DIRECTION ALGORITHMS FOR �1-PROBLEMS 267

10
0

10
1

10
2

10
3

10
−2

10
−1

Iteration

R
el

at
iv

e
E

rr
or

m/n: 0.30, p/m: 0.20, μ: 1.0e−004

PADM
DADM
SpaRSA
FPC_BB
FISTA
CGD

10
0

10
1

10
2

10
3

10
−2

10
−1

Iteration

R
el

at
iv

e
E

rr
or

m/n: 0.20, p/m: 0.10, μ: 1.0e−004

PADM
DADM
SpaRSA
FPC_BB
FISTA
CGD

Fig. 4.3. Comparison results of PADM, DADM, SpaRSA, FPC-BB, FISTA, and CGD on
(1.5) (average of 50 random runs; standard deviation of Gaussian noise is 10−3; and the common
initial point for all algorithms is A�b). The x-axes represent the number of iterations, and the
y-axes represent relative errors, both in logarithmic scale.

algorithms (SpaRSA, FPC-BB, and CGD) as μ decreases, while the performance of
ADMs is essentially unaffected, which can be well justified by the fact that μ can
be set to 0 in both (2.13) and (2.26), in which case both algorithms solve the basis
pursuit model (1.3).

In addition to the results presented in Figure 4.2, we also experimented on other
combinations of (m, p) with noisy data and observed similar phenomena. As is the case
in Figure 4.2, the relative error produced by the ADM algorithms tends to eventually
increase after the initial decrease when problem (1.5) is solved to high accuracy.
This implies, as suggested in section 4.1, that it is unnecessary to run the ADMs to
a higher accuracy than what is warranted by the accuracy of the underlying data,
though this is a difficult issue in practice since data accuracy is usually not precisely
known.

Next we compare PADM and DADM with FPC-BB and SpaRSA for various
combinations of (m, p), while keeping the noise level at sigma = 1e-3 and the model
parameter at μ = 10−4. Here we do not include results for FISTA and CGD because
they have been found to be less competitive on this set of tests. As is mentioned earlier,
without continuation and line search techniques, FISTA is much slower than ADM
algorithms. On the other hand, most of time CGD is slower in terms of decreasing
relative errors, as is indicated by Figures 4.2 and 4.3.

We set all parameters as default in FPC-BB and use the same setting as before
for SpaRSA, except it is terminated when relative change in function values falls
below 10−4. We set the stopping tolerance to ε = 2 × 10−3 in (4.1) for PADM and
DADM. The above stopping rules were selected so that all four algorithms attain
more or less the same level of relative errors upon termination. For each fixed pair
(m, p), we take the average of 50 runs on random instances. Detailed results including
iteration number (Iter) and relative error to the true sparse signal (RelErr) are given
in Table 4.1.

As can be seen from Table 4.1, in most cases PADM and DADM obtained
smaller or comparable relative errors in fewer numbers of iterations than FPC-BB
and SpaRSA. This is particularly evident for the case (m/n, p/m) = (0.2, 0.2), where
both PADM and DADM obtained notably smaller relative errors, while taking far

268 J.-F. YANG AND Y. ZHANG

Table 4.1

Comparison results on (1.5) (sigma = 10−3, μ = 10−4, average of 50 runs).

n = 8192 PADM DADM SpaRSA FPC-BB
m/n p/m Iter RelErr Iter RelErr Iter RelErr Iter RelErr

0.3 0.1 38.9 6.70E-3 36.4 5.91E-3 103.6 5.61E-3 56.1 5.80E-3
0.3 0.2 50.2 6.52E-3 46.6 5.49E-3 141.3 7.25E-3 94.3 7.66E-3
0.2 0.1 57.2 7.17E-3 54.3 6.25E-3 114.5 7.53E-3 70.5 7.64E-3
0.2 0.2 63.1 8.54E-3 56.1 8.43E-3 180.0 1.68E-2 124.4 2.52E-2
0.1 0.1 85.5 1.17E-2 81.3 1.10E-2 135.6 1.27E-2 84.1 1.35E-2
0.1 0.2 125.4 9.70E-2 105.1 8.99E-2 214.4 1.60E-1 126.4 2.00E-1
Average 70.0 — 63.3 — 148.2 — 92.6 —

fewer iterations than FPC-BB and SpaRSA. At the bottom of Table 4.1, we calculate
the average numbers of iterations required by the four algorithms.

We also tried more stringent stopping rules for the algorithms compared. Specifi-
cally, we tried xtol=10−5 and gtol=0.02 in FPC-BB and terminated SpaRSA when
the relative change in the function value fell below 10−7. The resulting relative errors
either remained roughly the same as those presented in Table 4.1 or were just slightly
better, while the iteration number required by FPC-BB increased about 50% and that
required by SpaRSA increased more than 100%. For the ADMs, we have found that
smaller tolerance values (say, ε = 5× 10−4) do not necessarily or consistently improve
relative error results, while also increasing the required number of iterations.

4.4. Comparison with SPGL1 and NESTA. In this subsection, we compare
PADM and DADM with SPGL1 and NESTA for solving model (1.4). As before, xbar
consists of random Gaussian spikes, and the standard deviation of additive noise is
sigma = 10−3. The model parameter δ in (1.4) was set to be the 2-norm of additive
noise (the ideal case). As in the previous experiment, we performed two sets of
tests. In the first set, we ran all compared algorithms for about 400 iterations by
adjusting their stopping tolerance values, while leaving all other parameters to their
default values. Figure 4.4 presents average results on 50 random problems, where two
combinations of m and p are used. The resulting relative error and residue in fidelity
(i.e., ‖Ax− b‖) are plotted as functions of iterations.

As can be seen from the first row of Figure 4.4, compared with SPGL1 and
NESTA, both PADM and DADM attained smaller relative errors throughout most
of the iteration process (with the exception of at the very beginning). With no more
than 100 iterations, both PADM and DADM reached lowest relative errors and then
started to increase them slightly. It is interesting to observe that NESTA is the slowest
to decrease the relative error to the solution, although it is the fastest to attain the
feasibility (‖Ax − b‖ ≤ δ). In fact, NESTA is a feasible method that attains the
feasibility after one iteration (see [6] for its algorithm construction), as can be seen
from the second row of Figure 4.3.

In the second set of tests, we terminated PADM and DADM again with ε = 2×
10−3 in (4.1). For SPGL1 and NESTA, we set all parameters as default, except TolVar
is set to be 10−6 in NESTA (where the default value is 10−5) to obtain solutions of
comparable quality. The average results on 50 random problems are given in Table 4.2.
As mentioned, matrix-vector multiplications are the main computational load for all
the first-order algorithms, but SPGL1 also requires substantial calculations of other
kinds. For orthonormal sensing matrices, the number of matrix-vector multiplications
required by PADM, DADM, and NESTA is two per iteration. When the sensing
matrices are not orthonormal, the number remains at two for PADM (though it

jy
高亮

ALTERNATING DIRECTION ALGORITHMS FOR �1-PROBLEMS 269

10
0

10
1

10
2

10
−2

10
−1

10
0

Iteration

R
el

at
iv

e
E

rr
or

m/n: 0.30, p/m: 0.20,

PADM
DADM
SPGL1
NESTA

10
0

10
1

10
2

10
−1

10
0

Iteration

R
el

at
iv

e
E

rr
or

m/n: 0.20, p/m: 0.20,

PADM
DADM
SPGL1
NESTA

10
0

10
1

10
2

10
−1

10
0

10
1

Iteration

R
es

id
ue

: |
|A

x−
b|

| 2

m/n: 0.30, p/m: 0.20,

PADM
DADM
SPGL1
NESTA

10
0

10
1

10
2

10
−1

10
0

Iteration

R
es

id
ue

: |
|A

x−
b|

| 2

m/n: 0.20, p/m: 0.20,

PADM
DADM
SPGL1
NESTA

Fig. 4.4. Comparison results of PADM, DADM, SPGL1, and NESTA on (1.4). The x-axes
represent the number of iterations, and the y-axes represent the relative error (plots at the top)
or the fidelity residue (plots at the bottom), both in logarithmic scale. The standard deviation of
Gaussian noise is 10−3. The results are average of 50 random runs.

requires computing the maximum eigenvalue of AA∗ to guarantee convergence), while
the number increases to three for DADM (one extra required by computing α∗ in
(2.34)) and to six for NESTA (see [6]). On the other hand, the number required by
SPGL1 can vary from iteration to iteration. To accurately reflect the computational
costs consumed by the three algorithms, instead of iteration numbers we present
in Table 4.2 the number of matrix-vector multiplications, denoted by #AAt, which
includes both A*x and A’*y.

Table 4.2

Comparison results on (1.4) (sigma = 10−3, δ = norm(noise), average of 50 runs).

n = 8192 PADM DADM SPGL1 NESTA
m/n p/m #AAt RelErr #AAt RelErr #AAt RelErr #AAt RelErr

0.3 0.1 82.0 5.82E-3 74.6 7.64E-3 97.7 5.31E-3 297.2 5.74E-3
0.3 0.2 95.6 8.28E-3 90.0 7.36E-3 199.3 7.07E-3 304.3 8.18E-3
0.2 0.1 108.4 7.59E-3 101.0 8.76E-3 149.7 7.46E-3 332.5 6.99E-3
0.2 0.2 120.8 1.04E-2 108.6 1.06E-2 168.2 1.21E-2 336.9 5.77E-2
0.1 0.1 155.7 1.52E-2 149.4 1.42E-2 171.9 1.29E-2 340.6 1.72E-2
0.1 0.2 181.2 8.96E-2 187.8 8.22E-2 184.0 1.13E-1 363.4 3.10E-1
Average 124.0 — 118.6 — 161.8 — 329.2 —

270 J.-F. YANG AND Y. ZHANG

Table 4.3

Comparison results on (1.3) (b is noiseless; stopping rule is ε = 10−6 in (4.1); average of
50 runs).

n = 8192 DADM SPGL1
m/n p/m RelErr RelRes CPU #AAt RelErr RelRes CPU #AAt

0.3 0.1 7.29E-5 4.41E-16 0.44 258.8 1.55E-5 9.19E-6 0.39 114.9
0.3 0.2 7.70E-5 4.65E-16 0.78 431.4 2.50E-5 6.77E-6 1.11 333.4
0.2 0.1 4.26E-5 4.54E-16 0.66 388.2 3.39E-5 1.51E-5 0.45 146.7
0.2 0.2 7.04E-5 4.85E-16 1.15 681.8 1.40E-4 1.03E-5 2.50 791.0
0.1 0.1 4.17E-5 4.86E-16 1.11 698.2 1.25E-4 3.26E-5 0.64 207.9
Average — — 0.83 491.7 — — 1.02 318.8

As can be seen from Table 4.2, compared with SGPL1 and NESTA, both PADM
and DADM obtained solutions of comparable quality within smaller numbers of
matrix-vector multiplications. At the bottom of Table 4.2, we present the average
numbers of matrix-vector multiplications required by the four algorithms.

4.5. Comparison with SPGL1 on BP problems. In this subsection, we
compare DADM with SPGL1 on the BP problem (1.3). The relative performance
of PADM and DADM has been illustrated in the previous comparisons, and DADM
is slightly more efficient than PADM. Therefore, we present only results of DADM.
We point out that NESTA can also solve (1.3) by setting δ = 0. However, as is
observable from results in Figure 4.4 and Table 4.2, NESTA is the slowest in de-
creasing the relative error. Thus, we compare DADM only with SPGL1. For BP
problems data b is supposed to be noiseless, and higher accuracy optimization should
lead to higher-quality solutions. Thus, we terminated DADM with a stringent stop-
ping tolerance of ε = 10−6 in (4.1). All parameters in SPGL1 are set to be default
values. Detailed comparison results are given in Table 4.3, where, besides relative
error (RelErr) and the number of matrix-vector multiplications (#AAt), the relative
residue RelRes = ‖Ax− b‖/‖b‖ and CPU time in seconds are also given. The results
for m/n = 0.1 and p/m = 0.2 are not included in Table 4.3 since both algorithms
failed to recover accurate solutions.

We observe that when measurements are noiseless and a highly accurate solution
is demanded, the ADM algorithms can sometimes be slower than SPGL1. Indeed,
Table 4.3 shows that DADM is slower than SPGL1 in two cases (i.e., (m/n, p/m) =
(0.3, 0.1) and (0.2, 0.1)) while at the same time getting lower accuracy. On the other
hand, it is considerably faster than SPGL1 in the case (m/n, p/m) = (0.2, 0.2) while
getting higher accuracy. The average CPU time and number of matrix-vector multi-
plications required by the two algorithms are presented in the last row of Table 4.3.
We note that since SPGL1 requires some nontrivial calculations other than matrix-
vector multiplications, a smaller #AAt number by SPGL1 does not necessarily lead
to a shorter CPU time. We also comment that the relative residue results of DADM
are always numerically zero because when AA∗ = I the sequence {xk} generated by
DADM, applied to (1.3), satisfies Axk+1 − b = (1 − γ)(Axk − b), and thus ‖Ax − b‖
decreases fairly quickly for γ = 1.618.

4.6. Summary. We provided supporting evidence to emphasize that algorithm
speed should be evaluated relative to solution accuracy. With noisy measurements,
solving �1-problems to excessively high accuracy is generally unnecessary. In practice,
it is more relevant to evaluate the speed of an algorithm based on how fast it achieves
an appropriate accuracy consistent with noise levels in data.

ALTERNATING DIRECTION ALGORITHMS FOR �1-PROBLEMS 271

We presented extensive experimental results to compare the proposed ADM al-
gorithms with state-of-the-art algorithms FPC-BB, SpaRSA, FISTA, CGD, SPGL1,
and NESTA, using partial Walsh–Hadamard sensing matrices. Our numerical re-
sults show that the proposed algorithms are efficient and robust. In particular, the
ADM algorithms can generally reduce relative errors faster than all other tested al-
gorithms. This observation is based not only on results presented here using partial
Walsh–Hadamard sensing matrices and Gaussian spike signals, but also on unreported
results using other types of sensing matrices (partial DFT, DCT, and Gaussian ran-
dom matrices) and sparse signals. In practice, however, since relative errors cannot be
measured directly and do not seem to have predictable correlations with observable
quantities such as fidelity residue, it remains practically elusive to take full advantage
of such a favorable property of the ADM algorithms. Nevertheless, even with unnec-
essarily stringent tolerance values, the proposed ADM algorithms are still competitive
with other state-of-the-art algorithms.

Our test results also indicate that the dual-based ADMs are generally more ef-
ficient than the primal-based ones. One plausible explanation is that when A is or-
thonormal, the dual-based algorithms are exact ADMs, while the primal-based ones,
which solve some subproblems approximately, are inexact. The dual-based ADMs
have been implemented in a MATLAB package called YALL1 [64], which can solve
eight different �1-models including (1.3)–(1.6) and their nonnegative counterparts.

5. Concluding remarks. We proposed solving �1-problems arising from com-
pressive sensing by first-order primal-dual algorithms derived from the classic ADM
framework utilizing the augmented Lagrangian function and alternating minimiza-
tion idea. This ADM approach is applicable to numerous �1-problems including, but
not limited to, the models (1.3)–(1.6) and their nonnegative counterparts. When
applied to the �1-problems, the per-iteration cost of these algorithms is dominated
by two matrix-vector multiplications. Extensive experimental results show that the
proposed ADM algorithms, especially the dual-based ones, perform at least com-
petitively with several state-of-the-art algorithms. On various classes of test prob-
lems with noisy data, the proposed ADM algorithms have unmistakably exhibited
the following advantages over competing algorithms in comparison: (i) they con-
verge well without the help of a continuation or a line search technique; (ii) their
performance is insensitive to changes in model, starting point, and algorithm param-
eters; and (iii) they demonstrate a notable ability to quickly decrease the relative
error to true solutions. Although the ADM algorithms are not necessarily the fastest
in reaching an extremely high accuracy when observed data are noiseless, they are
arguably the fastest in reaching the best achievable level of accuracy when data con-
tain a nontrivial level of noise. However, to take full advantage of the ADMs one
needs appropriate stopping tolerance values, which can be difficult to estimate in
practice.

The most influential feature of the ADM approach is perhaps its great versatility
and its seemingly universal effectiveness for a wide range of optimization problems
in signal, image, and data analysis, particular those involving �1-like regularizations
such as nuclear-norm (sum of singular values) regularization in matrix rank mini-
mization like the matrix completion problem [45, 10, 12], or the total variation (TV)
regularization [47] widely used in image processing. While the nuclear-norm is just an
extension of the �1-norm to the matrix case, the TV regularization can be converted
to �1-regularization after introducing a splitting variable [55, 59]. Therefore, the ADM
approach is applicable to both nuclear-norm and TV regularized problems (in either

272 J.-F. YANG AND Y. ZHANG

primal or dual form) in a rather straightforward manner so that the derivations and
discussions are largely analogous to those for �1-problems as presented in this pa-
per. Recently, the ADM has also been applied to TV-based image reconstruction in
[22, 59, 50, 37] and to semidefinite programming in [56]. A more recent application of
the ADM approach is to the problem of decomposing a given matrix into a sum of a
low-rank matrix and a sparse matrix simultaneously using �1-norm and nuclear-norm
regularizations (see [13]). An ADM scheme has been proposed and studied for this
problem in [62].

Although the ADM approach is classic and its convergence properties have been
well studied, its remarkable effectiveness in signal and image reconstruction problems
involving �1-like regularizations has just been recognized very recently. These fruitful
new applications bring new research issues, such as convergence of certain inexact
ADM schemes and optimal choices of algorithm parameters, that should be interesting
for further investigations.

Appendix A. Proof of Theorem 2.1.
Proof. Let (r̃, x̃) be any solution of (2.5). From optimization theory, there exists

ỹ ∈ Cm such that the following conditions are satisfied:

r̃/μ− ỹ = 0, A∗ỹ ∈ ∂‖x̃‖1, and Ax̃+ r̃ = b.(A.1)

For convenience, we let r̂ � rk+1, x̂ � xk+1, and ŷ � yk − β(Axk+1 + rk+1 − b). For
x = xk and y = yk fixed, the minimizer rk+1 of (2.6) with respect to r satisfies

rk+1/μ+ β(Axk + rk+1 − b− yk/β) = 0.(A.2)

Following the definitions of r̂, x̂, and ŷ, (A.2) can be rewritten as r̂/μ−ŷ+βA(xk−x̂) =
0. Further considering r̃/μ− ỹ = 0, we have ŷ− ỹ−βA(xk− x̂) = (r̂− r̃)/μ, and thus

(r̂ − r̃)∗
(
ŷ − ỹ − βA(xk − x̂)

)
= ‖r̂ − r̃‖2/μ ≥ 0.(A.3)

Similarly, the optimality condition for (2.9) takes the form of

(A.4)
β

τ

(
xk − τA∗(Axk + rk+1 − b− yk/β)− xk+1

) ∈ ∂‖xk+1‖1.

From the definitions of r̂, x̂, and ŷ, (A.4) can be rewritten as A∗ŷ − βA∗A(xk − x̂) +
β
τ (x

k − x̂) ∈ ∂‖x̂‖1. Further considering A∗ỹ ∈ ∂‖x̃‖1 and the convexity of ‖ · ‖1, it
follows that

(x̂− x̃)∗
(
A∗ŷ − βA∗A(xk − x̂) +

β

τ
(xk − x̂)−A∗ỹ

)
≥ 0,

or, equivalently,

(Ax̂ −Ax̃)∗
(
ŷ − ỹ − βA(xk − x̂)

)
+

β

τ
(x̂ − x̃)∗(xk − x̂) ≥ 0.(A.5)

The addition of (A.3) and (A.5) yields

((Ax̂+ r̂)− (Ax̃+ r̃))∗
(
ŷ − ỹ − βA(xk − x̂)

)
+

β

τ
(x̂− x̃)∗(xk − x̂) ≥ 0.(A.6)

Further considering Ax̃+r̃ = b and Ax̂+r̂−b = (yk−ŷ)/β, (A.6) can be represented as

1

β
(ŷ − ỹ)∗(yk − ŷ) +

β

τ
(x̂− x̃)∗(xk − x̂) ≥ (yk − ŷ)∗A(xk − x̂).(A.7)

ALTERNATING DIRECTION ALGORITHMS FOR �1-PROBLEMS 273

Let In be the identity matrix of order n. For convenience, we define

(A.8)

G0 =

(
In

γIm

)
, G1 =

(β
τ In

1
β Im

)
,

G =

(β
τ In

1
βγ Im

)
, and u =

(
x
y

)
.

By using this notation and considering equality û − ũ = (û − uk) + (uk − ũ), (A.7)
implies

(uk − ũ)∗G1(u
k − û) ≥ ‖uk − û‖2G1

+ (yk − ŷ)∗A(xk − x̂).(A.9)

From the definition of ŷ and the formula for yk+1 in (2.13), we have yk+1 = yk −
γ(yk − ŷ). Therefore, the iteration of x and y in (2.13) can be written as uk+1 =
uk −G0(u

k − û), and thus

‖uk+1 − ũ‖2G = ‖uk − ũ−G0(u
k − û)‖2G

= ‖uk − ũ‖2G − 2(uk − ũ)∗G0G(uk − û) + ‖G0(u
k − û)‖2G.

Considering the fact that G0G = G1, the above equality implies

‖uk − ũ‖2G − ‖uk+1 − ũ‖2G = 2(uk − ũ)∗G1(u
k − û)− ‖G0(u

k − û)‖2G
(from (A.9)) ≥ 2‖uk − û‖2G1

+ 2(yk − ŷ)∗A(xk − x̂)− ‖uk − û‖2G0GG0

(from (A.8)) =
β

τ
‖xk − x̂‖2 + 2− γ

β
‖yk − ŷ‖2 + 2(yk − ŷ)∗A(xk − x̂).(A.10)

From condition τλmax + γ < 2, it holds that δ � 1 − τλmax/(2 − γ) > 0. Let ρ �
(2− γ)/(β+ βδ) > 0. From the Cauchy–Schwarz inequality 2a∗b ≥ −ρ‖a‖2−‖b‖2/ρ,
(A.10) implies

‖uk − ũ‖2G − ‖uk+1 − ũ‖2G ≥
β

τ
‖xk − x̂‖2 + 2− γ

β
‖yk − ŷ‖2

− ρ‖yk − ŷ‖2 − 1

ρ
‖A(xk − x̂)‖2

(from λmax = λmax(A
∗A)) ≥

(
β

τ
− λmax

ρ

)
‖xk − x̂‖2

+

(
2− γ

β
− ρ

)
‖yk − ŷ‖2

(from definitions of δ and ρ) =
βδ2

τ
‖xk − x̂‖2 + 2− γ

β

δ

1 + δ
‖yk − ŷ‖2

(from definitions of x̂ and ŷ) =
βδ2

τ
‖xk − xk+1‖2

+
2− γ

βγ2

δ

1 + δ
‖yk − yk+1‖2

(from definitions of x̂, ŷ and G) ≥ η‖uk − uk+1‖2G,(A.11)

where η � min(δ2, δ(2−γ)
γ(1+δ)) > 0. It follows from (A.11) that

(a) ‖uk − uk+1‖G → 0;

274 J.-F. YANG AND Y. ZHANG

(b) {uk} lies in a compact region; and
(c) ‖uk − ũ‖2G is monotonically nonincreasing and thus converges.

From (a), there hold xk −xk+1 → 0 and yk− yk+1 → 0. From yk = yk−1− γβ(Axk +
rk − b) and yk−1 − yk → 0, it follows that Axk + rk − b → 0. From (b), {uk} has
a subsequence {ukj} that converges to u� = (x�; y�); i.e., xkj → x� and ykj → y�.
From the iteration formula (2.7), we have

rk =
μβ

1 + μβ

(
yk

β
− (

Axk − b
)
+

yk−1 − yk

β
+A

(
xk − xk−1

))
.

Taking into consideration xkj → x�, ykj → y�, xk − xk+1 → 0, and yk − yk+1 → 0,
the above equality implies

rkj → r� � μβ

1 + μβ

(
y�

β
− (Ax� − b)

)
, j →∞.

Therefore, (r�, x�, y�) is a limit point of {(rk, xk, yk)}. Next we show that (r�, x�, y�)
satisfies the optimality conditions for (2.5). First, from (2.12) and (2.7), we have

yk+1 = yk − γβ(Axk+1 + rk+1 − b)

= yk − γβ

(
Axk+1 − b+

μβ

1 + μβ

(
yk

β
− (Axk − b)

))
,

which is equivalent to

yk − yk+1

γβ
+A(xk − xk+1) =

1

1 + μβ

(
Axk − b+ μyk

)
.(A.12)

By taking the limit of (A.12) over kj , it follows that

Ax� − b+ μy� = 0.(A.13)

Second, from the definition of r�, it holds that

r�/μ− y� =
β

1 + μβ

(
y�

β
− (Ax� − b)

)
− y� =

β

1 + μβ
(b−Ax� − μy�) = 0,(A.14)

where the last equality comes from (A.13). Finally, (A.4) can be represented as

(A.15)
β

τ

(
(I − τA∗A)(xk − xk+1)− τA∗(Axk+1 + rk+1 − b− yk/β)

) ∈ ∂‖xk+1‖1.

Since xkj → x� and xk+1 − xk → 0, we have xkj+1 = xkj + (xkj+1 − xkj) → x�. By
taking the limit of (A.15) over kj and further considering Axk + rk− b→ 0, it follows
that A∗y� ∈ ∂‖x�‖1, which together with (A.13) and (A.14) implies that (r�, x�, y�)
satisfies the optimality conditions for (2.5), i.e.,

r�/μ− y� = 0, A∗y� ∈ ∂‖x�‖1, and Ax� + r� = b.(A.16)

Therefore, we have shown that any limit point of {(rk, xk, yk)} is an optimal solution
of (2.5). Since (A.11) holds for any optimal solution of (2.5), by letting ũ = (x̃, ỹ) =
(x�, y�) at the beginning and considering (c), we get the convergence of {uk} and thus
that of {(rk, xk, yk)}.

ALTERNATING DIRECTION ALGORITHMS FOR �1-PROBLEMS 275

Appendix B. Proof of Theorem 2.3.
Proof. Suppose (x̃, ỹ) satisfies the optimality conditions for (1.3), i.e., A∗ỹ ∈

∂‖x̃‖1 and Ax̃ = b. Let x̂ � xk+1 and ŷ � yk − β(Axk+1 − b). The optimality
condition for (2.18) takes the form

(B.1)
β

τ

(
xk − τA∗(Axk − b− yk/β)− xk+1

) ∈ ∂‖xk+1‖1.

From the definitions of x̂ and ŷ, (B.1) can be rewritten as A∗ŷ − βA∗A(xk − x̂) +
β
τ (x

k − x̂) ∈ ∂‖x̂‖1. Further considering A∗ỹ ∈ ∂‖x̃‖1 and the convexity of ‖ · ‖1, it
follows that

(x̂− x̃)∗
(
A∗ŷ − βA∗A(xk − x̂) +

β

τ
(xk − x̂)−A∗ỹ

)
≥ 0,

or, equivalently,

(Ax̂ −Ax̃)∗
(
ŷ − ỹ − βA(xk − x̂)

)
+

β

τ
(x̂ − x̃)∗(xk − x̂) ≥ 0.(B.2)

Further considering Ax̃ = b and Ax̂− b = (yk − ŷ)/β, (B.2) can be represented as

1

β
(ŷ − ỹ)∗(yk − ŷ) +

β

τ
(x̂− x̃)∗(xk − x̂) ≥ (yk − ŷ)∗A(xk − x̂),

which is the key inequality for the convergence of {(xk, yk)}. By using the same
notation as defined in (A.8) and similar discussions as in Appendix A, we can prove
that

(a) ‖uk − uk+1‖G → 0;
(b) {uk} lies in a compact region;
(c) ‖uk − ũ‖2G is monotonically nonincreasing and thus converges.

From (a), there hold xk − xk+1 → 0 and yk − yk+1 → 0. From (b), {uk} has a
subsequence {ukj} that converges to u� = (x�; y�), i.e., xkj → x� and ykj → y�.
Since xkj → x� and ykj−1 − ykj = γβ(Axkj − b) → 0, it holds that Ax� = b. By
taking the limit of (B.1) over kj and considering xkj+1 = (xkj+1 − xkj) + xkj → x�,
it follows that A∗y� ∈ ∂‖x�‖1. Therefore, we have shown that (x�, y�) satisfies the
optimality conditions for (1.3). Since the above discussions apply to any solution ũ
of (1.3), by letting ũ = (x̃, ỹ) = (x�, y�) at the beginning and considering (c), we get
the convergence of {uk} and thus that of {(xk, yk)}.

Acknowledgments. We are grateful to two anonymous referees for their valu-
able comments and suggestions which have helped improve the paper. The first author
would like to thank Prof. Bingsheng He of Nanjing University and Prof. Wotao Yin
of Rice University for their helpful discussions.

REFERENCES

[1] M. V. Afonso, J. Bioucas-Dias, and M. Figueiredo, Fast image recovery using variable
splitting and constrained optimization, IEEE Trans. Image Process., 19 (2010), pp. 2345–
2356.

[2] M. V. Afonso, J. Bioucas-Dias, and M. Figueiredo, A fast algorithm for the constrained for-
mulation of compressive image reconstruction and other linear inverse problems, in IEEE
International Conference on Acoustics, Speech, and Signal Processing, IEEE, Washington,
DC, 2010, pp. 4034–4037.

276 J.-F. YANG AND Y. ZHANG

[3] D. Baron, M. Duarte, S. Sarvotham, M. B. Wakin, and R. G. Baraniuk, Distributed
compressed sensing, available at http://dsp.rice.edu/cs/DCS112005.pdf, 2009.

[4] J. Barzilai and J. Borwein, Two point step size gradient methods, IMA J. Numer. Anal., 8
(1988), pp. 141–148.

[5] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems, SIAM J. Imaging Sci., 2 (2009), pp. 183–202.

[6] S. Becker, J. Bobin, and E. Candès, NESTA: A Fast and Accurate First-Order Method for
Sparse Recovery, Technical report, California Institute of Technology, Pasadena, CA, 2009.

[7] J. Cai, S. Osher, and Z. Shen, Linearized Bregman Iterations for Compressive Sensing,
UCLA CAM TR08–06, UCLA, Los Angeles, CA, 2008.

[8] J. Cai, S. Osher, and Z. Shen, Convergence of the Linearized Bregman Iteration for �1-Norm
Minimization, UCLA CAM TR08–52, UCLA, Los Angeles, CA, 2008.

[9] E. Candès, J. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate
information, Commun. Pure Appl. Math., 59 (2005), pp. 1207–1233.

[10] E. Candès and B. Recht, Exact matrix completion via convex optimization, Found. Comput.
Math., 9 (2008), pp. 717–772.

[11] E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal recon-
struction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52
(2006), pp. 489–509.

[12] E. Candès and T. Tao, The power of convex relaxation: Near-optimal matrix completion,
IEEE Trans. Inform. Theory, 56 (2009), pp. 2053–2080.

[13] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky, Rank Sparsity Inco-
herence for Matrix Decomposition, http://arxiv.org/abs/0906.2220, 2009.

[14] S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis pursuit,
SIAM J. Sci. Comput., 20 (1998), pp. 33–61.

[15] I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding algorithm for lin-
ear inverse problems with a sparsity constraint, Commun. Pure Appl. Math., 57 (2004),
pp. 1413–1457.

[16] C. De Mol and M. Defrise, A note on wavelet-based inversion algorithms, Contemp. Math.,
313 (2002), pp. 85–96.

[17] D. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289–1306.
[18] D. Donoho, For most large underdetermined systems of linear equations, the minimal �1-norm

solution is also the sparsest solution, Commun. Pure Appl. Math., 59 (2006), pp. 907–
934.

[19] J. Douglas and H. Rachford, On the numerical solution of heat conduction problems in two
and three space variables, Trans. Amer. Math. Soc., 82 (1956), pp. 421–439.

[20] J. Eckstein and D. Bertsekas, On the Douglas-Rachford splitting method and the proximal
point algorithm for maximal monotone operators, Math. Program., 55 (1992), pp. 293–
318.

[21] M. Elad, Why simple shrinkage is still relevant for redundant representations?, IEEE Trans.
Inform. Theory, 52 (2006), pp. 5559–5569.

[22] E. Esser, Applications of Lagrangian-Based Alternating Direction Methods and Connections
to Split Bregman, CAM report TR09–31, UCLA, Los Angeles, CA, 2009.

[23] M. Figueiredo and R. Nowak, An EM algorithm for wavelet-based image restoration, IEEE
Trans. Image Process., 12 (2003), pp. 906–916.

[24] M. Figueiredo, R. Nowak, and S. J. Wright, Gradient projection for sparse reconstruction:
Application to compressed sensing and other inverse problems, IEEE J. Sel. Top. Signa.,
1 (2007), pp. 586–597.

[25] M. Fukushima, Application of the alternating direction method of multipliers to separable
convex programming, Comput. Optim. Appl., 1 (1992), pp. 93–111.

[26] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems
via finite-element approximations, Comp. Math. Appl., 2 (1976), pp. 17–40.

[27] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New
York, 1984.

[28] R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator Splitting Methods in
Nonlinear Mechanics, SIAM Stud. Appl. Math. 9, SIAM, Philadelphia, 1989.

[29] R. Glowinski and A. Marrocco, Sur l’approximation par éléments finis d’ordre un, et la
résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires,
Rev. Française Automat. Informat. Rech. Opér., 9 (1975), pp. 41–76.

[30] T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM
J. Imaging Sci., 2 (2009), pp. 323–343.

ALTERNATING DIRECTION ALGORITHMS FOR �1-PROBLEMS 277

[31] E. Hale, W. Yin, and Y. Zhang, Fixed-point continuation for �1-minimization: Methodology
and convergence, SIAM J. Optim., 19 (2008), pp. 1107–1130.

[32] E. Hale, W. Yin, and Y. Zhang, Fixed-point continuation applied to compressed sensing:
Implementation and numerical experiments, J. Comput. Math., 28 (2010), pp. 170–194.

[33] M. Hanke, Conjugate Gradient Type Methods for Ill-Posed Problems, Longman Scientific &
Technical, Harlow, UK, 1995.

[34] B. He, L. Liao, D. Han, and H. Yang, A new inexact alternating directions method for
monotone variational inequalities, Math. Progam. Ser. A, 92 (2002), pp. 103–118.

[35] B. He and H. Yang, Some convergence properties of a method of multipliers for linearly
constrained monotone variational inequalities, Oper. Res. Lett., 23 (1998), pp. 151–161.

[36] M. R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl., 4 (1969), pp. 303–
320.

[37] C. Li, W. Yin, and Y. Zhang, User’s Guide for TVAL3: TV Minimization by Augmented La-
grangian and Alternating Direction Algorithms, CAAM report, Rice University, Houston,
TX, 2009.

[38] V. A. Morozov, On the solution of functional equations by the method of regularization, Soviet
Math. Dokl., 7 (1966), pp. 414–417.

[39] Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program. Ser. A, 103
(2005), pp. 127–152.

[40] Y. Nesterov, Gradient methods for minimizing composite objective function, CORE discussion
paper 2007/76, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 2007.

[41] R. Nowak and M. Figueiredo, Fast wavelet-based image deconvolution using the EM algo-
rithm, in Proceedings of the 35th Asilomar Conference on Signals, Systems and Computers,
Vol. 1, IEEE, Washington, DC, 2001, pp. 371–375.

[42] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, An iterative regularization method
for total variation-based image restoration, Multiscale Model. Simul., 4 (2005), pp. 460–
489.

[43] G. Plonka and J. Ma, Curvelet-wavelet regularized split Bregman iteration for compressed
sensing, Int. J. Wavelets Multiresolut. Inf. Process., to appear.

[44] M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Optimiza-
tion, R. Fletcher, ed., Academic Press, New York, 1969, pp. 283–298.

[45] B. Recht, M. Fazel, and P. Parrilo, Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization, SIAM Rev., 52 (2010), pp. 471–501.

[46] R. T. Rockafellar, The multiplier method of Hestenes and Powell applied to convex pro-
gramming, J. Optim. Theory Appl., 12 (1973), pp. 555–562.

[47] L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms,
Phys. D, 60 (1992), pp. 259–268.

[48] J.-L. Starck, E. Candès, and D. Donoho, Astronomical image representation by the curvelet
transform, Astron. Astrophys., 398 (2003), pp. 785–800.

[49] J.-L. Starck, M. Nguyen, and F. Murtagh,Wavelets and curvelets for image deconvolution:
A combined approach, Signal Process., 83 (2003), pp. 2279–2283.

[50] M. Tao, J.-F. Yang, and B. He, Alternating direction algorithms for total varia-
tion deconvolution in image reconstruction, available from http://www.optimization-
online.org/DB FILE/2009/11/2463.pdf., 2009.

[51] R. Tibshirani, Regression shrinkage and selection via the Lasso, J. Roy. Statist. Soc. Ser. B.,
58 (1996), pp. 267–288.

[52] J. A. Tropp and A. C. Gilbert, Signal recovery from random measurements via orthogonal
matching pursuit, IEEE Trans. Inform. Theory, 53 (2007), pp. 4655–4666.

[53] P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and
variational inequalities, SIAM J. Control Optim., 29 (1991), pp. 119–138.

[54] E. Van den Berg and M. Friedlander, Probing the pareto frontier for basis pursuit solutions,
SIAM J. Sci. Comput., 31 (2008), pp. 890–912.

[55] Y. Wang, J.-F. Yang, W. Yin, and Y. Zhang, A new alternating minimization algorithm for
total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), pp. 248–272.

[56] Z. Wen, W. Yin, and D. Goldfarb, Alternating direction augmented Lagrangian methods for
semidefinite programming, Math. Prog. Comp., 2 (2010), pp. 203–230.

[57] J. Wright and Y. Ma, Dense error correction via �1-minimization, IEEE Trans. Inform.
Theory, to appear.

[58] S. Wright, R. Nowak, and M. Figueiredo, Sparse reconstruction by separable approxima-
tion, IEEE Trans. Signal Process., 57 (2009), pp. 2479–2493.

[59] J.-F. Yang, Y. Zhang, and W. Yin, A fast alternating direction method for TVL1-L2 signal
reconstruction from partial Fourier data, IEEE J. Sel. Top. Signa., 4 (2010), pp. 288–297.

278 J.-F. YANG AND Y. ZHANG

[60] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman iterative algorithms for �1-
minimization with applications to compressed sensing, SIAM J. Imaging Sci., 1 (2008),
pp. 143–168.

[61] W. Yin, The linearized Bregman method: Reviews, analysis, and generalizations, CAAM
TR09–02, Rice University, Houston, TX, 2009.

[62] X. Yuan and J.-F. Yang, Sparse and low-rank matrix decomposition via alternat-
ing direction methods, available from http://www.optimization-online.org/DB FILE/
2009/11/2447.pdf., 2009.

[63] S. Yun and K.-C. Toh, A coordinate gradient descent method for �1-regularized convex mini-
mization, Comput. Optim. Appl., to appear.

[64] Y. Zhang, J.-F. Yang, and W. Yin, Your ALgorithm for L1, available from http://yall1.blogs.
rice.edu/, 2009.

	空白页面

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

