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AN EFFICIENT TVL1 ALGORITHM FOR DEBLURRING
MULTICHANNEL IMAGES CORRUPTED BY IMPULSIVE NOISE∗
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Abstract. We extend the alternating minimization algorithm recently proposed in [Y. Wang,
J. Yang, W. Yin, and Y. Zhang, SIAM J. Imag. Sci., 1 (2008), pp. 248–272]; [J. Yang, W. Yin,
Y. Zhang, and Y. Wang, SIAM J. Imag. Sci., 2 (2009), pp. 569–592] to the case of recovering blurry
multichannel (color) images corrupted by impulsive rather than Gaussian noise. The algorithm mini-
mizes the sum of a multichannel extension of total variation and a data fidelity term measured in the
�1-norm, and is applicable to both salt-and-pepper and random-valued impulsive noise. We derive
the algorithm by applying the well-known quadratic penalty function technique and prove attrac-
tive convergence properties, including finite convergence for some variables and q-linear convergence
rate. Under periodic boundary conditions, the main computational requirements of the algorithm
are fast Fourier transforms and a low-complexity Gaussian elimination procedure. Numerical results
on images with different blurs and impulsive noise are presented to demonstrate the efficiency of the
algorithm. In addition, it is numerically compared to the least absolute deviation method [H. Y. Fu,
M. K. Ng, M. Nikolova, and J. L. Barlow, SIAM J. Sci. Comput., 27 (2006), pp. 1881–1902] and
the two-phase method [J. F. Cai, R. Chan, and M. Nikolova, AIMS J. Inverse Problems and Imag-
ing, 2 (2008), pp. 187–204] for recovering grayscale images. We also present results of recovering
multichannel images.

Key words. impulsive noise, cross-channel, image deblurring, isotropic total variation, fast
Fourier transform

AMS subject classifications. 68U10, 65J22, 65K10, 65T50, 90C25

DOI. 10.1137/080732894

1. Introduction. We consider the problem of recovering multichannel images
degraded by cross-channel blurring and impulsive noise (e.g., salt-and-pepper noise).
Without loss of generality, we assume that the underlying images have square domains
and let an n×n original image with m channels be denoted by ū = (ū(1); . . . ; ū(m)) ∈
R

mn2
, where ū(j) ∈ R

n2
represents the jth channel, j = 1, . . . , m. The observation

f ∈ R
mn2

of ū is

f = Nimp (Kū) ,(1.1)

where Nimp(·) models the corruption of impulsive noise and

K =

⎡
⎢⎢⎢⎣

K11 K12 . . . K1m

K21 K22 . . . K2m

...
...

. . .
...

Km1 Km2 . . . Kmm

⎤
⎥⎥⎥⎦ ∈ R

mn2×mn2
(1.2)
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is a cross-channel blurring operator. We note that each Kij is a convolution matrix
with certain block structures determined by boundary conditions (specified later).
Given K, our objective is to recover ū from the blurry and noisy observation f . We
perform deblurring and denoising jointly by solving a multichannel total variation
(TV) regularization problem with the 1-norm data fidelity:

min
u

n2∑
i=1

‖(Im ⊗Di)u‖2 + μ‖Ku− f‖1,(1.3)

where Im is the identity matrix of order m, “⊗” represents the Kronecker product,
and (Im ⊗ Di)u ∈ R

2m consists of certain first-order horizontal and vertical finite
differences of u at pixel i. In particular, for red-green-blue (RGB) color images where
m = 3, there hold

u =

⎛
⎝ u(r)

u(g)

u(b)

⎞
⎠ ∈ R

3n2
and (I3 ⊗Di)u =

⎛
⎝ Diu

(r)

Diu
(g)

Diu
(b)

⎞
⎠ ∈ R

6.

Formulation (1.3) is often referred to as a TV regularization with the 1-norm fidelity
(TVL1) model. More generally, our algorithm applies to the following local weighted
TVL1-like problem:

min
u

n2∑
i=1

αi‖Giu‖2 + μ‖Ku− f‖1,(1.4)

where, at each pixel i, Giu ∈ R
q (e.g., q = 2m for multichannel TV as in (1.3))

represents a certain local finite difference of u over all channels, αi > 0 is a weight-
ing parameter, and μ > 0 balances the regularization term and the fidelity term.
We note that second- and higher-order finite differences are permitted in the reg-
ularization term of (1.4). Although μ can be removed from (1.4) by rescaling αi,
i = 1, . . . , n2, we keep it for convenience. As such, problem (1.4) reduces to (1.3) by
letting Gi = Im ⊗ Di and αi ≡ 1. The origin of (1.3) and some related results are
reviewed briefly in subsection 1.2.

The main contribution of this paper is an efficient algorithm for solving (1.4). Our
algorithm can be derived from either the classic quadratic penalty function technique
in optimization, dated back to Courant’s work [19] in 1943, or the half-quadratic tech-
nique initially proposed by Geman and Reynolds in [28] and Geman and Yang in [29].
In this paper, our derivation follows the former technique for its simplicity. A deriva-
tion based on a smoothed approximation of TV and the additive form of half-quadratic
technique [29] can be found in [51] for a deblurring model under Gaussian noise.

It is well known that, for a fixed t ∈ R, the scalar minimizer of |x|+|x−t|2 is given
by soft thresholding. In [50, 51], this result was extended to the multidimensional case.
Specifically, for any positive integer q and t ∈ R

q, the minimizer of ‖s‖2 + ‖s− t‖22 is
given by

s = max
{
‖t‖2 − 1

2
, 0
}

t
‖t‖2 ,(1.5)

where the convention 0 · (0/0) = 0 is followed. We call the operation in (1.5) multi-
dimensional shrinkage, which plays an important role in this paper. In order to utilize
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shrinkage operations, we propose to solve (1.4) by the classical quadratic penalty
method. Let z ∈ R

mn2
be an auxiliary variable that approximates Ku − f in (1.4).

Similarly, at each pixel i, we introduce wi ∈ R
q to approximate Giu ∈ R

q. For
convenience, we let w = [w1, . . . ,wn2 ]. Then, by adding quadratic terms to penalize
the difference between every pair of original and auxiliary variables, we obtain the
following approximation problem to (1.4):

min
w,z,u

∑
i

(
αi‖wi‖+

β1

2
‖wi −Giu‖2

)
+ μ‖z‖1 +

β2

2
‖z − (Ku− f)‖2,(1.6)

where β1, β2 � 0 are penalty parameters. We introduce (1.6) because it is numerically
easier to minimize by an iterative and alternating approach due to the fact that with
any two of the three variables w, z, and u fixed, the minimizer of (1.6) with respect
to the third one has a closed-form formula that is easy to compute. In addition,
this approach is numerically stable for large values of β1 and β2. Since w and z are
decoupled for given u, our algorithm will minimize the objective function in (1.6)
with respect to (w, z) and u, alternately. We show that, for any fixed β1, β2 > 0,
this alternating minimization scheme generates a sequence of points converging to a
solution of (1.6). Besides, we establish finite convergence for some auxiliary variables
and fast q-linear convergence for the rest. Furthermore, the overall convergence is
significantly accelerated by a continuation approach on the penalty parameters. From
the well-known theory of penalty method, the solutions of (1.6) converge to that of
(1.4) as the penalty parameters go to infinity. The convergence behavior of such
penalty methods as applied to TVL2 models (where a 2-norm square is used for the
fidelity term) has been empirically studied in [50, 51]. Our experiments indicate that
the convergence behavior of solutions of (1.6) to that of (1.4) should be similar to the
one found in [50, 51].

Although derived for ‖Giu‖2 in (1.4), the algorithm can be easily modified for
‖Giu‖1, or more generally, h(Giu) for a convex function h(·). In what follows, we
first give a brief review of impulsive noise removal methods, as well as variational
approaches for image denoising and/or deblurring, and then summarize the contribu-
tions and organization of this paper.

1.1. Impulsive noise and removal methods. Two common types of impul-
sive noise are salt-and-pepper noise, corrupting a portion of all pixels with minimal or
maximal intensities and leaving the remainder unaffected, and random-valued noise,
the same as salt-and-pepper noise except that corrupted pixels have random intensity
values between minimal and maximal ones. Such noise is often generated by malfunc-
tioning pixels in camera sensors, faulty memory locations in hardware, or erroneous
transmission; see, e.g., [6]. In images contaminated by such noise, a certain number of
pixels of the underlying image are uncorrupted, and the corrupted pixels usually have
intensities distinguishable from those of their neighbors. Based on these characters,
various nonlinear digital filter methods have been proposed; see [2]. Among them,
the median-type filters are most popular due to their good denoising power and com-
putational efficiency, e.g., the adaptive median filter [30], the multistate median filter
[18], and the median filter based on homogeneity information [23, 41]. These filters
first detect possibly noisy data entries and then replace them by using the median
filters or their variants. Most of these filters were designed for denoising only and are
not suitable for deblurring.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A TVL1 ALGORITHM FOR MULTICHANNEL IMAGE DEBLURRING 2845

1.2. Variational approach. Another important class of methods for removing
impulsive noise is the variational approach. It is well known that recovering ū from f
by inverting (1.1) is ill posed because the solution is highly sensitive to the noise. To
stabilize the recovery of ū, regularization is introduced, giving rise to the variational
formulation

min
u

Φreg(u) + μΦfid(u, f),(1.7)

where the regularization term Φreg(u) models some a priori information about ū, the
fidelity term Φfid(u, f) measures some type of deviation of u from the observation f ,
and μ > 0 balances these two terms in the formulation.

Traditional regularization techniques include the Tikhonov-like regularization [48],
the TV regularization [42], both of which have been well studied for grayscale im-
ages, and others. A discrete Tikhonov-like regularization takes the form Φreg(u) =∑

i

∑
j ‖(D(j)u)i‖22, where D(j)’s stand for a certain finite difference operator, the

inner summation is taken over some index set, and the outer one is taken over all
the pixels. Although the resultant minimization problems are relatively easy to solve,
Tikhonov-like regularization tends to make images overly smooth and often fails to
adequately preserve important image attributes such as sharp edges. In compari-
son, TV regularization overcomes these drawbacks. The discrete form of TV for a
grayscale image u ∈ R

n2
is given by TV(u) =

∑
i ‖Diu‖. If ‖ · ‖ is the 2-norm, TV(u)

is isotropic because it is irrelevant to the rotation of data in this case. In other cases,
e.g., ‖ · ‖ = ‖ · ‖1, it is anisotropic. We point out that, although the isotropic TV
is often preferred over any anisotropic one, both types of discretizations lead to the
so-called staircasing effects; see, e.g., [22, 37]. Compared with Tikhonov-like regu-
larization, TV regularization has the advantage of preserving sharp edges and object
boundaries.

For multichannel images, it is important to couple channels in regularization. For
this purpose, TV has been extended to “color TV” in [5] and multichannel TV in
[8, 13, 14, 47], which is represented by the first term in (1.3) where at each pixel the
2-norm measures variations from all channels. Another approach of coupling channels
in regularization is the Beltrami flow proposed in [45], where a multichannel image is
treated as a surface in higher dimensional space and then the area of the surface was
minimized. In [31], the authors applied the Beltrami flow to color image denoising
and blind deconvolution. In our algorithm, we use multichannel TV.

In the literature, the common data fidelity for the Gaussian noise is Φfid(u, f) =
‖Ku − f‖22, which also represents the maximum likelihood estimation of ū. Such
data fidelity is used in denoising, deblurring, and various inverse problems; see, e.g.,
[48, 42, 49]. However, practical systems suffer from outliers such as salt-and-pepper
noise, where only a portion of data entries are corrupted by noise of some non-Gaussian
distribution. In such cases, minimizing Φfid(u, f) = ‖Ku − f‖22 will fail to preserve
the uncorrupted data entries [38], while minimizing nonsmooth data fidelity will likely
succeed. Theoretical results comparing smooth and nonsmooth data fidelity terms for
image denoising can be found in [38, 39]. It is pointed out in [38] that nonsmooth
fidelity terms can give correct pixel intensities under some favorable conditions.

The use of nonsmooth fidelity Φfid(u, f) = ‖Ku−f‖1 was introduced in [1], where
a pure denoising problem was considered. Recently, geometric properties of the TVL1
model, which uses TV with the above �1-fidelity term, were analyzed in [10]. Also,
it was shown in [21] that TVL1 minimization yields a contrast invariant and self-
dual filter. Besides, the authors of [54, 55] proved that the TVL1 model has some
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interesting properties that lead to multiscale decomposition, contrast preservation,
and morphological invariance. They also established the equivalence between the
TVL1 model and certain geometric optimization problems, which was used to show
that this model decomposes an image (or any signal) into components of different
scales, measured in terms of G-value [44], independent of their locations or intensities.
These results have led to the applications of the TVL1 model in medical imaging
[53, 15] and computer vision [17, 16], in which this model has shown its advantages
over some competing models because it requires no feature or structural information
beside spacial scales.

Recently, a two-phase approach was proposed in [11, 12] for denoising and in [9]
for deblurring where impulsive plus Gaussian noise is permitted. The deblurring in
[9] is performed in two stages. In the first stage, a set of likely outliers is identified
using median filters and removed from the data set. In the second stage, the image is
restored using a specialized regularization method that applies to the remaining data
entries.

At present, highly efficient numerical methods are still in need for solving varia-
tional models that use a nonsmooth fidelity term for image deblurring. For TV-based
deblurring models using smooth fidelity terms, the majority of existing algorithms are
based on solving the Euler–Lagrangian equations by gradient descent or fixed-point
iterations; see, e.g., [49, 5]. For TVL1 problem (1.3), similar methods are used in
[3]. Compared to our proposed algorithm that takes advantage of fast transforms, the
existing methods are slow, especially when the size of the blurring kernel is relatively
large [50].

1.3. Contributions. The main contribution of this paper is an efficient algo-
rithm for solving the general TVL1-like problem (1.4), which encompasses a variety
of regularization functions such as weighted TV and those based on higher-order
derivatives. In addition, this algorithm is analyzed and shown to have attractive con-
vergence properties, which include global convergence with a strong q-linear rate and
finite convergence for some auxiliary variables. Under periodic boundary conditions,
its computation can take advantage of simple multidimensional shrinkage and fast
Fourier transform (FFT).

1.4. Organization. The paper is organized as follows. In section 2, the alter-
nating minimization algorithm is derived, and the optimality conditions of (1.4) and
(1.6) are studied. In section 3, the main convergence results of the proposed algorithm
are established. Practical implementation of the proposed algorithm and comparisons
to the methods proposed in [26] and [9] are given in section 4. In this section, mul-
tichannel image recovery results are also presented. Finally, concluding remarks are
given in section 5.

2. Basic algorithm and optimality. Before deriving the algorithm, we intro-
duce our notation. We let the superscript � be the transpose (or conjugate transpose)
operation for real (or complex) quantities. Let D(1), D(2) ∈ R

n2×n2
be the first-order

forward finite difference matrices in horizontal and vertical directions, respectively.
Without loss of generality, we assume that (Im ⊗Di)u consists of the first-order for-
ward finite differences of u at pixel i in (1.3). Thus, Di ∈ R

2×n2
is a two-row matrix

formed by stacking the ith row of D(1) on that of D(2). For vectors v1 and v2, we let
(v1; v2) be the vector formed by stacking the two. Let ρ(T ) be the spectral radius of
matrix T . Hereafter, the norm ‖ · ‖ refers to the 2-norm. Additional notation will be
introduced as the paper progresses.
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2.1. An alternating minimization algorithm. We begin with assuming β1 =
β2 ≡ β in (1.6), which does not cause any loss of generality because, otherwise, a
scaling of the form μ ← μ

√
β1/β2 and (K, f, z) ← √

β2/β1(K, f, z) would equalize
the penalty parameters in (1.6). We derive our algorithm in this section and analyze
its convergence in section 3 under this assumption even though β1 and β2 are set to be
different in our implementation. It is easy to see that for a fixed u, the minimization
with respect to w and z can be done in parallel because they are separable in (1.6).
In addition, for all subscripts i, the first two terms in (1.6) are separable with respect
to wi and the the last two terms are separable with respect to each component of
z. Based on these observations, it is easy to apply alternating minimization to (1.6).
First, for a fixed u, the minimizer function of wi is given by a multidimensional
shrinkage similar to the one in (1.5):

wi = max
{
‖Giu‖ − αi

β
, 0
}

Giu

‖Giu‖ , i = 1, . . . , n2,(2.1)

where we followed the convention 0 · (0/0) = 0, and the minimization with respect to
z is given by the well-known one-dimensional shrinkage:

z = max
{
|Ku− f | − μ

β
, 0
}
◦ sgn(Ku− f),(2.2)

where “◦” represents the pointwise product, and all other operations are implemented
componentwise. Clearly, the computational cost for (2.1) is linear in terms of qn2,
and that for (2.2) is linear in terms of n2. Second, for fixed w and z, the minimization
with respect to u is a least squares problem:

min
u

∑
i

‖wi −Giu‖2 + ‖Ku− (f + z)‖2.(2.3)

Let G(j) ∈ R
n2×mn2

be the matrix formed by stacking the jth rows of G1, G2, . . . , Gn2 ,
j = 1, . . . , q,

G �

⎛
⎜⎝

G(1)

...
G(q)

⎞
⎟⎠ ∈ R

qn2×mn2
and W �

⎛
⎜⎝

w�
1
...

w�
n2

⎞
⎟⎠ � (w1, . . . , wq) ∈ R

n2×q,(2.4)

where wj is the jth column of W and formed by stacking the jth components of
w1,w2, . . . ,wn2 . Let w = W(:) = (w1; . . . ; wq) ∈ R

qn2
, which is the vectorization of

W column by column. For example, when m = 3 and Gi = I3 ⊗Di, it holds that

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

G(1)

G(2)

G(3)

G(4)

G(5)

G(6)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

D(1) 0 0
D(2) 0 0
0 D(1) 0
0 D(2) 0
0 0 D(1)

0 0 D(2)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In the above notation, the normal equations of (2.3) can be written as(
G�G + K�K

)
u = G�w + K�(z + f).(2.5)
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Since each G(j) is a finite difference matrix applied to some channel, and K defined
in (1.2) is a cross-channel convolution, under the periodic boundary conditions for
u, each n2 × n2 block in G and K has a block circulant structure, while each block
within the structure is a circulant matrix; see, e.g., [36]. Therefore, both G and K
can be blockwise diagonalized by pre- and postmultiplying by

Fp � Ip ⊗F , p = m, q,

and their inverses F�
p = F−1

p = Ip ⊗ F−1, respectively, where F represents the two-
dimensional discrete Fourier transform matrix of order n2 × n2. More precisely, the
two matrices

Ĝ = FqGF�
m and K̂ = FmKF�

m

are both blockwise diagonal matrices with the block size n2 × n2. Then (2.5) is
equivalent to (

Ĝ�Ĝ + K̂�K̂
)

(Fmu) = Fm

(
G�w + K�(z + f)

)
,(2.6)

where Fmv is the discrete Fourier transform of v. Since both Ĝ and K̂ are blockwise
diagonal, the coefficient matrix in the left-hand side of (2.6) is also blockwise diagonal
with m×m blocks of the size n2 × n2.

The solution of (2.3) can be obtained by solving its normal equations (2.5) in
three steps. First, we apply discrete FFTs to both sides of (2.5). Then, we solve
the resulting blockwise diagonal systems (2.6) by Gaussian elimination for Fmu. We
note that, in general, a linear system involving such a blockwise diagonal matrix can
be solved by block Gaussian elimination without any pivoting or fillings, though for
large multichannel images, the cost of such a block Gaussian elimination can still be
relatively high in comparison to most other operations required by the algorithm.
Finally, we apply F−1

m to Fmu to obtain a new iterate u. Clearly, the blockwise
diagonal matrices Ĝ and K̂ need to be computed only once before iteration. The
total number of two-dimensional discrete Fourier transforms (including inverse Fourier
transforms) of size n2×n2 is 2m per iteration. Moreover, block Gaussian elimination
applied to (2.6) without pivoting, where the coefficient matrix has m ×m blocks of
square diagonal matrices of size n2, requires about (2/3)m3n2 arithmetic operations.

Alternatively, under the Neumann boundary conditions and assuming that all
blurring kernels are central symmetric, the FFTs shall be replaced by the discrete co-
sine transforms (DCTs); see [36]. In our experiments, we assumed periodic boundary
conditions and used FFTs.

Since minimizing the objective function in (1.6) with respect to each variable is
computationally inexpensive, we propose solving (1.6) by the following alternating
minimization scheme.

Algorithm 1. Input f , K, μ > 0, β � 0, and αi > 0, i = 1, . . . , n2. Initialize
u = f .

While “not converged,” Do
1) Given u, compute w and z by (2.1) and (2.2), respectively.
2) Given w and z, compute u by solving (2.5).

End Do
The stopping criterion of Algorithm 1 is specified in the next subsection based

on the optimality conditions of (1.6). More details of Algorithm 1 are discussed in
section 4.
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2.2. Optimality conditions. Now, we derive optimality conditions of (1.4)
and (1.6) and specify a stopping criterion for Algorithm 1. We need the following
propositions.

Proposition 2.1. For any A ∈ R
p×n, the subdifferential of f(x) � ‖Ax‖ is

∂f(x) =

{{
A�Ax/‖Ax‖} , if Ax 	= 0;{
A�h : ‖h‖ ≤ 1, h ∈ R

p
}

, otherwise.
(2.7)

The proof of Lemma 2.1 is elementary and thus is omitted. For t ∈ R, the signum
and the signum set-valued functions are defined as

sgn(t) �

⎧⎨
⎩

+1 t > 0,
0 t = 0,
−1 t < 0,

and SGN(t) �

⎧⎨
⎩
{+1} t > 0,
[−1, 1] t = 0,
{−1} t < 0,

respectively. For vector v ∈ R
N , we let sgn(v) = (sgn(v1); . . . ; sgn(vN )) ∈ R

N , where
vi is the ith component of v. Similarly, SGN(v) =

{
ξ ∈ R

N : ξi ∈ SGN(vi), ∀i
}
.

Proposition 2.2. For any B ∈ R
m×n, the subdifferential of g(x) � ‖Bx‖1 is

∂g(x) =
{
B�λ : λ ∈ SGN(Bx)

}
.(2.8)

Proof. By the definition of subdifferential for a convex function, we have

∂g(x) =
{
ξ ∈ R

n : ‖By‖1 − ‖Bx‖1 ≥ ξ�(y − x), ∀y} .

We will show that ∂g(x) = S � {B�λ : λ ∈ SGN(Bx)}. First, for any B�λ ∈ S and
y ∈ R

n, it holds that

(2.9) ‖By‖1 − ‖Bx‖1 −
(
B�λ

)�
(y − x)

=
∑

i

{|(By)i| − |(Bx)i| − λi[(By)i − (Bx)i]} .

Since λ ∈ SGN(Bx), it is easy to argue that the above is always nonnegative. Thus,
S ⊂ ∂g(x). Next, we show ∂g(x) ⊂ S by contradiction. Suppose there exists ξ ∈
∂g(x), but ξ 	∈ S. Since S is closed and convex, by the well-known separation,
theorem of convex sets, there must exist η ∈ R

n and α ∈ R such that the hyper-
plane η�x = α separates ξ and S so that η�ξ > α > η�(B�λ), ∀λ ∈ SGN(Bx). Let
I+ = {i : (Bx)i > 0}, I− = {i : (Bx)i < 0}, and I0 = {i : (Bx)i = 0}. It follows that

(2.10) η�ξ > α ≥ sup
{
η� (

B�λ
)

: λ ∈ SGN(Bx)
}

=
∑
i∈I+

(Bη)i −
∑
i∈I−

(Bη)i +
∑
i∈I0

|(Bη)i|.

Let y = x + εη for some ε > 0 small enough. Since ξ ∈ ∂g(x), we get

εξ�η ≤ ‖By‖1 − ‖Bx‖1 =
∑

i∈I+∪I−
(|(Bx)i + ε(Bη)i| − |(Bx)i|) +

∑
i∈I0

ε|(Bη)i|

=
∑
i∈I+

ε(Bη)i −
∑
i∈I−

ε(Bη)i +
∑
i∈I0

ε|(Bη)i|.
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The above inequality contradicts (2.10). Therefore, ∂g(x) = S and the result is
proved.

Since the objective function is convex, a triplet (w, z, u) is a solution of (1.6) if
and only if the subdifferential of the objective at (w, z, u) contains the origin. First,
for fixed z and u, this condition implies

0 ∈ αi∂‖wi‖+ β (wi −Giu) .

In light of Proposition 2.1 with A being the identity of order q, the above condition
is equivalent to{

αiwi/‖wi‖+ β(wi −Giu) = 0, i ∈ I1 � {i : wi 	= 0},
β‖Giu‖ ≤ αi, i ∈ I2 � {i : wi = 0}.(2.11)

Similarly, for fixed w and u, the optimality condition for z is

0 ∈ μ∂‖z‖1 + β [z − (Ku− f)] ,

which, in light of Proposition 2.2 with B being the identity of order mn2, is equivalent
to {

μ sgn(zi) + β[zi − (Ku− f)i] = 0, i ∈ I3 � {i : zi 	= 0},
β|(Ku− f)i| ≤ μ, i ∈ I4 � {i : zi = 0}.(2.12)

Finally, for fixed w and z, the objective function in (1.6) is differentiable with respect
to u. The corresponding optimality condition for u is given by

G�(Gu − w) + K�(Ku− f − z) = 0.(2.13)

We note that (2.13) is just another expression of (2.5). Let KI3 , KI4 be the subma-
trices of K containing rows corresponding to those indices in I3 and I4, respectively.
Similarly, vI represents the subvector of v corresponding to indices in I. From (2.11),
(2.12), and the relation between G and Gi described in (2.4), eliminating w and z
from (2.13) gives

∑
i∈I1

αiG
�
i

Giu

‖Giu‖ +
∑
i∈I2

G�
i hi + μ

(
KI3

KI4

)�(
sgn(KI3u− fI3)

vI4

)
= 0,(2.14)

where hi � βGiu satisfies ‖hi‖ ≤ αi and vI4 = β(KI4u− fI4)/μ satisfies ‖vI4‖∞ ≤ 1.
Let u∗ be any solution of (1.4). Define

I∗1 � {i : Giu
∗ 	= 0}, I∗2 � {i : Giu

∗ = 0},
I∗3 � {i : (Ku∗ − f)i 	= 0} and I∗4 � {i : (Ku∗ − f)i = 0}.

In light of Propositions 2.1 and 2.2, there exist ‖h∗
i ‖ ≤ αi, i ∈ I∗2 , and vI∗

4
= {vi :

|vi| ≤ 1, i ∈ I∗4} such that

∑
i∈I∗

1

αiG
�
i

Giu
∗

‖Giu∗‖ +
∑
i∈I∗

2

G�
i h∗

i + μ

(
KI∗

3

KI∗
4

)�(
sgn

(
KI∗

3
u∗ − fI∗

3

)
vI∗

4

)
= 0.(2.15)

Equation (2.14) differs from (2.15) only in the index sets involved. As β increases, I1

and I3 should approach I∗1 and I∗3 , respectively. Comparing (2.14) and (2.15) provides
another perspective on how (1.6) is approximating (1.4).
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Our stopping criterion for Algorithm 1 is based on (2.11), (2.12), and (2.13). Let⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r1(i) � (αiwi/‖wi‖)/β + wi −Giu, i ∈ I1,

r2(i) � ‖Giu‖ − αi/β, i ∈ I2,

r3(i) � μ sgn(zi)/β + zi − (Ku− f)i, i ∈ I3,

r4(i) � |(Ku− f)i| − μ/β, i ∈ I4,

r5 � G�(Gu− w) + K�(Ku− f − z),

where {Ij : j = 1, 2, 3, 4} are defined as in (2.11) and (2.12). According to the
optimality conditions given in (2.11) and (2.12), all components of r2 and r4 are non-
positive at a solution. In our implementation, we allow slightly positive elements in
r2 and r4 at an approximate solution. Specifically, given a tolerance ε > 0, Algorithm
1 is terminated once all of the following criteria are met:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max {‖r1(i)‖ : i ∈ I1} ≤ ε,

max {r2(i) : i ∈ I2} ≤ ε,

max {|r3(i)| : i ∈ I3} ≤ ε,

max {r4(i) : i ∈ I4} ≤ ε,

‖r5‖ ≤ ε · ‖G�w + K�(f + z)‖,

(2.16)

where, for given w and z, the last line in (2.16) measures the relative error of (2.13).

3. Convergence analysis. As pointed out before, the quadratic penalty method
applied to a problem like (1.4) converges to its solution as the penalty parameter goes
to infinity (see Theorem 17.1 in [40], for example). In this section, we establish con-
vergence and a q-linear convergence result of the proposed algorithm for fixed β.

For simplicity, we assume that αi ≡ 1 and all analysis below can be easily extended
to the case αi 	≡ 1. First, we introduce some notation. For t ∈ R, let the one-
dimensional shrinkage be defined by

sμ(t) = max
{
|t| − μ

β
, 0
}
· sgn(t).

For v ∈ R
N , let sμ(v) � (sμ(v1); . . . ; sμ(vN )) ∈ R

N ; i.e., sμ applies to each component
vi of v. For t ∈ R

q, let the q-dimensional shrinkage be defined by

s (t) = max
{
‖t‖ − 1

β
, 0
}

t
‖t‖ ,

where 0 · (0/0) = 0 is followed. For vectors v1, . . . , vq ∈ R
N , S(v1; . . . ; vq) : R

qN →
R

qN is defined as

S(v1; . . . ; vq) � (s(t1); . . . ; s(tN )) , where(3.1)
ti = ((v1)i; . . . ; (vq)i) ∈ R

q, i = 1, . . . , N.

Let P(·) � PB(·) : R
q → R

q be the projection onto the closed ball B � {t ∈ R
q :

‖t‖ ≤ 1/β}. The following lemma shows that s(·) is nonexpansive. As a corollary,
both S and sμ are nonexpansive.

Lemma 3.1. For any t1, t2 ∈ R
q, it holds that

‖s(t1)− s(t2)‖2 ≤ ‖t1 − t2‖2 − ‖P(t1)− P(t2)‖2.
Furthermore, if ‖s(t1)− s(t2)‖ = ‖t1 − t2‖, then s(t1)− s(t2) = t1 − t2.
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Proof. The proof of Lemma 3.1 is similar to the case when q = 2 in [50].
The analysis below is accomplished under the following mild assumption, which

has been commonly used in previous works of similar analysis.
Assumption 1. N (G) ∩ N (K) = {0}, where N (·) represents the null space of its

argument.
The following matrices are used in our analysis:

H = (G; K) and M = G�G + K�K = H�H.

Under Assumption 1, M−1 is well defined. Furthermore, let v = (w; z) ∈ R
(q+m)n2

and define

h(j)(v) = G(j)M−1
(
H�v + K�f

)
, j = 1, . . . , q,

and

h(q+1)(v) = KM−1
(
H�v + K�f

)− f.

Let h(v) = (h(1)(v); . . . ; h(q)(v)), ĥ(v) = (h(v); h(q+1)(v)), and Ŝ ◦ ĥ = (S ◦ h; sμ ◦
h(q+1)).

Using the above notation, the iteration formulas (2.1), (2.2), and (2.5) can be
expressed as

vk+1 =
(
wk+1; zk+1

)
=
(
S
(
G(1)uk; . . . ; G(q)uk

)
; sμ

(
Kuk − f

))
= Ŝ ◦ ĥ

(
vk
)

(3.2)

and

uk+1 = M−1
(
H�vk+1 + K�f

)
.(3.3)

Since the objective function in (1.6) is convex, bounded below, and coercive (i.e., its
value goes to infinity as ‖(w, z, u)‖ → ∞), problem (1.6) has at least one minimizer
(v∗; u∗) = (w∗; z∗; u∗), which should satisfy the fixed-point equations

v∗ = (w∗; z∗) =
(
S
(
G(1)u∗; . . . ; G(q)u∗

)
; sμ (Ku∗ − f)

)
= Ŝ ◦ ĥ (v∗) ,(3.4)

and the equation

u∗ = M−1
(
H�v∗ + K�f

)
.(3.5)

To establish convergence of Algorithm 1, we need the following lemmas.
Lemma 3.2. For any v1 	= v2 in R

(q+m)n2
, it holds that∥∥∥ĥ(v1)− ĥ(v2)

∥∥∥ ≤ ‖v1 − v2‖

with the equality holding if and only if ĥ(v1)− ĥ(v2) = v1 − v2.
Lemma 3.3. Let v∗ be any fixed point of Ŝ ◦ ĥ. For any v, we have ‖Ŝ ◦ ĥ(v) −

Ŝ ◦ ĥ(v∗)‖ < ‖v − v∗‖ unless v is a fixed point of Ŝ ◦ ĥ.
Lemma 3.2 shows that ĥ is nonexpansive and Lemma 3.3 gives a useful property

for the fixed points of Ŝ ◦ ĥ. Their proofs are similar to those in the lower dimensional
case given in [50]. Given the above lemmas, we can prove convergence of Algorithm 1.
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Theorem 3.4 (convergence). Under Assumption 1, the sequence {(wk, zk, uk)}
generated by Algorithm 1 from any starting point (w0, z0, u0) converges to a solution
(w∗, z∗, u∗) of (1.6).

Proof. The proof is similar to that of Theorem 3.4 in [50] and thus is
omitted.

Next we develop a finite convergence property for the auxiliary variables w and
z. Let

hi(v) =
(
h

(1)
i (v); . . . ; h(q)

i (v)
)
∈ R

q, i = 1, . . . , n2;

namely, hi(v) is the vector formed by stacking the ith components of h(1)(v), . . . , h(q)(v).
We will make use of the following index sets:

L1 =
{

i, ‖Giu
∗‖ ≡ ‖hi(v∗)‖ <

1
β

}
, L2 =

{
i, |(Ku∗ − f)i| ≡

∣∣∣h(q+1)
i (v∗)

∣∣∣ <
μ

β

}
,

and their complements E1 = {1, . . . , n2} \ L1 and E2 = {1, . . . , mn2} \ L2.
Theorem 3.5 (finite convergence). Under Assumption 1, the sequence {(wk, zk,

uk)} generated by Algorithm 1 from any starting point (w0, z0, u0) satisfies wk
i =

w∗
i = 0, ∀ i ∈ L1, and zk

i = z∗i = 0, ∀ i ∈ L2, for all but finite numbers of iterations
that do not exceed ‖v0 − v∗‖2/ω2

1 and ‖v0 − v∗‖2/ω2
2, respectively, where

ω1 � min
i∈L1

{
1
β
− ‖hi(v∗)‖

}
> 0 and ω2 � min

i∈L2

{
μ

β
−
∣∣∣h(q+1)

i (v∗)
∣∣∣} > 0.(3.6)

Proof. For any i ∈ {1, . . . , n2}, it holds that

∥∥wk+1
i −w∗

i

∥∥2
=
∥∥s ◦ hi

(
vk
)− s ◦ hi(v∗)

∥∥2 ≤ ∥∥hi

(
vk
)− hi(v∗)

∥∥2
.(3.7)

Suppose wk+1
i 	= 0 for some i ∈ L1, then

∥∥wk+1
i −w∗

i

∥∥2
=
∥∥s ◦ hi

(
vk
)− s ◦ hi(v∗)

∥∥2
=
(∥∥hi

(
vk
)∥∥− 1/β

)2
(3.8)

≤ {∥∥hi

(
vk
)− hi(v∗)

∥∥− (1/β − ‖hi(v∗)‖)
}2

≤ ∥∥hi

(
vk
)− hi(v∗)

∥∥2 − (1/β − ‖hi(v∗)‖)2

≤ ∥∥hi

(
vk
)− hi(v∗)

∥∥2 − ω2
1,

where the first equality comes from the iteration of wi in (2.1) and the definition
of hi(v); the second equality holds because of ‖hi(v∗)‖ < 1/β, wk+1

i 	= 0, and the
definition of s; the first inequality is triangular inequality; the second inequality follows
from the fact that ‖hi(vk)− hi(v∗)‖ ≥ 1/β − ‖hi(v∗)‖ > 0; and the last one uses the
definition of ω1 in (3.6). Furthermore,

∥∥zk+1 − z∗
∥∥2

=
∥∥∥sμ ◦ h(q+1)

(
vk
)− sμ ◦ h(q+1)(v∗)

∥∥∥2

(3.9)

≤
∥∥∥h(q+1)

(
vk
)− h(q+1)(v∗)

∥∥∥2

.
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Combining (3.7), (3.8), and (3.9), we get∥∥vk+1 − v∗
∥∥2

=
∥∥wk+1 − w∗∥∥2

+
∥∥zk+1 − z∗

∥∥2
(3.10)

=
n2∑
i=1

∥∥wk+1
i −w∗

i

∥∥2
+
∥∥zk+1 − z∗

∥∥2

≤
n2∑
i=1

∥∥hi

(
vk
)− hi(v∗)

∥∥2
+
∥∥∥h(q+1)

(
vk
)− h(q+1)(v∗)

∥∥∥2

− ω2
1

=
q+1∑
j=1

∥∥∥h(j)
(
vk
)− h(j)(v∗)

∥∥∥2

− ω2
1 =

∥∥∥ĥ (vk
)− ĥ(v∗)

∥∥∥2

− ω2
1

≤ ∥∥vk − v∗
∥∥2 − ω2

1 .

Therefore, for i ∈ L1, it holds that wk
i = w∗

i = 0 in no more than ‖v0 − v∗‖2/ω2
1

iterations.
For any i ∈ {1, . . . , mn2}, we have

(
zk+1

i − z∗i
)2

=
(
sμ ◦ h

(q+1)
i

(
vk
)− sμ ◦ h

(q+1)
i (v∗)

)2

(3.11)

≤
∣∣∣h(q+1)

i

(
vk
)− h

(q+1)
i (v∗)

∣∣∣2 .

Similarly, supposing zk+1
i 	= 0 for some i ∈ L2, from z∗i = 0 we get

(
zk+1

i − z∗i
)2

=
(
sμ ◦ h

(q+1)
i

(
vk
))2

=
(∣∣∣h(q+1)

i

(
vk
)∣∣∣− μ

β

)2

(3.12)

≤
{∣∣∣h(q+1)

i

(
vk
)− h

(q+1)
i (v∗)

∣∣∣− (
μ

β
−
∣∣∣h(q+1)

i (v∗)
∣∣∣)}2

≤
∣∣∣h(q+1)

i

(
vk
)− h

(q+1)
i (v∗)

∣∣∣2 − (
μ

β
−
∣∣∣h(q+1)

i (v∗)
∣∣∣)2

≤
∣∣∣h(q+1)

i

(
vk
)− h

(q+1)
i (v∗)

∣∣∣2 − ω2
2 ,

where the reasoning is identical to that of (3.8) and ω2 is defined in (3.6). Combining
(3.7), (3.11), and (3.12), similar to (3.10), we get∥∥vk+1 − v∗

∥∥2 ≤
∥∥∥ĥ (vk

)− ĥ(v∗)
∥∥∥2

− ω2
2 ≤

∥∥vk − v∗
∥∥2 − ω2

2 .(3.13)

Therefore, zk
i = z∗i = 0 for i ∈ L2 in no more than ‖v0 − v∗‖2/ω2

2 iterations.
Given the finite convergence of wk

i = w∗
i = 0 for i ∈ L1 and zk

i = z∗i = 0 for
i ∈ L2, we next show the q-linear convergence of uk and the remaining components
in vk. For convenience, let

L = L1 ∪
(
n2 + L1

) ∪ . . . ∪ ((q − 1)n2 + L1

) ∪ (qn2 + L2

)
and E = {1, . . . , (q + m)n2} \ L be the complement of L. Let vL be the subvector
of v with components {vi : i ∈ L} and vE be defined similarly. Furthermore, let
P = HM−1H� and PEE = [Pi,j ]i,j∈E . From the definition of M , it is obvious that
P is a projection matrix and thus P 2 = P .

Theorem 3.6 (q-linear convergence). Under Assumption 1, the sequence
{(vk, uk) = (wk, zk, uk)}, generated by Algorithm 1, satisfies
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1. ‖vk+1
E − v∗E‖ ≤

√
ρ(PEE)‖vk

E − v∗E‖;
2. ‖uk+1 − u∗‖M ≤

√
ρ(PEE)‖uk − u∗‖M ,

for all sufficiently large k.
Proof. From (3.2)–(3.5) and the nonexpansiveness of S and sμ, we get

uk+1 − u∗ = M−1H� (
vk+1 − v∗

)
(3.14)

and ∥∥vk+1 − v∗
∥∥2

=
∥∥wk+1 − w∗∥∥2

+
∥∥zk+1 − z∗

∥∥2
(3.15)

=
∥∥∥S (

G(1)uk; . . . ; G(q)uk
)
− S

(
G(1)u∗; . . . ; G(q)u∗

)∥∥∥2

+
∥∥sμ

(
Kuk − f

)− sμ (Ku∗ − f)
∥∥2

≤ ∥∥G (
uk − u∗)∥∥2

+
∥∥K (

uk − u∗)∥∥2
=
∥∥H (

uk − u∗)∥∥2
.

Combining the recursion (3.14), (3.15), and the definition of P , it holds that∥∥vk+1 − v∗
∥∥2 ≤ ∥∥HM−1H� (

vk − v∗
)∥∥2

=
∥∥P (

vk − v∗
)∥∥2

.

Since we are interested only in the asymptotic behavior of Algorithm 1, without loss of
generality, we assume that vk

L = v∗L = 0. Further from P 2 = P , the above inequality
becomes∥∥vk+1

E − v∗E
∥∥2 ≤ (

vk
E − v∗E

)�
PEE

(
vk

E − v∗E
) ≤ ρ(PEE)

∥∥vk
E − v∗E

∥∥2
,

which implies Assertion 1 of this theorem. Multiplying H on both sides of (3.14),
from vk

L = 0 and (3.15), we get
∥∥H (

uk+1 − u∗)∥∥2 ≤ ρ(PEE)
∥∥vk+1 − v∗

∥∥2 ≤ ρ(PEE)
∥∥H (

uk − u∗)∥∥2
.

Recall that M = H�H . The above inequality implies assertion 2 of this theo-
rem.

Theorem 3.6 states that Algorithm 1 generates a sequence of points that converge
q-linearly with a convergence rate depending on the spectral radius of the submatrix
PEE rather than that of the whole matrix. Since P is a projection matrix and PEE

is a minor of P , it holds that ρ(PEE) ≤ ρ(P ) = 1.

4. Numerical results. In this section, we present numerical results of recover-
ing images by the proposed alternating minimization algorithm. In our experiments,
we used two images, grayscale image Cameraman (256× 256) and RGB color image
Rose (303 × 250) introduced in [7], with different blurs and noise. Two types of im-
pulsive noise were used in the test: the salt-and-pepper noise and the random-valued
impulsive noise. In the rest of this section, we first describe the test platform and a
practical implementation of Algorithm 1, then compare our algorithm with the algo-
rithms in [26] and [9] for grayscale image deblurring. We next present color image
results, and finally summarize the performance of our algorithm.

4.1. Test platform and practical implementation. We implemented Algo-
rithm 1 in MATLAB and generated all blurring effects using the MATLAB function
“imfilter” with periodic boundary conditions. The experiments were performed
under Windows Vista Premium and MATLAB v7.6 (R2008a) running on a Lenovo
laptop with an Intel Core 2 Duo CPU at 1.8 GHz and with 2 GB of memory.
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Let E(ū) be the mean intensity value of the original image ū, and let u be the
restored image. We measure the quality of restoration by signal-to-noise ratio (SNR),
which is defined as

SNR � 10 ∗ log10

‖ū−E(ū)‖2
‖ū− u‖2 .

Although Algorithm 1 is applicable to several types of regularization terms based
on TV, weighted TV, and high-order derivatives (see [51] for details), we limited
our experiments on model (1.3), i.e., Gi = Im ⊗ Di, and αi ≡ 1 in (1.4). In our
implementation, we set β1 = 210 and β2 = 215μ in (1.6), while the value of μ is
determined experimentally. Based on our experimental results, these β-values are
large enough for the algorithm to attain an SNR value that can hardly be further
improved by increasing the penalty parameters.

From (2.1) and (2.2), the smaller the penalty parameters are, the more zeros the
shrinkage will produce. To speed up convergence, we implemented a continuation
scheme on the penalty parameters; that is, let β1 and β2 (or γ after dividing μ)
take small values at the beginning and gradually increase them to the prescribed
values. Specifically, we tested the γ-sequence 20, 21, 22 . . . , 215. Accordingly, β1 was
set to 20, 22/3, 24/3 . . . , 210. Continuation techniques are widely used with penalty
methods and, for our problem, its use is also theoretically well-justified by Theorem
3.6. From the definitions of L and E, it is likely that smaller penalty parameters
yield smaller E and thus fast convergence. As such, earlier subproblems with smaller
penalty parameters can be solved quickly, and the later subproblems can also be solved
relatively quickly with warm starts from previous solutions.

To sum up, our practical implementation of Algorithm 1 involves two loops. The
outer loop increases β1 and γ from 1 to 210 and 215, respectively. For fixed β1 and
γ, the inner loop solves (1.6) until (2.16) is met. Although the above framework can
be modified with much flexibility, e.g., adaptively increasing the penalty parameters
and selecting ε from one outer iteration to another, this basic implementation already
works quite well. Following [50], we give the name fast total variation deconvolution,
or FTVd, to Algorithm 1 with the prescribed continuation scheme.

4.2. Comparison with the linear program approach in [26]. In this sub-
section, we compare the performance of FTVd with that of the algorithm in [26],
where the authors converted the deblurring model

min
u

{∑
i

‖Diu‖1 + μ‖Ku− f‖1 : u ≥ 0

}
(4.1)

into a linear program and proposed to solve it by a primal-dual interior point method.
Following their naming, we refer to both the algorithm in [26] and solution of (4.1) as
the least absolute deviation or LAD. Their approach requires solving a positive definite
linear system at each iteration by a preconditioned conjugate gradient (PCG) method
with a sparse inverse preconditioner [4, 33, 46]. Specially, they used the factorized
banded inverse preconditioner (FBIP, cf. [34]), which has a triangular block banded
structure with each block being also banded. Let p be the block-level lower bandwidths
of the preconditioner, and let q be the (lower or upper) bandwidths of each block.
As the authors pointed out, when the kernel size is large, it is necessary to use large
(p, q) to obtain a sufficiently good preconditioner. However, the computational cost
of FBIP at each outer iteration is O(p3q3n2) that increases quickly with p and q.
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Therefore, for large-sized blurring kernels, a balance needs to be found between the
PCG iteration numbers and the cost of preconditioner computation. Since the linear
systems involved are increasingly ill conditioned towards the end of outer iterations,
a reasonable implementation of their algorithm should be to use the FBIP only when
the plain CG method encounters difficulties. For fairness of comparison, we utilized
a diagonal preconditioner (similar to the one used in [43] that is included in the LAD
code provided to us by the authors of [26]) at the beginning and resorted to the FBIP
only when the iteration number required by the MATLAB pcg code exceeded 100 to
reach a relative residue of 10−5. This way, the wasteful cost of computing the FBIP
at the early iterations was avoided.

Since the LAD code used in our experiments is applicable only to grayscale images,
we used Cameraman for comparison. Furthermore, since the LAD algorithm solves
only the 1-norm based, anisotropic TVL1 problem, we used our algorithm to solve
(1.3) with ‖ · ‖2 being replaced by ‖ · ‖1. This modification requires changing (2.1) to

wi = max {|Giu| − αi/β, 0} ◦ sgn(Giu), i = 1, . . . , n2,

where | · | represents componentwise absolute value. The optimality conditions (2.11)–
(2.13) and the stopping criterion (2.16) were modified accordingly. There are also two
differences in the problems solved by these two algorithms. First, problem (4.1)
enforces nonnegativity on u while FTVd does not deal with this requirement. This
difference affects the solutions, but only to a small extent. Without the nonnegativity
constraints in (4.1), LAD does not run faster because it would need to split u into
u+, u− and require u = u+ − u−, u+, u− ≥ 0. The differences of the two algorithms
in terms of CPU time and restoration quality are given in the next two paragraphs.
Second, the LAD algorithm uses the Neumann boundary conditions instead of the
periodic boundary conditions that FTVd uses. The influence of boundary conditions
on image quality was also negligible because the sizes of the tested images are much
larger than that of the tested blurring kernels. For more details about boundary
conditions, see [36].

Based on the above discussions, we set p = 4 and q = 7 in LAD and stopped
LAD once the normalized duality gap was less than 5× 10−4. In this experiment, we
applied the Gaussian blur of the size 7× 7 and standard deviation 5. For LAD, after
we generated the blurry image by MATLAB function “imfilter” with symmetric
boundary conditions, we corrupted 40% to 80% of pixels of the blurry image at random
with salt-and-pepper noise. For FTVd, we first generated the blurry image with
periodic boundary conditions and then corrupted the blurry image by exactly the
same salt-and-pepper noise recorded when generating noise for LAD. The original
blurry and noisy Cameraman images and their restorations by LAD and FTVd are
given in Figure 4.1, where the values of μ, CPU time, and SNRs of the restorations
are also given. Since the blurry and noisy images of LAD and FTVd have no visible
difference, we plotted only the blurry and noisy images for FTVd in Figure 4.1.

As can be seen from Figure 4.1, the results of FTVd and LAD have similar
quality in all the test cases as the two methods essentially solve the same TVL1 model
(besides the nonnegativity used in LAD). Clearly, the restoration quality of both
deteriorated as the noise level increased, and both were unable to produce acceptable
restoration quality at the 80% noise level. Since the quality of restoration is ultimately
determined by the underlying TVL1 model, these experiments have reaffirmed an
intrinsic limitation of the TVL1 model; that is, the model would work poorly once
the percentage of the corrupted pixels reached a certain high level.
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Fig. 4.1. First column from top to bottom: original Cameraman image, blurred image by
Gaussian kernel of size 7 × 7 and standard deviation 5 with the Neumann boundary conditions
(SNR: 9.69dB), blurred image by the same kernel with periodic boundary conditions (SNR: 9.57dB),
respectively; second to fourth column, top row: the blurry image is corrupted by 40%, 60%, and 80%
salt-and-pepper noise, respectively; second to fourth column, middle row: results recovered by LAD
method (CPU time: 491, 493, 905 seconds; SNRs: 14.47, 11.78, 8.08dB); second to fourth column,
bottom row: results recovered by FTVd (ε ≡ 0.001 in (2.16); μ = 36, 10, 2; CPU time: 31, 30, 32
seconds; SNRs: 14.81, 11.62, 8.09dB, respectively).

By comparing the CPU times used by the two methods, we conclude that FTVd
is much faster than LAD. In these tests, we set p = 4 and q = 7 in LAD because we
tried with a great deal of effort and failed to run LAD to the prescribed accuracy with
smaller p and q due to numerical singularity in FBIP that caused the MATLAB pcg
code to exit without producing an approximate solution. When the kernel size became
larger, the linear system that LAD needed to solve became even more ill-conditioned.
As a result, the diagonal preconditioners used in [26] were not sufficient to greatly
improve the ill-conditioning of the linear systems, and denser FBIPs became essential.
As pointed out before, the computation of each FBIP was O(p3q3n2), which increases
quickly with p and q. In comparison, the performance of FTVd is not affected by
the increase of the kernel size because it avoids solving any linear systems iteratively.
To illustrate this, we applied the Gaussian kernel of the size 15 × 15 and standard
deviation 9 to the Cameraman image and then corrupted the blurry image by 60%
salt-and-pepper noise. The blurry image, blurry and noisy image, and recovered
result by FTVd are shown in Figure 4.2, from which we see that the CPU time did
not increase. However, we were unable to solve (4.1) to the prescribed accuracy by
setting p = 4 and q = 7 in LAD for this blur. We tried larger p and q values without
success because for larger (p, q) LAD simply took too much memory and CPU time
to run on the aforementioned laptop computer.
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Fig. 4.2. Left: Cameraman image blurred by Gaussian kernel of size 15 × 15 and standard
deviation 9, SNR: 7.23dB; middle: the blurred image is corrupted by 60% salt-and-pepper noise;
right: result recovered by FTVd (ε = 0.001 in (2.16); μ = 10, CPU time: 26 seconds, SNR:
10.38dB).

4.3. Comparison with the two-phase method in [9]. In this subsection,
we compare FTVd with the two-phase method recently proposed in [9]. In the two-
phase method, locations of impulsive noise are detected using certain median-type
filters in the first phase. Then, the original image is recovered through a variational
framework in the second phase where only a part of the data, estimated as noise-free,
is used. Specifically, the authors of [9] use the adaptive median filter [30] to detect
salt-and-pepper noise and the adaptive center-weighted median filter [32] to detect
random-valued impulse noise.

Let Ω ⊂ R
2 be a region on which the original image ū is defined and U ⊂ Ω be a

subset on which the observed data have been estimated to be noise-free. In the second
phase, the two-phase method approximately solves the following variational model:

min
u,Γ

β

∫
Ω\Γ
‖∇u‖2dx + α

∫
Γ

dσ +
∫
U
|κ ∗ u− f |dx,(4.2)

where α, β > 0 are regularization parameters, and Γ ⊂ Ω represents edges in an image.
The first two terms in the objective function of (4.2) are known as the Mamford–Shah
(MS) regularizer [35] and the last term fits the noise-free data. Since MS regularization
treats smooth regions and object contours separately, it is known to preserve edges
well. In the literature, the MS regularizer is usually approximated by a sequence of
functionals in the framework of Γ-convergence (see, for example, [20, 24]). In [9], the
authors approximated (4.2) by

min
u,v

β

∫
Ω

v2‖∇u‖2dx + α

∫
Ω

(
ε‖∇v‖2 +

(v − 1)2

4ε

)
dx(4.3)

+
∫
U

√
(κ ∗ u− f)2 + ηdx,

where ε, η > 0 are small parameters and v : Ω → R represents the contours of u.
Then a solution to (4.3) was obtained via alternately solving the two equations in
the Euler–Lagrange system of (4.3), while one of the two variables is fixed. We note
that the two-phase method can handle impulsive plus Gaussian noise by incorporating
another fidelity term in the second phase.

Since the model of the two-phase method in [9] is significantly different from the
pure variation model (1.3) that we solve, we shall compare both restoration quality
and speed using the Cameraman image. In the comparison, the image was blurred by
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Fig. 4.3. First column from top to bottom: original Cameraman image, blurred image by out-
of-focus kernel of radius 7 with the Neumann boundary conditions (SNR: 7.77dB), blurred image
by the same kernel with periodic boundary conditions (SNR: 7.64dB), respectively; second to fourth
column, top row: the blurry image is corrupted by 25%, 40%, 55% random-valued noise, respectively;
second to fourth column, middle row: results recovered by the two-phase method (parameters in
(4.3): η ≡ 10−4, (α, β, ε) = (1, 1, 0.5) × 10−3, (2, 2, 0.5) × 10−3, (5, 5, 0.1) × 10−3, SNRs: 15.46,
14.04, 10.41dB, CPU: 1315, 1434, 1396 seconds, respectively); second to fourth column, bottom row:
results recovered by FTVd (ε = 0.001 in (2.16), μ : 150, 45, 10, SNRs: 18.17, 14.00, 9.33dB, CPU
time: 54, 47, 41 seconds, respectively).

an out-of-focus kernel of radius 7 and then corrupted by 25%, 40%, and 55% random-
valued impulsive noise. In the code from the authors of [9], Neumann boundary
conditions are used while FTVd uses periodic boundary conditions. The original
blurred images with two types of boundary conditions and the recovered results by
both methods are given in Figure 4.3. Since the difference in boundary conditions
does not generate visible differences in resulting blurry and noisy images, we only give
the ones corresponding to the periodic boundary conditions in the first row of Figure
4.3. For the two-phase method, we used the exactly same parameter values as those
used in [9]. These parameter values are given in the caption of Figure 4.3 (see the
expression in (4.3) for the parameters involved), along with parameter values used by
FTVd. The CPU time used by both methods and SNRs of the restorations is also
given in the caption of Figure 4.3.

As can be seen from Figure 4.3, FTVd gives better restoration quality when
the corruption of impulsive noise is relatively low at 25%; the two-phase method
gives much better quality when the noise level becomes high at 55%, while their
performances, qualitywise, are about even when the noise is at the 40% level. On
the other hand, in terms of restoration speed, FTVd is always faster, by more than
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one order of magnitude on this 256 by 256 image, than the two-phase method as
implemented in [9].

It should be intuitively clear that the robustness of the two-phase method with
respect to high level impulsive noise is the result of detecting and removing corrupted
pixels done in the first phase. The exclusion of these corrupted pixels from the second
phase—the restoration phase—makes it possible to produce cleaner restored images.
On the other hand, the TVL1 model (1.3) includes all corrupted pixels, which can
greatly affect the restoration process when the percentage of corrupted data is too
high.

The fast speed of FTVd comes mainly from its low-complexity iterations, con-
sisting of shrinkage, FFTs, and finite differences. The method also has a reasonable
convergence rate. On the other hand, the two-phase method requires solving large
and ill-conditioned linear systems of equations at each iteration.

We also compared the two methods with different image sizes and blurring kernels.
As the image size increases, the speed of the two-phase method (as implemented in
[9]) slows down quickly, while FTVd slows down at a much more moderate rate.
Furthermore, the speed of FTVd is not affected by the increase of the blurring kernel
size, while larger kernel sizes increase the degree of ill conditioning of the linear systems
solved by the two-phase method.

4.4. Color image results. In this subsection, we present recovery results for
color images by FTVd. We first blurred the color image of the rose by cross-channel
blurring described below and then corrupted 40% to 60% of its pixels at random by
random-valued noise. Let (A, hsize) denote the average blur of the size hsize, (G,
hsize, sigma) the Gaussian blur of the size hsize and standard deviation sigma, and
(M, len, theta) the motion blur with motion length len and angle theta. We chose
a “diagonally dominant” cross-channel blurring kernel:

(4.4)

⎡
⎣ Hrr Hrg Hrb

Hgr Hgg Hgb

Hbr Hbg Hbb

⎤
⎦

=

⎡
⎣ 0.8 · (A, 9) 0.1 · (A, 9) 0.1 · (A, 9)

0.15 · (G, 11, 5) 0.7 · (G, 11, 5) 0.15 · (G, 11, 5)
0.2 · (M, 21, 135) 0.2 · (M, 21, 135) 0.6 · (M, 21, 135)

⎤
⎦ ,

where Hσ1σ2 defines within-channel blurring for σ1 = σ2 and cross-channel blurring
for σ1 	= σ2. Considering that within-channel blurs are usually stronger than cross-
channel ones, we assigned larger weights to the within-channel blurs. Similar methods
for choosing kernel weights are used in the literature; see, e.g., [25, 27]. We note that
the types, locations, and kernel size appear to have little influence on the efficiency
of FTVd. Furthermore, our algorithm converges well as long as Assumption 1 is
not violated; see [51] for more discussions. The blurry and noisy images and their
restorations from FTVd are given in Figure 4.4 along with the values of μ, CPU time,
and SNRs.

Generally, it is more difficult to remove random-valued noise than salt-and-pepper
noise because the former has a wider range of intensity values. As can be seen from
Figure 4.4, the restored images are cleaner when the amount or random noise is
smaller. The required CPU times are significantly longer than those reported for the
grayscale image in Figures 4.1, 4.2, and 4.3 because the per-iteration computational
cost has increased significantly from deblurring single-channel images to multichannel
ones.
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Fig. 4.4. First column: on the top is the original rose image and on the bottom is the blurred
image by the kernel given in (4.4) (SNR: 8.15dB). Second to fourth column: the blurry image is
corrupted by 40%, 50%, and 60% random-valued noise (top row); results recovered by FTVd (bottom
row from left to right: ε ≡ 0.005 in (2.16); μ = 8, 4, 2; CPU time: 177, 226, and 209 seconds; SNRs:
16.43, 14.36, and 10.56 dB, respectively).

4.5. Summary. In the proposed Algorithm 1, there are two steps at each it-
eration. The first step computes w and z by shrinkages ((2.1) and (2.2)), and the
second solves (2.5) for u by FFTs and block Gaussian elimination (for multichannel
images). The shrinkage operations in the first step have a linear complexity in terms
of n2. Therefore, the main computational work lies in the second step. For grayscale
images where m = 1, a total number of 2 FFTs (including 1 inverse FFT) are needed
to solve (2.5), while no Gaussian elimination is necessary. For color images where
m = 3, a total number of 6 FFTs (including 3 inverse FFTs) are needed to solve
(2.5), plus about 18n2 arithmetic operations are required by the block Gaussian elim-
ination. If higher-order derivatives are used in regularization, the required number
of finite differences would increase, but not that of FFTs. Upon profiling our code
on restoring color images, we observed that about 40% of the total CPU time was
spent on Gaussian elimination and checking stopping conditions, while the rest was
spent on FFTs and other calculations. The CPU time of FTVd changes little when
the kernel size varies and increases at a moderate rate as the image size increases.

In summary, our numerical results have shown that when noise level is high, the
two-phase method can deliver better restoration quality than FTVd can, while in all
cases FTVd has a much faster restoration speed.

5. Concluding remarks. An alternating minimization algorithm is proposed
for solving the TVL1-like problem (1.4). The algorithm is applicable to both the
isotropic and anisotropic TV discretizations, and has finite convergence for some aux-
iliary variables and a q-linear convergence rate for the rest. At each iteration, the
total computational cost is dominated by the costs of a number of FFTs and a block
Gaussian elimination. Our numerical results show that the algorithm is efficient and
stable for solving the TVL1 model (1.3). For grayscale images and a relatively small
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kernel size, our algorithm is already over an order of magnitude faster than the LAD
algorithm (as implemented in [26]), previously regarded as an efficient algorithm, and
the advantage further widens as the kernel size increases.

Our numerical results show that during deblurring, the algorithm is capable of
removing a considerable amount of impulsive noise that corrupts up to 60% of the
pixels. However, with higher levels of impulsive noise, the underlying TVL1 model
(1.3) is unable to produce high quality restorations due to the fact that all corrupted
pixels are included in the fidelity term of the model (1.3). This scheme of including all
data allows us to efficiently solve (2.5) by FFTs, but unfortunately also puts a limit
on the percentage of corrupted pixels that can be effectively removed. On the other
hand, removing corrupted pixels from a restoration model, as is done in the two-phase
method, can enhance restoration quality, but the resulting coefficient matrices lose
the block circulant structure so that fast transforms cannot be directly applied to the
involved linear systems.

The splitting and alternating minimization approaches used in this paper have
been successfully applied to a number of different models, such as the TVL2 model
[50] and its multichannel extension [51]. More recently, this technique has also been
extended to TV-based image reconstruction from incomplete Fourier data [52] that
may find applications in magnetic resonance imaging. In all these cases, the result-
ing algorithms achieve their good performance from the stability and efficiency of
shrinkage and FFT that constitute the main computations of these algorithms. The
development of a fast algorithm for deconvolution that is built on shrinkage and FFT
and can handle partial observation data (excluding corrupted data as in the second
stage of the two-phase method in [9]) is certainly a useful topic for further research.
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