

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. IMAGING SCIENCES c© 2009 Society for Industrial and Applied Mathematics
Vol. 2, No. 2, pp. 569–592

A Fast Algorithm for Edge-Preserving Variational
Multichannel Image Restoration∗

Junfeng Yang†, Wotao Yin‡, Yin Zhang‡, and Yilun Wang‡

Abstract. Variational models with �1-norm based regularization, in particular total variation (TV) and its
variants, have long been known to offer superior image restoration quality, but processing speed
remained a bottleneck, preventing their widespread use in the practice of color image processing. In
this paper, by extending the grayscale image deblurring algorithm proposed in [Y. Wang, J. Yang,
W. Yin, and Y. Zhang, SIAM J. Imaging Sci., 1 (2008), pp. 248–272], we construct a simple and effi-
cient algorithm for multichannel image deblurring and denoising, applicable to both within-channel
and cross-channel blurs in the presence of additive Gaussian noise. The algorithm restores an image
by minimizing an energy function consisting of an �2-norm fidelity term and a regularization term
that can be either TV, weighted TV, or regularization functions based on higher-order derivatives.
Specifically, we use a multichannel extension of the classic TV regularizer (MTV) and derive our
algorithm from an extended half-quadratic transform of Geman and Yang [IEEE Trans. Image Pro-
cess., 4 (1995), pp. 932–946]. For three-channel color images, the per-iteration computation of this
algorithm is dominated by six fast Fourier transforms. The convergence results in [Y. Wang, J. Yang,
W. Yin, and Y. Zhang, SIAM J. Imaging Sci., 1 (2008), pp. 248–272] for single-channel images, in-
cluding global convergence with a strong q-linear rate and finite convergence for some quantities, are
extended to this algorithm. We present numerical results including images recovered from various
types of blurs, comparisons between our results and those obtained from the deblurring functions in
MATLAB’s Image Processing Toolbox, as well as images recovered by our algorithm using weighted
MTV and higher-order regularization. Our numerical results indicate that the processing speed, as
attained by the proposed algorithm, of variational models with TV-like regularization can be made
comparable to that of less sophisticated but widely used methods for color image restoration.

Key words. half-quadratic, cross-channel, image deblurring, total variation, fast Fourier transform

AMS subject classifications. 68U10, 65J22, 65K10, 65T50, 90C25

DOI. 10.1137/080730421

1. Introduction. The multichannel (e.g., color) image restoration problem has recently
attracted much attention in the imaging community (cf. [4, 16, 40, 24, 15]). In this paper, we
study an alternating minimization algorithm for recovering multichannel images from their
blurry and noisy observations.

∗Received by the editors July 17, 2008; accepted for publication (in revised form) January 20, 2009; published
electronically May 6, 2009.

http://www.siam.org/journals/siims/2-2/73042.html
†Department of Mathematics, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu Province, 210093, People’s

Republic of China (jfyang2992@gmail.com). This author’s work was supported by the Chinese Scholarship Council
during his visit to Rice University.

‡Department of Computational and Applied Mathematics, Rice University, 6100 Main Street, MS-134, Houston,
TX 77005 (wotao.yin@rice.edu, yin.zhang@rice.edu, yilun.wang@rice.edu). The work of the second author was
supported in part by NSF CAREER grant DMS-0748839 and ONR grant N00014-08-1-1101. The work of the third
author was supported in part by NSF grant DMS-0811188 and ONR grant N00014-08-1-1101. The work of the
fourth author was supported by NSF CAREER grant DMS-0748839.

569

http://www.siam.org/journals/siims/2-2/73042.html
mailto:jfyang2992@gmail.com
mailto:wotao.yin@rice.edu
mailto:yin.zhang@rice.edu
mailto:yilun.wang@rice.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

570 JUNFENG YANG, WOTAO YIN, YIN ZHANG, AND YILUN WANG

Blurs in a multichannel image can be more complicated than those in a single-channel (e.g.,
grayscale) image because they can exist either within or across channels. In this paper, we con-
sider both within- and cross-channel blurs. We assume that the underlying images have square
domains and let an n× n image with m channels be denoted by ū = [ū(1); . . . ; ū(m)] ∈ Rmn2

,
where ū(j) ∈ Rn2

represents the jth channel for j = 1, . . . ,m, and for any two vectors v1, v2,
notation (v1; v2) represents the vector formed by stacking v1 on top of v2. An observation of
ū is

(1.1) f = Kū+ ω,

where f ∈ Rmn2
has the same size and number of channels as ū, ω represents the additive

noise, and K is a blurring operator in the form of

(1.2) K =

⎡
⎢⎢⎢⎣
K11 K12 · · · K1m

K21 K22 · · · K2m
...

...
. . .

...
Km1 Km2 · · · Kmm

⎤
⎥⎥⎥⎦ ∈ Rmn2×mn2

,

where Kij ∈ Rn2×n2
, each diagonal submatrix Kii defines the blurring operator within the ith

channel, and each off-diagonal matrix Kij, i �= j, defines how the jth channel affects the ith
channel.

It is well known that recovering ū from f by inverting (1.1) is an ill-posed problem because
the solution is highly sensitive to the noise ω. To stabilize the recovery of ū, one must utilize
some prior information. In such a stabilization scheme, ū is obtained as the solution of

(1.3) min
u

Φreg(u) + μΦfid(u, f),

where in the objective function, Φreg(u) regularizes the solution by enforcing certain prior
constraints on ū, Φfid(u, f) measures the violation of the relation between u and its observation
f (e.g., (1.1)), and μ is a positive constant that weighs the two terms in the minimization.
Traditional regularization techniques such as the Tikhonov regularization [41] and the total
variation regularization [33] have been carefully studied for grayscale images. In the literature,
for the Gaussian noise, the common fidelity term used is

(1.4) Φfid(u, f) =
1
2
‖Ku− f‖2

2

corresponding to the maximum likelihood estimation of ū. For impulsive noise, e.g., the salt-
and-pepper noise, the common fidelity term is based on the 1-norm (cf. [1, 9, 26]) instead of
the square of the 2-norm as in (1.4). This paper studies the case in which ω is Gaussian and
the data fidelity term Φreg(u, f) is given by (1.4).

In what follows, we give a brief review of the total variation regularization, summarize the
contributions of our work, and then describe the organization of this paper.

1.1. Total variation regularization. Among all regularization techniques, the total vari-
ation regularization, first introduced in [33], is well known for preserving discontinuities in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR MULTICHANNEL IMAGE RESTORATION 571

recovered images. Let Ω be a square region in R2. The total variation (TV) of a grayscale
image u(x) : Ω → [0, 1] can be defined as

(1.5) TV(u) =
∫

Ω
‖∇u‖dx,

whenever the gradient ∇u exists, where ‖ · ‖ is a norm in R2. For more general functions,
the TV is defined using a dual formulation (cf. [47]), which is equivalent to (1.5) when u
is differentiable. In practical computation, a discrete form of (1.5) is always used, given by
TV(u) =

∑
i ‖Diu‖ in which u ∈ Rn2

represents an n×n grayscale image, Diu ∈ R2 represents
certain first-order finite differences of u at pixel i in horizontal and vertical directions, and the
summation is taken over all pixels. If ‖ · ‖ is the 2-norm, (1.5) defines an isotropic TV, which
means that (1.5) is invariant to rotation, reflection, and changing of positions of an image.
If ‖ · ‖ is the 1-norm, (1.5) defines an anisotropic TV. Usually, the isotropic discretization is
preferred over any anisotropic ones. We use the first-order forward finite differences and the
2-norm throughout this paper, and our algorithm can be easily extended for an anisotropic
discretization of TV. Various methods based on TV regularization have been proposed and
studied for recovering grayscale images; see, e.g., [42, 8, 10, 14].

Since many TV based algorithms have been proved effective for reducing noise and blur
without smearing sharp edges for grayscale images, it is natural to extend the TV regulariza-
tion to multichannel images. Several approaches for this purpose have been proposed. Among
them, the simplest applies the TV regularization to each channel independently. In addition,
the authors of [34, 35, 36] extended TV to deal with vector-valued images based on anisotropic
diffusion and geometric active contours. Also in [3], the authors proposed the so-called color
TV (see (2.2) below) and used an explicit time marching scheme similar to that in [33, 32] to
minimize it. In this paper, we use a different extension of the single-channel TV, called MTV
(see (2.1) below and [5, 6, 11, 13, 39]), which preserves the desirable properties of (1.5) for
multichannel image reconstruction and permits very efficient solution of (1.3).

1.2. Contributions. Over the last two decades or so, variational models with �1-norm
based regularization, such as TV and its variants, have been extensively studied and shown to
offer sound mathematical properties and superior image restoration quality. An obstacle that
has prevented these models from becoming practically viable technologies in color image pro-
cessing has been the lack of adequate processing speed. The main contribution of this paper is
the construction and implementation of an efficient and versatile algorithm for multichannel
TV-like deblurring and denoising. In addition to TV, this algorithm can also effectively handle
weighted TV, as well as high-order regularization terms. Under the periodic boundary con-
dition, the algorithm takes advantages of fast operations such as high-dimensional shrinkage
and the fast Fourier transform (FFT).

The proposed algorithm is an extension to the grayscale image restoration algorithm pro-
posed in [43]. The strong convergence results in [43] for single-channel images are also extended
to the proposed multichannel algorithm. We provide a detailed derivation of the algorithm
based on the classic half-quadratic transform of Geman and Yang [18]. Although such exten-
sions and derivation themselves are rather straightforward mathematically, the construction,
implementation, and experimentation of the proposed algorithm constitute, in our view, an

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

572 JUNFENG YANG, WOTAO YIN, YIN ZHANG, AND YILUN WANG

important and long-overdue step towards achieving an adequate processing speed necessary
for edge-preserving variational color image restoration models to become practically viable
technologies.

Our algorithm was implemented in MATLAB. The numerical results include images
recovered from various types of blurs, comparisons between our images and those obtained
from the deblurring functions in MATLAB’s Image Processing Toolbox, as well as images
recovered using weighted MTV and higher-order regularization. We chose to compare with
MATLAB’s Image Processing Toolbox because our search failed to locate a well-documented
and stable academic code for color image processing based on TV-like regularization.

1.3. Organization. The paper is organized as follows. In section 2, we focus on an exten-
sion of TV to vector-valued functions in general and discrete multichannel images in particular,
and present the discrete formulation of (1.3) for deblurring. We also compare this extended
TV with the “color TV” proposed in [3]. In section 3, we apply a half-quadratic transform to
a general discrete formulation of (1.3) to derive our alternating minimization algorithm and
present its convergence properties. Numerical results, including a comparison between the
proposed algorithm and algorithms in the MATLAB Image Processing Toolbox, are presented
in section 4. In addition, this section demonstrates advantages of regularization models using
weighted TV and higher-order derivatives. Finally, concluding remarks are given in section 5.

2. Multichannel TV regularization problem. Before giving the definition of multichannel
TV, we introduce some notation. Let D(1),D(2) ∈ Rn2×n2

be the first-order forward finite
difference matrices in horizontal and vertical directions, respectively. As used in the discretized
form of (1.5), Di ∈ R2×n2

is a two-row matrix formed by stacking the ith row of D(1) on that of
D(2). As in the notation ū in (1.1), we let v = (v1; v2) � (v�1 , v�2)�, and similarly for matrices
with identical numbers of columns, e.g., D = (D(1);D(2)) � ((D(1))�, (D(2))�)�. The spectral
radius of a matrix, which is defined as the maximum magnitude of its eigenvalues, is denoted
by ρ(·). From here on, the norm ‖ · ‖ refers to the 2-norm. Additional notation will be
introduced as the paper progresses.

To present the definition of multichannel TV and compare it with the “color TV” regular-
izer (CTV) proposed in [3], we assume temporarily that u is a differentiable function defined
on a square region Ω ⊂ R2. Let u(x) = (u(1)(x); . . . ;u(m)(x)) : Ω → Rm be an m-channel
image. It is natural to generalize (1.5) to multichannel images as follows:

(2.1) MTV(u) �
∫

Ω
‖∇u‖dx =

∫
Ω

√
‖∇u(1)‖2 + · · · + ‖∇u(m)‖2dx,

where ∇u ∈ R2m applies ∇ to all m channels, namely, ∇u � (∇u(1); . . . ;∇u(m)). MTV(u) has
already been used in the literature for red-green-blue (RGB) images; see, e.g., [6, 11, 13, 39].
For the clearness of comparison, the CTV proposed in [3] is

(2.2) CTV(u) =

√(∫
Ω
‖∇u(1)‖dx

)2

+ · · · +
(∫

Ω
‖∇u(m)‖dx

)2

.

It is easy to see from (2.1) and (2.2) that both MTV and CTV preserve the two basic properties
of (1.5), namely, (i) not overly penalizing discontinuities and (ii) rotationally invariant.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR MULTICHANNEL IMAGE RESTORATION 573

Although both MTV and CTV reduce to (1.5) for single-channel images, they are different
in several aspects. First, they treat channels and pixels in different orders. While CTV
computes the TV of each channel separately and then combines them, MTV first computes
the variation at each pixel with respect to all channels and then sums the variations over
all pixels. Second, MTV and CTV have different geometric interpretations. To illustrate
this, let us assume that Ω = [a, b] ⊂ R and u(t) : Ω → Rm is a spatial curve in Rm.
Suppose each component of u(t) changes monotonically in Ω. Then, it is easy to see from
(2.2) that CTV(u) = ‖u(a) − u(b)‖, the Euclidean distance between u(a) and u(b), and
from (2.1) that MTV(u) = | ̂u(a)u(b)|, the length of the arc ̂u(a)u(b). Most importantly,
the MTV regularization problem allows a fast alternating algorithm as we will show below,
while for the CTV regularization problem the most efficient algorithm so far, to the best
of our knowledge, is the lagged diffusivity (LD) method [42], which is much slower when
the blurring kernel is relatively large (cf. [43]). At each iteration LD needs to solve a large
linear system which is usually dense and ill-conditioned; e.g., this linear system is solved by a
preconditioned conjugate gradient method in the package NUMIPAD [31]. Recently, we noted
that an iterative reweighted method was proposed in [45] which minimizes a generalized TV
functional with the �p-norm fidelity. Similarly to LD, at each iteration this method also needs
to solve a large linear system of equations iteratively, which restricts the convergence speed.
In comparison, the aforementioned alternating algorithm avoids solving such a linear system
and thus is fast. Taking into account that both MTV and CTV regularization give restoration
of similar quality (cf. [2]), we prefer MTV to CTV as a regularizer.

The discretized form of (2.1) is given by

(2.3) MTV(u) =
∑

i

‖(Im ⊗Di)u‖ =
∑

i

√
‖Diu(1)‖2 + · · · + ‖Diu(m)‖2,

where u = (u(1); . . . ;u(m)) ∈ Rmn2
, Im is the identity matrix of order m, “⊗” represents the

Kronecker product, and (Im ⊗ Di)u ∈ R2m is the forward finite difference at pixel i for all
m channels. Given f = [f (1); . . . ; f (m)] ∈ Rmn2

, which is a blurry and noisy observation, and
K = [Kk,l]mk,l=1 ∈ Rmn2×mn2

, which is a block convolution matrix, we will recover the true
image ū by solving

(2.4) min
u

∑
i

‖(Im ⊗Di)u‖ +
μ

2
‖Ku− f‖2.

For RGB images, we let m = 3 in (2.4). In section 3, we derive an alternating minimization
algorithm based on a more general, locally weighted model:

(2.5) min
u

∑
i

αi‖Giu‖ +
μ

2
‖Ku− f‖2,

where, at any pixel i, Gi ∈ Rq×mn2
for some positive integer q; αi > 0 is a local weight; and

μ > 0. Although μ can be removed in (2.5) by rescaling the objective function, we keep it
for convenience. Clearly, (2.5) reduces to (2.4) when Gi = Im ⊗Di and αi ≡ 1. It is known
that locally weighted TV can better preserve image textures (cf. [38, 37]), and higher-order
derivatives regularization can help reduce the so-called staircasing effect sometimes found with
plain TV regularization (cf. [8]). The general model (2.5) allows both features.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

574 JUNFENG YANG, WOTAO YIN, YIN ZHANG, AND YILUN WANG

3. An alternating minimization algorithm. The image-quality advantages of TV over
Tikhonov-like regularization are not without a price. The TV-like regularized problem (2.5)
is computationally more difficult to solve due to the nondifferentiability and nonlinearity of
the regularization term. Despite efforts over the years, algorithms for solving the TV-like
regularization model (2.5) are still much slower than those for solving Tikhonov-like regular-
ization models. In this section, we develop our alternating minimization algorithm based on
a half-quadratic approximation of (2.5). This algorithm makes full use of the structures of
the blurring and finite difference operators and thus is computationally highly efficient. It
significantly narrows the gap between TV-like and Tikhonov-like regularization in terms of
computational costs.

To avoid nondifferentiability caused by the regularization term in (2.5), we consider its
smooth approximation problem

(3.1) min
u
J(u) �

∑
i

αi φαi(Giu) +
μ

2
‖Ku− f‖2,

where, for α > 0 and β
 0, φα(·) : Rq → R is an approximation to ‖ · ‖ in Rq defined by

(3.2) φα(t) =

{
β
2α‖t‖2 if ‖t‖ ≤ α

β ,

‖t‖ − α
2β otherwise.

If αi is large, which hints that the underlying image is supposed to be blocky around pixel
i, (3.2) aims to regularize pixel i by quadratic function in a larger area. From the definition
of φα(·) in (3.2), problem (2.5) is closely approximated by (3.1) when β is large. We will
reformulate (3.1) as a half-quadratic problem in subsection 3.1 and propose to solve it by the
alternating minimization algorithm in subsection 3.2.

3.1. Half-quadratic formulation of (3.1). In this subsection, we transform (3.1) into
(3.12) below using the half-quadratic technique originally introduced by Geman and Yang
in [18]. Consider the following general framework of recovering an image u from its corrupted
measurements f :

(3.3) min
u

∑
i

φ(g�i u) +
μ

2
‖Ku− f‖2,

where g�i u ∈ R is a local finite difference of u, φ(g�i ·) is convex and edge-preserving, and K is
a convolution operator. Instead of solving (3.3) directly, the authors of [18] (and also of [17])
proposed to solve an equivalent problem,

(3.4) min
u,b

∑
i

(
ψ(bi) +Q(g�i u, bi)

)
+
μ

2
‖Ku− f‖2,

where Q(t, s) and ψ(s) are chosen such that Q(t, s) is quadratic in t and

(3.5) φ(t) = min
s∈R

(ψ(s) +Q(t, s)) ∀t ∈ R.

The objective function in the right-hand side of (3.5) is called “half-quadratic” because it
is quadratic in t, but not in s. The same applies to the objective function of (3.4) with

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR MULTICHANNEL IMAGE RESTORATION 575

respect to u and b. In addition, (3.4) is separable in each bi. Since (3.4) can be solved by
minimizing with respect to u and b alternately, it is important to select Q and ψ that give rise
to fast minimizations with respect to u and b, respectively and separately. For this purpose,
two forms of half-quadratic formulations have been widely studied: the multiplicative form
Q(t, s) = 1

2 t
2s from [17] and the additive form Q(t, s) = 1

2(t− s)2 from [18]. However, in the
half-quadratic model based on the multiplicative form, the computation cost is higher because
the Hessian of (3.4) with respect to u depends on b and thus may vary from one iteration to
another.

In the following, we transform (3.1) into a half-quadratic problem based on the additive
form but in a generalized manner that allows bi in (3.4) (or s in (3.5)) to be vectors. The
Hessian with respect to u of the new formulation is independent of b and has a block circulant
structure, which is important because such a matrix can be diagonalized by discrete Fourier
transforms; see, e.g., [20]. As such, for φα(t) defined in (3.2), we need a function ψα(·) :
Rq → R that satisfies

(3.6) αφα(t) = min
s∈Rq

{
αψα(s) +

β

2
‖s − t‖2

}
.

For convenience, we let

(3.7) ηα(t) =
1
2
‖t‖2 − α

β
φα(t) and ζα(s) =

α

β
ψα(s) +

1
2
‖s‖2.

Simple manipulation shows that for φα and ψα to satisfy (3.6), it is necessary and sufficient
to have ηα = ζ∗α, where ζ∗α is the convex conjugate (cf. [30]) of ζα defined as

(3.8) ζ∗α(s) = sup
t∈Rq

{
s�t − ζα(t)

}
,

which shows how to construct ψα from φα through computing ζα from ηα.
Lemma 3.1. For x ∈ Rq and A ∈ Rp×q, the subdifferential of f(x) � ‖Ax‖ is

(3.9) ∂f(x) =
{ {

A�Ax/‖Ax‖} if Ax �= 0,{
A�h : ‖h‖ ≤ 1, h ∈ Rp

}
otherwise.

The proof of Lemma 3.1 is elementary and thus omitted.
Lemma 3.2. For φα(t) defined in (3.2) and ηα(t) defined in (3.7), we have

(3.10) η∗α(s) =
α

β
‖s‖ +

1
2
‖s‖2.

Proof. According to (3.8), (3.7), and (3.2), we have

η∗α(s) = sup
t

{
s�t − ηα(t)

}
= max

{
sup

‖t‖≤α/β

{
s�t − ηα(t)

}
, sup
‖t‖>α/β

{
s�t − ηα(t)

}}

= max

{
(α/β)‖s‖, sup

‖t‖>α/β

{
s�t − (‖t‖ − α/β)2 /2

}}
.(3.11)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

576 JUNFENG YANG, WOTAO YIN, YIN ZHANG, AND YILUN WANG

If s = 0, it is obvious that η∗α(0) = 0 and (3.10) holds. In what follows, we assume s �= 0. The
inside supremum on the above is attained only if there exists some t that satisfies ‖t‖ > α/β
such that the subdifferential of its argument contains the origin, which in light of (3.9) with A
being the identity is equivalent to s = t−αt/(β‖t‖). Since s �= 0, both conditions are satisfied
by defining t = γs with γ = 1 + α/(β‖s‖). First, ‖t‖ = γ‖s‖ = ‖s‖ + α/β > α/β. Second,
from t = γs, we have s = t − αs/(β‖s‖) = t − αt/(β‖t‖), where the second equality comes
from t/‖t‖ = s/‖s‖. Plugging t = γs into the inside supremum in (3.11), we get (3.10).

Given Lemma 3.2, we are able to find ψα(·) that satisfies (3.6) in a simple way. It is
easy to see from (3.2) and (3.7) that ηα(t) is proper, continuous, and convex. Therefore, the
self-biconjugacy holds for ηα(t); i.e., (η∗α)∗ = ηα (cf. [30]). As such, the requirement (3.6)
or, equivalently, ηα = ζ∗α is fulfilled by letting ζα = η∗α. Comparing the definition of ζα(·)
with (3.10), letting ψα(s) ≡ ‖s‖ will satisfy (3.6). As such, the approximation problem (3.1)
becomes an equivalent augmented problem

(3.12) min
u,w

J (u,w) =
∑

i

{
αi‖wi‖ +

β

2
‖wi −Giu‖2

}
+
μ

2
‖Ku− f‖2,

where wj ∈ Rq, j = 1, . . . , n2, and w = [w1;w2; . . . ;wn2] ∈ Rqn2
. Although derived from the

half-quadratic framework and the theory of conjugate functions, (3.12) is simply a splitting
and penalty formulation of the original problem (2.5) which can be explained as follows. By
introducing a collection of auxiliary variables {wi : i = 1, . . . , n2}, problem (2.5) is easily
transformed into an equivalent constrained problem

(3.13) min
u,w

{∑
i

αi‖wi‖ +
μ

2
‖Ku− f‖2 : wi = Giu, i = 1, . . . , n2

}
.

By comparing (3.13) with (3.12), it is easy to see that (3.12) is nothing but a quadratic penalty
method for (3.13). Below our analysis focuses on (3.12).

3.2. Alternating minimization. Now we are ready to apply the alternating minimiza-
tion to (3.12). On the one hand, there is no interaction between different wi’s in (3.12), so
minimizing with respect to w for fixed u reduces to solving a collection of low-dimensional
problems

(3.14) min
wi∈Rq

αi‖wi‖ +
β

2
‖wi −Giu‖2, i = 1, . . . , n2.

On the other hand, minimizing with respect to u for fixed w becomes

min
u

β

2

∑
i

‖wi −Giu‖2 +
μ

2
‖Ku− f‖2,

which is a least squares problem equivalent to

(3.15)

(∑
i

G�
i Gi +

μ

β
K�K

)
u =

∑
i

G�
i wi +

μ

β
K�f.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR MULTICHANNEL IMAGE RESTORATION 577

We note that a similar splitting technique was also used in [19] where, unlike in our approach,
a continuation scheme was not used; instead, Bregman iterations (see [28, 46] for more details)
were used to obtain better approximate solutions.

To simplify analysis, we introduce some additional notation. For j = 1, . . . , q, let G(j) ∈
Rn2×mn2

be the matrix formed by staking the jth rows of G1, G2, . . . , Gn2 . Denote

(3.16) G �

⎛
⎜⎝

G(1)

...
G(q)

⎞
⎟⎠ ∈ Rqn2×mn2

and W �

⎛
⎜⎝

w�
1
...

w�
n2

⎞
⎟⎠ � [w1, w2, . . . , wq] ∈ Rn2×q;

namely, wj ∈ Rn2
is the jth column of W and formed by stacking the jth components of

w1,w2, . . . ,wn2 . Furthermore, let w = (w1; . . . ;wq) = W(:) ∈ Rqn2
be the vectorization of

W (which is just a reordering of w). Given this notation, (3.15) can be rewritten as

(3.17)
(
G�G+

μ

β
K�K

)
u =

q∑
j=1

(G(j))�wj +
μ

β
K�f = G�w +

μ

β
K�f.

In what follows, we show that the problems in (3.14) admit closed form solutions and
(3.17) can also be solved easily as long as G defined in (3.16) has certain special structures.

Lemma 3.3. For any α, β > 0 and t ∈ Rq, the minimizer of

(3.18) min
s∈Rq

α‖s‖ +
β

2
‖s − t‖2

is given by

(3.19) s(t) = max
{
‖t‖ − α

β
, 0
}

t
‖t‖ ,

where we follow the convention 0 · (0/0) = 0.
Proof. Since the objective function is strictly convex, bounded below, and coercive, prob-

lem (3.18) has unique minimizer s. According to the optimality condition for convex optimi-
zation, the subdifferential of the objective function at the minimizer should contain the origin.
In light of (3.9) with A = I, s must satisfy

(3.20)
{
αs/‖s‖ + β(s − t) = 0 if s �= 0,
β‖t‖ ≤ α otherwise.

If s �= 0, it is obvious from the first equation in (3.20) that t = γs with γ = 1 + α/(β‖s‖),
from which we have ‖t‖ = ‖s‖ + α/β and s/‖s‖ = t/‖t‖. Thus,

(3.21) s = ‖s‖ · s
‖s‖ = ‖s‖ · t

‖t‖ =
(
‖t‖ − α

β

)
t
‖t‖ .

Furthermore, s = 0 if and only if ‖t‖ ≤ α/β. Combining this with (3.21), we obtain
(3.19).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

578 JUNFENG YANG, WOTAO YIN, YIN ZHANG, AND YILUN WANG

According to Lemma 3.3, the problems in (3.14) have unique solutions given explicitly by

(3.22) wi = max
{
‖Giu‖ − αi

β
, 0
}

Giu

‖Giu‖ , i = 1, . . . , n2.

Now we show that (3.17) can also be easily solved under many circumstances. For simplic-
ity, we assume that u is an RGB color image, and the general case can be discussed similarly.
In this case, we have u = (ur;ug;ub) ∈ R3n2

and K = [Kk,l]3k,l=1 ∈ R3n2×3n2
. Also, we assume

that Gi = I3 ⊗Di ∈ R6×3n2
; namely, Giu contains only the first-order finite differences of u

at pixel i. For higher-order finite differences, the following argument also applies. Recall that
D = (D(1);D(2)) and Di is a two-row matrix formed by stacking the ith rows of D(1) and
D(2). Following the notation in (3.16), equations (3.17) reduce to

(3.23)
(
I3 ⊗ (D�D) +

μ

β
K�K

)
u = (I3 ⊗D)�w +

μ

β
K�f.

Under the periodic boundary conditions for u, D(1), D(2), Ki,j, i, j = 1, 2, 3, and their trans-
pose matrices are all block circulant (see [25], for example). Therefore, each block in the
coefficient matrix of (3.23) can be diagonalized by the two-dimensional discrete Fourier trans-
form F. Applying I3 ⊗ F to both sides of (3.23) yields
(3.24)⎡
⎢⎣ Λ11 Λ12 Λ13

Λ21 Λ22 Λ23

Λ31 Λ32 Λ33

⎤
⎥⎦
⎛
⎜⎝ F(ur)

F(ug)
F(ub)

⎞
⎟⎠ =

⎛
⎜⎝ F

[
(D(1))�w1 + (D(2))�w2

]
F
[
(D(1))�w3 + (D(2))�w4

]
F
[
(D(1))�w5 + (D(2))�w6

]
⎞
⎟⎠+

μ

β
(I3 ⊗ F)[K�f],

where Λij , i, j = 1, 2, 3, are diagonal matrices. For any M ∈ Rn2×n2
, we let F(M) = FMF−1.

It is easy to see that each Λij is a linear combination of F(D(1))∗F(D(1)), F(D(2))∗F(D(2)),
and F(Kk,l)∗F(Kp,q), k, l, p, q = 1, 2, 3, where “∗” represents conjugate transpose. Therefore,
at each iteration the block diagonalized coefficient matrix of (3.24) can be easily obtained by
combining F(D(1))∗F(D(1)), F(D(2))∗F(D(2)), and F(Kk,l)∗F(Kp,q), k, l, p, q = 1, 2, 3, which,
along with the constant vector on the right-hand side of (3.24), need to be computed only
once before the iterations. At each iteration, (3.23) is solved in three steps. First, compute the
right-hand side vector of (3.24) which mainly costs several finite differences on the auxiliary
variables and 3 FFTs. Second, solve a block diagonal system of the form (3.24) to obtain
F(uσ), for σ = r, g, b, which can be easily done by the Gaussian elimination method. Third,
apply F−1 to each F(uσ) to get the updated u. The total number of FFTs required is 6
(including 3 inverse FFTs).

Alternatively, under the Neumann boundary conditions and assuming that all the blurring
kernels are symmetric, the forward and inverse FFTs shall be replaced by the forward and
inverse discrete cosine transforms (DCTs), respectively (cf. [25]). In this case, a longer CPU
time is needed for solving (3.17) because DCT is generally 3–4 times slower than FFT in
MATLAB. In our experiments, we assumed the periodic boundary conditions and used FFTs.
We point out that when Dirichlet boundary conditions are assumed, equations (3.17) may not
be easily solved by fast transforms because in this case the coefficient matrix is usually an
ill-conditioned block Toeplitz matrix with Toeplitz blocks. For large-sized images blurred by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR MULTICHANNEL IMAGE RESTORATION 579

kernels with relatively small supports, different boundary conditions such as Dirichlet and
periodic boundary conditions lead to similar solutions of problem (2.4).

Now we are ready to formally present our algorithm. For a fixed β, (3.12) is solved by an
alternating minimization scheme given below.

Algorithm 1. Input f , K, μ > 0, β > 0, and αi > 0, i = 1, . . . , n2. Initialize u = f .
While “not converged,” Do

1) Compute w by (3.22) for given u.
2) Solve (3.17) to get u for given w.

End Do
The stopping criterion is specified in the next subsection. A practical implementation of

Algorithm 1 including the setting of parameters and a continuation scheme is presented in
section 4.

3.3. Optimality conditions and stopping criterion. Since the objective function in (3.12)
is convex, (w, u) solves (3.12) if and only if the subdifferential of the objective function at
(w, u) contains the origin. This gives rise to the following optimality conditions in light of
Lemma 3.1: {

αiwi/‖wi‖ + β(wi −Giu) = 0, i ∈ I1 � {i : wi �= 0},
β‖Giu‖ ≤ αi, i ∈ I2 � {i : wi = 0},(3.25)

βG�(Gu−w) + μK�(Ku− f) = 0.(3.26)

Our stopping criterion for Algorithm 1 is based on the optimality conditions (3.25) and (3.26).
Let

(3.27)

⎧⎨
⎩

r1(i) � (αiwi/‖wi‖)/β + wi −Giu, i ∈ I1,
r2(i) � ‖Giu‖ − αi/β, i ∈ I2,
r3 � ‖βG�(Gu− w) + μK�(Ku− f)‖/‖βG�w + μK�f‖,

where I1 and I2 are defined in (3.25). Algorithm 1 is terminated once

(3.28) Res � max
{

max
i∈I1

{‖r1(i)‖},max
i∈I2

{r2(i)}, r3
}

≤ ε

is met, where Res measures the total residual and ε > 0 is a prescribed tolerance. We note
that in practice the relative residue r3 defined in (3.27) is always quite small because we solved
(3.26) exactly by FFTs for fixed w. Combining (3.25) and (3.26) to eliminate w, we can derive

(3.29)
∑
i∈I1

αiG
�
i

Giu

‖Giu‖ +
∑
i∈I2

G�
i hi + μK�(Ku− f) = 0,

where hi � βGiu satisfies ‖hi‖ ≤ αi. Let u∗ be any solution of (2.5). Define I∗1 = {i, Giu
∗ �= 0}

and I∗2 = {1, . . . , n2} \ I∗1 . Then, from Lemma 3.1, for all i ∈ I∗2 there exist h∗i ∈ Rq satisfying
‖h∗i ‖ ≤ αi such that

(3.30)
∑
i∈I∗1

αiG
�
i

Giu
∗

‖Giu∗‖ +
∑
i∈I∗2

G�
i h

∗
i + μK�(Ku∗ − f) = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

580 JUNFENG YANG, WOTAO YIN, YIN ZHANG, AND YILUN WANG

Equation (3.29) differs from (3.30) only in the index sets over which the summations are taken.
As β increases, I1 will approach I∗1 . In subsection 3.4, we present the convergence properties
of Algorithm 1.

3.4. Convergence results. The convergence of the quadratic penalty method as the
penalty parameter goes to infinity is well known (see Theorem 17.1 in [27], for example).
That is, as β → ∞, the solution of (3.1) or (3.12) converges to that of (2.5). However, in
practice a sufficiently large value for β should be adequate. We will specify how to choose β
empirically in section 4. In this subsection, we present convergence results of Algorithm 1 for
a fixed β without proofs since these results are rather straightforward generalizations of the
results in [43] to higher dimensions. First, we present a technical assumption and necessary
notation.

Assumption 1. N (K) ∩ N (G) = {0}, where N (·) is the null space of a matrix.
Define

(3.31) M = G�G+
μ

β
K�K and T = GM−1G�.

Assumption 1 ensures that M is nonsingular, and therefore T is well defined. It is not difficult
to show that ρ(T) ≤ 1. We will make use of the following two index sets:

(3.32) L =
{
i : ‖Giu

∗‖ < αi

β

}
and E = {1, . . . , n2} \ L.

Denote wE = ((w1)E ; . . . ; (wq)E), where (wj)E is the subvector of wj with components in E.
For k, l = 1, . . . , q, let B(k,l) = G(k)M−1(G(l))� and B(k,l)

EE = [B(k,l)
i,j]i,j∈E be the minor of B(k,l)

with indices in E. From the definition of T , T = [B(k,l)]qk,l=1. Let TEE = [B(k,l)
EE]qk,l=1 be a

minor of T . Similar notation applies to (T 2)EE . Now we are ready to present the convergence
results.

Theorem 3.4 (convergence). Under Assumption 1, the sequence {(wk, uk)} generated by
Algorithm 1 from any starting point (w0, u0) converges to a solution (w∗, u∗) of (3.12).

Theorem 3.5 (finite convergence). Under Assumption 1, the sequence {(wk, uk)} generated
by Algorithm 1 from any starting point (w0, u0) satisfies wk

i = w∗
i = 0 for all i ∈ L, for all

but a finite number of iterations that does not exceed ‖w0 − w∗‖2/ω2, where

ω � min
i∈L

{
αi

β
− ‖hi(w∗)‖

}
> 0.

Theorem 3.6 (q-linear convergence). Let M and T be defined as in (3.31). Under Assump-
tion 1, the sequence {(wk, uk)} generated by Algorithm 1 satisfies

1. ‖wk+1
E − w∗

E‖ ≤√ρ((T 2)EE)‖wk
E − w∗

E‖;
2. ‖uk+1 − u∗‖M ≤√ρ(TEE)‖uk − u∗‖M

for all k sufficiently large, where ‖v‖2
M � v�Mv.

Theorem 3.6 states that Algorithm 1 converges q-linearly at a rate depending on the
spectral radii of the submatrices TEE and (T 2)EE rather than on that of the whole matrix
T . Since ρ(T) ≤ 1 and TEE is a minor of T , it holds that ρ(TEE) ≤ ρ(T) ≤ 1. Similarly,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR MULTICHANNEL IMAGE RESTORATION 581

ρ((T 2)EE) ≤ ρ(T 2) ≤ 1. As pointed out in [43], ρ(TEE) is often much smaller than ρ(T) in
practice. Since convergence results for the quadratic penalty method were typically stated in
terms of iteration matrices as a whole, our results, stated in terms of submatrices, are stronger
thanks to the sparsity in the solutions.

4. Numerical experiments. In this section, we present numerical results to show the effi-
ciency of the proposed alternating minimization algorithm in recovering multichannel images.
Specifically, we experimented with different regularization approaches on recovering several
RGB images with different blurs and noise levels. The first set of tests involved different blurs
including both within-channel and cross-channel blurs. The second set of tests involved differ-
ent regularization functions including weighted TV and measures of higher-order derivatives.

4.1. Test images, platform, and practical implementation. We tested several images
including Lena (512 × 512), Rose (303 × 250), and Sunset (338 × 460). Image Lena has
a nice mixture of flat regions, shading area, textures, and other details. Rose and Sunset
were used in weighted TV regularization and higher-order derivative regularization problems.
We implemented Algorithm 1 in MATLAB and generated blurring effects using the MATLAB
function “imfilter” with the periodic boundary conditions. The experiments were performed
under Windows Vista Premium and MATLAB v7.6 (R2008a) running on a Lenovo laptop with
an Intel Core 2 Duo CPU at 1.8 GHz and 2 GB of memory.

As is usually done, the quality of restoration is measured by the signal-to-noise ratio (SNR)

SNR � 10 ∗ log10
‖ū− E(ū)‖2

‖ū− u‖2
,

where ū is the original image, E(ū) is the mean intensity value of ū, and u is the restored
image. We tested three kinds of blurring kernels provided by MATLAB: motion blur, which
shifts image pixels linearly in a certain direction and with a fixed length; Gaussian blur, which
is rotationally symmetric Gaussian lowpass filter; and average blur, which smooths an image
by replacing the intensity value of pixel i by the average intensity value of the pixels within
a certain neighborhood centered at pixel i. For simplicity, let the motion blur with a motion
length len and an angle theta in the counterclockwise direction be denoted by M(len, theta).
Similarly, the Gaussian blur with a square support size hsize and a standard deviation sigma
is denoted by G(hsize, sigma), and the average blur with a square support size hsize by
A(hsize). For all experiments, we first rescaled the intensity values of original images to
[0, 1], then blurred them and added Gaussian noise with mean zero and different standard
deviation (std) to the blurry images. To determine a good pair of parameters in (3.12), we
fixed αi ≡ 1 and tested our code on a series of combinations of β and μ. Specially, we tested
on image Rose (which has a relatively small size) with different blurs and noise levels using
a relatively strict stopping criterion: ε = 10−3 in (3.28). Figure 1 gives the recovered SNR
results for different combinations of β and μ, where we used cross-channel blurring with the
kernels generated in three steps.

Step 1. Generate 9 kernels:

{M(11, 45),M(21, 90),M(41, 135),G(7, 5),G(9, 5),G(11, 5),A(13),A(15),A(17)} .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

582 JUNFENG YANG, WOTAO YIN, YIN ZHANG, AND YILUN WANG

0
2

4
6

8
10

0

2

4

6

x 10
5

8

10

12

14

16

18

20

22

log
2
β

Cross−channel, std=10−3

μ

S
N

R
 (

dB
)

0
2

4
6

8
10

0

5000

10000
4

6

8

10

12

14

16

log
2
β

Cross−channel, std=10−2

μ

S
N

R
 (

dB
)

Figure 1. SNR results recovered from cross-channel blurring for different β and μ. Left: std = 10−3; SNR
of the blurry and noisy image is 9.21dB. Right: std = 10−2; SNR of the blurry and noisy image is 8.96dB.

Step 2. Randomly assign the above 9 kernels to {H11,H12,H13,H21,H22,H23,H31,H32,
H33}.

Step 3. Multiply diagonal kernels by 0.8 and off-diagonal kernels by 0.1.
The left- and right-hand side plots in Figure 1 are, respectively, the SNR results with additive
noise std of 10−3 and 10−2.

As can be seen from Figure 1, in order to obtain good SNRs β does not need to be
extremely large for any fixed μ. Specifically, a β value of 27 is sufficiently large to get an SNR
that is very close to the highest one for each μ. For β ≥ 27, the SNRs remain almost constant.
For larger noise and/or within-channel blurring, similar phenomena were observed. Hence,
letting β be larger than 27 will merely increase computational cost but not solution quality.
Therefore, we set β = 27 by default in Algorithm 1.

The above approach of generating cross-channel kernels was used in all of our experiments
involving cross-channel blurs. In Step 2, randomness is introduced to avoid possible bias.
We point out that the same set of kernels generated in Step 1 may result in blurry images
of different degrees because kernels may be assigned to different cross-channel positions in
Step 2. We have observed that the performance of our algorithm is indifferent to such kernel
configurations. In our experiments presented in the following subsections, we tested kernels of
different sizes and at different locations to validate the above assertions. In Step 3, we choose
weights added to the kernels to be diagonally dominant considering the fact that within-
channel blurs are usually stronger than cross-channel blurs. Similar methods for choosing
kernel weights are used in the literature; see, e.g., [15, 16]. As a matter of fact, our algorithm
converges well for weights selected in a very broad range. The only problematic case is when
all weights assigned to the 9 kernels are equal, causing singularity of I3 ⊗D�D+ (μ/β)K�K.
To see this, let p and q be positive integers, let h ∈ Rp×q be any convolution kernel satisfying∑

i

∑
j hij = 1, where hij is the component of h at the ith row and jth column, and let

the corresponding convolution matrix be denoted by H ∈ Rn2×n2
. Then, under the periodic

boundary condition, the sum of each column of H is always 1. Since the two-dimensional

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR MULTICHANNEL IMAGE RESTORATION 583

discrete Fourier transform matrix F of order n2 × n2 satisfies F1j ≡ 1/n for j = 1, 2, . . . , n2,
it is easy to check that the (1, 1) element of the spectral decomposition FHF� is always 1.
Similarly, under the periodic boundary condition the (1, 1) element of FD(j)F� is 0, j = 1, 2.
Based on these two facts and further considering that all three kinds of kernels we tested satisfy∑

i

∑
j hij = 1, it is not difficult to verify that, when equal weights are assigned to all kernels,

the elements located at the positions (1, 1) of all Λij in (3.24) are equal, i, j = 1, 2, 3. In this
case, Assumption 1 is violated and (3.23) does not have a unique solution. Equal weights
are rarely used in image processing. When they are used in a rare case, we can overcome
nonuniqueness by seeking a least squares solution to the 3 × 3 linear subsystem in (3.24).

To accelerate convergence, we also implemented a continuation scheme for β in which β
changes from a small value step by step to the default value as the algorithm proceeds. Con-
tinuation techniques are widely used with penalty methods and, for our problem, continuation
on β is also theoretically well justified by Theorem 3.6. From the definitions of L and E, it is
likely that smaller β yield smaller E and thus fast convergence. As such, earlier subproblems
with smaller penalty parameters can be solved quickly, and the later subproblems can also be
solved relatively quickly with warm starts from previous solutions. For experimental results
on how this continuation scheme improves the overall convergence speed, see, e.g., [43, 21].
The best choice of μ depends on the noise level std. For too large values of μ, the restored
images will remain noisy. On the other hand, for too small values of μ, some fine details in the
images will get lost. In our tests with noise level std being 10−3, μ = 5× 104 seems suitable,
as can be seen from Figure 1. Thus, we set μ = 5× 104 by default for std = 10−3. For larger
noise, we first determined a good μ for the standard TV/L2 model (2.4) based on experiments
and then tested it with different regularization.

The implementation of Algorithm 1 includes two loops: the outer loop increases β from
1 to 27, and the inner loop solves (3.12) to a prescribed accuracy for each fixed β. We
simply doubled β after every outer iteration and stopped the inner iteration when Res ≤ 0.05
was satisfied in (3.28). Of course this algorithm framework can be more flexible in terms of
updating β and stopping the inner iterations, but the above simple implementation already
worked very well. Following [43], we give the name fast total variation deconvolution, or
FTVd, to Algorithm 1 with the above continuation strategy.

It is interesting to observe from Figure 1 that, compared to the blurry and noisy image,
a small β is sufficient to give a nearly optimal SNR when μ is selected appropriately. For
example, in the left plot of Figure 1 the SNR result is 17.78dB when (μ, β) = (104, 1), which
is a little lower than the highest SNR reachable (20.3dB given by (μ, β) = (5 · 104, 27)) but
much better than the SNR of the blurry and noisy image (9.21dB). Similarly, in the right
plot of Figure 1, the result 14.39dB of (μ, β) = (2 · 102, 1) is much better than the SNR of
the blurry and noisy image (8.96dB), although it is a little lower than the highest SNR (16dB
given by (μ, β) = (2 ·103, 27)). For larger noise and/or different blurs, similar phenomena were
observed. Since we increase β from 1 to a prefixed value, there will be only one outer iteration
if we set the final (target) value of β to 1. In this case, usually one or two inner iterations
are sufficient to obtain a solution of (3.12) with high accuracy. Although the resulting SNR
is a little lower, the CPU time consumed is much less in this case. Therefore, in real-time
imaging applications where speed is crucial, it is a good choice to assign β a small value with
a suitable μ.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

584 JUNFENG YANG, WOTAO YIN, YIN ZHANG, AND YILUN WANG

4.2. Comparisons with MATLAB functions. In this subsection, we compare the images
recovered by FTVd with those recovered by functions from the MATLAB Image Processing
Toolbox. We note that although there have been some discussions in the literature on color
image deconvolution based on TV regularization (see, e.g., [3, 6, 11, 13, 39]), to the best of
our knowledge there is not any released package ready to solve either (2.4) or the “color TV”
regularization problem. We noticed the recent work [5] where the authors discussed solving an
approximation problem of (2.4) based on Chambolle’s dual formulation [7] of TV. Currently,
their code is still under development and applicable only to within-channel blurring. There-
fore, we decided to compare with MATLAB deconvolution functions including “deconvreg,”
“deconvwnr,” and “deconvlucy,” which implement well-known algorithms that are frequently
used in the practice of signal and image processing.

We now review briefly the algorithms used in these solvers. For single-channel images,
the function “deconvreg” solves a discretization of a Tikhonov regularization problem of the
form

(4.1) min
u

∫
Ω

(|Δu|2 + μ|κ ∗ u− f |2) dx,
where Δ is the Laplace operator, κ is a convolution kernel, μ > 0 is a Lagrangian parameter de-
termined automatically in “deconvreg” based on noise power of the observed image, and Ω is
the domain of interest. For multichannel images, the Laplace operator is applied to each chan-
nel separately. To be robust, a certain safeguard technique is implemented in “deconvreg” to
avoid zero denominators. However, as we have observed, some of the high frequencies get lost
due to this safeguard technique when an appropriate estimation of noise power is available.
In our experiment, we removed the safeguard by providing noise power of the observed image
(std2 × n2) to “deconvreg” and obtained a better result. The function “deconvwnr” imple-
ments the well-known Wiener filter, which determines an optimal estimation of the original
image in the sense of minimizing the mean square error between the estimated image and
the true image using the correlation information between the signal and noise. Finally, the
function “deconvlucy” implements the Richardson–Lucy algorithm [29, 22], which solves a
constrained maximum likelihood problem for Poissonian noise. For details about these al-
gorithms, we refer the interested reader to [20]. Currently, these functions require identical
within-channel blurring kernels over all channels, namely, H11 = H22 = H33 ≡ H, and no
cross-channel blurs for color images. For this simple case, we tested H = G(21, 11) with
std = 10−3. The results on image Lena are given in Figure 2.

From Figure 2, the results of “deconvwnr” and “deconvlucy” have obvious ripples. The
result of “deconvreg” is better because we provided noise power to the solver, based on which
a suitable Lagrangian parameter in (4.1) was estimated. Furthermore, although some ringing
effects are still visible in the result of deconvreg, it has relatively sharp edges because we re-
moved the “safeguard,” which would rather exclude certain high frequencies. The “safeguard”
in deconvreg helps only when the noise power of the blurry and noisy images is not known.
In comparison, FTVd gave the best results in terms of both SNR and visible quality because
it regularized the image by TV. Generally, MATLAB functions are faster than FTVd because
they solve much simpler models by only several FFTs.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR MULTICHANNEL IMAGE RESTORATION 585

Original. Size: 512 × 512 Blurry&Noisy. SNR: 9.91dB deconvreg. SNR: 15.75dB, t = 3.73s

deconvwnr. SNR: 13.50dB, t = 1.22s deconvlucy. SNR: 11.84dB, t = 9.86s FTVd: SNR: 17.11dB, t = 14.59s

Figure 2. Comparison results with MATLAB deblurring functions.

4.3. Cross-channel results. In this subsection, we present the experimental results recov-
ered by FTVd from cross-channel blurred images. The cross-channel kernels were generated
in exactly the same way as described in subsection 4.1 except that the 9 kernels used here
were

{M(21, 45),M(41, 90),M(61, 135),G(11, 9),G(21, 11),G(31, 13),A(13),A(15),A(17)}.

Observe that the above blurs in all three channels are quite severe. The noise level is still
std = 10−3. To the best of our knowledge, proposed approaches in the literature for solving
both MTV and “color TV” regularization problems for color image restoration are usually
based on smoothing the TV term and linearizing corresponding Euler–Lagrangian equations;
see, e.g., [6, 11, 42]. Furthermore, most of the discussions are restricted to the within-channel
blurs to avoid costly computation; see [2, 3, 11]. Due to the lack of comparable algorithms
and codes, we present results of FTVd for cross-channel blurs without comparing them to
other approaches. The recovered Lena images are given in Figure 3.

As can be seen from Figure 3, FTVd with the default settings produced an image with an
SNR value of 20.05dB. The CPU time used for cross-channel blurring is approximately the
same as that used when the blurring is within-channel. Compared to within-channel blurs,
in this case the only additional cost is to solve a block diagonalized linear system of the form
(3.23), which is easily solved by Gaussian elimination with no fill-ins.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

586 JUNFENG YANG, WOTAO YIN, YIN ZHANG, AND YILUN WANG

Blurry&Noisy. SNR: 9.39dB FTVd: SNR: 20.05dB, t = 13.37s

Figure 3. Results recovered by FTVd from cross-channel blurring.

4.4. Weighted TV restoration results. We tested our algorithm on a weighted TV/L2

model, which enhances the reconstruction of (2.4) by better preserving sharp edges. At pixels
near color discontinuities, we penalize the relevant pixels less by assigning relatively small
weights to the corresponding terms in TV. Specifically, for RGB images we set Gi = I3 ⊗Di

and determined αi in (2.5) by

(4.2) γi =
1

1 + τ‖Giũ‖ and αi =
n2γi∑

j γj
,

where ũ is an estimate of the original image and τ > 0 is determined based on experiments.
As an empirical formula, (4.2) may be far from optimal but is sufficient for our purpose to
illustrate that FTVd can efficiently solve the weighted model (2.5). For more discussions on
how to determine local weights adaptively based on local image features, see [38, 37]. In this
test, we set std = 10−2 and μ = 103. The cross-channel kernels were generated in the same
manner as in subsection 4.1 except that the 9 kernels used here were

{M(21, 45),M(41, 90),M(61, 135),G(7, 5),G(9, 5),G(11, 5),A(13),A(15),A(17)}.
Compared with the 9 kernels used in subsection 4.3, we used Gaussian blurs of smaller sizes
because the noise level was higher. The motion and average blurs had the same sizes as those
in subsection 4.3. We solved the unweighted (original MTV) model (2.4) followed by the
weighted model (2.5) in which the local weight αi at pixel i was determined by formula (4.2)
using the solution ũ of the unweighted model and τ = 15 in this test. The results on image
Rose are given in Figure 4.

From Figure 4, the image reconstructed by the weighted TV/L2 model has both higher
SNR and better visual quality than that by the unweighted model. The little drops of water on
the flower are clearer in the weighted restoration result. When the “correct” weights were used,
namely, the weights computed by (4.2) using the original image as ũ, we obtained an image
(which was not depicted in Figure 4) with SNR being 16.72dB. Therefore, a better choice of
weights can help improve the restoration quality. We did not give CPU time used by FTVd

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR MULTICHANNEL IMAGE RESTORATION 587

Original. Size: 303 × 250 Blurry&Noisy. SNR: 8.65dB TVL2. SNR: 15.07dB WTVL2. SNR: 15.70dB

Figure 4. Numerical results of weighted TV/L2. Original (left, 303× 250). Blurry and noisy (middle left).
Results of unweighted TV/L2 (middle right). Results of weighted TV/L2 (right).

here and after because one can simply judge how fast FTVd is based on the time information
given in the previous subsections. In subsection 4.6, we discuss the convergence speed of
FTVd and how it is affected by image size, kernel size, and the Lagrangian parameter μ.

4.5. Higher-order derivative regularization. In this subsection, we present images recon-
structed by solving regularization models based on higher-order derivatives. In the literature,
there have been some discussions on higher-order regularization, e.g., [12, 23], which indicates
the effect of preventing staircasing caused by TV. We tested with the RGB image Sunset
(338 × 460) and set Gi = I3 ⊗ Di, where Di is the matrix that computes the first- and the
second-order forward finite differences at pixel i; namely, Diu

(j) ∈ R6, j = r, g, b, is the vector
consisting of the two first-order forward finite differences (approximating ux and uy, respec-
tively) and the four second-order finite differences (approximating uxx, uxy, uyx, and uyy,
respectively, where uxy = uyx) of u(j) at pixel i. Since the weighted model gives better results
than the unweighted one, we computed the weighted higher-order model, called HTV/L2. In
all, the problem we solved is

min
u

∑
i

αi‖(I3 ⊗Di)u‖ +
μ

2
‖Ku− f‖2.

In order to make the staircasing effect of the TV model visible, in this test we used even
larger additive noise with std = 0.1. On the other hand, to maintain a good recovery quality,
we chose to use smaller sizes for blurring kernels. The 9 kernels used in this experiment were

{M(3, 0),M(3, 0),M(3, 0),G(3, 0.5),G(3, 0.5),G(3, 0.5),A(3),A(3),A(3)}.
The weights were generated according to (4.2) using the original image ũ. We set μ = 12.5
and τ = 15. The results on image Sunset are given in Figure 5.

Comparing the middle two images in Figure 5, the right-hand image produced by the
HTV/L2 model has cleaner sky and less staircasing in the clouds. The reduction of staircasing
effects can be seen by comparing the two zoom-in images at the bottom of Figure 5.

4.6. Summary and a note. In the framework of Algorithm 1, there are two steps at each
iteration. The first step applies the weighted shrinkage operation in (3.22) and has a linear

jy
高亮

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

588 JUNFENG YANG, WOTAO YIN, YIN ZHANG, AND YILUN WANG

Original. Size: 338 × 460 Blurry&Noisy. SNR: 7.23dB

Weighted TVL2. SNR: 16.89dB Weighted HTVL2. SNR: 17.27dB

Zoom in Weighted TVL2. Zoom in Weighted HTVL2.

Figure 5. Numerical results of weighted higher-order regularization. Original (upper left). Blurry and
noisy (upper right). Weighted TV/L2 result (middle left). Weighted higher-order result (middle right). Zoom-
in results of weighted TV/L2 (bottom left) and HTV/L2 (bottom right).

computational complexity. The second step solves a system of linear equations by calling the
FFT and Gaussian elimination. The computational cost of Gaussian elimination in solving
block diagonalized equations such as (3.24) is very small compared with that of FFTs since
no fillings occur and no pivoting is necessary. Therefore, the per-iteration computation cost
of Algorithm 1 is dominated by that of the FFTs, each costing O(n2 log n). The remaining

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR MULTICHANNEL IMAGE RESTORATION 589

question is, What is the total number of inner iterations needed for Algorithm 1 to attain a
required accuracy and how does this number vary with the image size? In our experiments, this
number for the current implementation of FTVd using the default parameters is almost always
around 12. For each β > 1, since Algorithm 1 has a good starting point from the previous
outer iteration, it only takes 1 or 2 inner iterations on average to reach the prescribed accuracy
(Res ≤ 0.05). Given that 6 FFTs are required at each inner iteration, the total number of FFTs
taken by FTVd is around 80 for MTV regularized problems. If higher-order derivatives are
involved in regularization, more computational work is needed on computing the right-hand
side vectors in (3.23), which are mainly several higher-order finite differences of additional
auxiliary vectors, but no more FFTs are needed. Furthermore, since Algorithm 1 solves u-
subproblems almost exactly and does not depend on any iterative solvers, it is numerically
stable and insensitive to ill-conditioning.

Now we discuss several factors that may affect the convergence speed of FTVd. First, it
is obvious that the CPU time consumed by FTVd is longer for recovering larger-sized images.
However, since FTVd relies on the FFT and operations with linear complexities such as finite
difference, the CPU time increases moderately with the image size. Second, for fixed other
factors such as the image size and μ, the speed of FTVd hardly changes with the kernel size
(though recovery quality clearly depends on the kernel size); see [43] for more details. Finally,
just like all other deconvolution algorithms, FTVd slows down when μ decreases. To make
this clear, we solved (2.4) with different μ values. We blurred image Rose with the same cross-
channel kernels as those in subsection 4.3 and added Gaussian noise with different noise levels
to the blurry image. Although the total number of iterations varies with the continuation
strategy and inner stopping criteria, we are able to get a general idea of how the convergence
speed varies with μ by testing FTVd with the settings given in subsection 4.1. Specifically, we
initialized β to be 1 and doubled it to 27, and for each fixed β we stopped the inner iterations
by (3.28). The results on iteration numbers and SNRs of the recovered images are given in
Table 1.

Table 1
Test results on convergence speed with different μ.

(μ, std2) (5 · 104, 10−6) (104, 10−5) (103, 10−4) (102, 10−3) (25, 10−2)

ε Iter/SNR Iter/SNR Iter/SNR Iter/SNR Iter/SNR

10−2 36/17.71 38/16.06 45/14.39 29/12.68 20/11.61

10−3 150/17.81 198/16.19 289/14.52 360/12.90 322/11.84

10−4 646/17.82 812/16.19 1849/14.53 2777/12.90 3624/11.82

As can be seen from Table 1, for each fixed μ the total iteration numbers used by FTVd
increase with the increase of accuracy. However, the SNR results from ε = 10−4 have little
improvement compared with those from ε = 10−2. When high accuracy is used, say ε = 10−4,
more iterations are required for smaller μ because problem (2.4) generally becomes more
difficult when μ gets smaller. However, in practice it is generally sufficient to let ε be 10−3 or
even 10−2 because image quality hardly improves by requiring higher accuracy. In these two
cases, more iterations seems to occur in the middle range of μ from our limited experiments;
see Table 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

590 JUNFENG YANG, WOTAO YIN, YIN ZHANG, AND YILUN WANG

Recently, a new splitting algorithm was proposed in [44], which also solves (2.4). The
augmented problem formed in [44] can be written in the form of

(4.3) min
u

∑
i

‖(I3 ⊗Di)v‖ + α‖v − u‖2 +
μ

2
‖Ku− f‖2,

and is solved by alternating minimizations with respect to u and v. For a fixed v, the minimi-
zation with respect to u involves 6 FFTs. However, for a fixed u, the minimization problem
with respect to v is a TV denoising problem that does not have a closed-form solution. In [44],
the TV denoising problem is solved iteratively by an extended Chambolle’s projection algo-
rithm [7]. While the per-iteration computational complexity of our method is dominated by
6 FFTs, that of [44] is dominated by the cost of solving a TV denoising problem in addition
to the 6 FFTs. According to the reported numerical results in [44], their algorithm appears
to require at least as many outer iterations as ours.

5. Concluding remarks. This paper is an extension to our recent work [43] on single-
channel image restoration. We derived, analyzed, implemented, and tested an alternating
minimization algorithm for deblurring multichannel (color) images. The algorithm is designed
to solve a general variational model where the blurs can take place both within and across
channels, and the edge-preserving regularization terms can be locally weighted and use either
first-order or higher-order derivatives of images, including TV regularization as a special case.

The proposed algorithm possesses strong convergence properties and, more importantly,
is practically efficient as the result of exploiting problem structures to enable the use of multi-
dimensional shrinkage and fast transforms in solving subproblems. Our numerical experiments
confirm that, with the help of a continuation scheme, a simple MATLAB implementation of
our algorithm already achieves a remarkable practical performance.

Processing speed had long been a chief obstacle preventing edge-preserving variational
models from being widely used in the practice of color image processing. The construction,
implementation, and experimentation of the proposed algorithm constitute, in our view, a nec-
essary step towards making edge-preserving variational models practically viable technologies
in color image restoration.

Acknowledgment. We are grateful to three anonymous referees for their many valuable
comments and suggestions that have helped improve the paper.

REFERENCES

[1] S. Alliney, Digital filters as absolute norm regularizers, IEEE Trans. Signal Process., 40 (1992), pp.
1548–1562.

[2] L. Bar, A. Brook, N. Sochen, and N. Kiryati, Deblurring of color images corrupted by impulsive
noise, IEEE Trans. Image Process., 16 (2007), pp. 1101–1110.

[3] P. Blomgren and T. F. Chan, Color TV: Total variation methods for restoration of vector-valued
images, IEEE Trans. Image Process., 7 (1998), pp. 304–309.

[4] K. Boo and N. K. Bose, Multispectral image restoration with multisensors, IEEE Trans. Geosci. Remote
Sensing, 35 (1997), pp. 1160–1170.

[5] X. Bresson and T. F. Chan, Fast Minimization of the Vectorial Total Variation Norm and Applications
to Color Image Processing, UCLA CAM Report 07–25, University of California, Los Angeles, CA,
2007.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR MULTICHANNEL IMAGE RESTORATION 591

[6] A. Brook, R. Kimmel, and N. Sochen, Variational restoration and edge detection for color images, J.
Math. Imaging Vision, 18 (2003), pp. 247–268.

[7] A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision,
20 (2004), pp. 89–97.

[8] A. Chambolle and P. L. Lions, Image recovery via total variation minimization and related problems,
Numer. Math., 76 (1997), pp. 167–188.

[9] T. F. Chan and S. Esedoḡlu, Aspects of total variation regularized L1 function approximation, SIAM
J. Appl. Math., 65 (2005), pp. 1817–1837.

[10] T. F. Chan, S. Esedoglu, F. Park, and A. Yip, Recent developments in total variation image restora-
tion, in Handbook of Mathematical Models in Computer Vision, Springer, New York, 2005, pp. 17–30.

[11] T. F. Chan, S. H. Kang, and J. Shen, Total variation denoising and enhancement color images based
on the CB and HSV color models, J. Visual Comm. Image Rep., 12 (2001), pp. 422–435.

[12] T. Chan, A. Marquina, and P. Mulet, High-order total variation-based image restoration, SIAM J.
Sci. Comput., 22 (2000), pp. 503–516.

[13] T. Chan and J. Shen, Variational restoration of nonflat image features: Models and algorithms, SIAM
J. Appl. Math., 61 (2000), pp. 1338–1361.

[14] D. C. Dobson and F. Santosa, Recovery of blocky images from noisy and blurred data, SIAM J. Appl.
Math., 56 (1996), pp. 1181–1198.

[15] H. Fu, M. K. Ng, and J. L. Barlow, Structured total least squares for color image restoration, SIAM
J. Sci. Comput., 28 (2006), pp. 1100–1119.

[16] N. P. Galatsanos, A. K. Katsaggelos, R. T. Chan, and A. D. Hillery, Least squares restorations
of multichannel images, IEEE Trans. Signal Process., 39 (1991), pp. 2222–2236.

[17] D. Geman and G. Reynolds, Constrained restoration and the recovery of discontinuities, IEEE Trans.
Pattern Anal. Mach. Intell., 14 (1992), pp. 367–383.

[18] D. Geman and C. Yang, Nonlinear image recovery with half-quadratic regularization, IEEE Trans. Image
Process., 4 (1995), pp. 932–946.

[19] T. Goldstein and S. Osher, The Split Bregman Algorithm for L1 Regularized Problems, UCLA CAM
Report 08–29, University of California, Los Angeles, CA, 2008.

[20] R. Gonzalez and R. Woods, Digital Image Processing, Addison–Wesley, Reading, MA, 1992.
[21] E. T. Hale, W. Yin, and Y. Zhang, A fixed-point continuation for �1-minimization: Methodology and

convergence, SIAM J. Optim., 19 (2008), pp. 1107–1130.
[22] L. B. Lucy, An iterative technique for the rectification of observed distributions, Astronom. J., 79 (1974),

pp. 745–754.
[23] O. M. Lysaker and X.-C. Tai, Iterative image restoration combining total variation minimization and

a second-order functional, Int. J. Comput. Vision, 66 (2006), pp. 5–18.
[24] M. K. Ng and N. K. Bose, Fast color image restoration with multisensors, Int. J. Imaging Syst. Technol.,

12 (2002), pp. 189–197.
[25] M. K. Ng, R. H. Chan, and W.-C. Tang, A fast algorithm for deblurring models with Neumann

boundary conditions, SIAM J. Sci. Comput., 21 (1999), pp. 851–866.
[26] M. Nikolova, Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the

processing of outliers, SIAM J. Numer. Anal., 40 (2002), pp. 965–994.
[27] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, 1999.
[28] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, An iterative regularization method for total

variation-based image restoration, Multiscale Model. Simul., 4 (2005), pp. 460–489.
[29] W. H. Richardson, Bayesian-based iterative method of image restoration, J. Opt. Soc. Amer., 62 (1972),

pp. 55–59.
[30] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[31] P. Rodŕıguez and B. Wohlberg, Numerical Methods for Inverse Problems and Adaptive Decomposition

(NUMIPAD), http://numipad.sourceforge.net/.
[32] L. I. Rudin and S. Osher, Total variation based image restoration with free local constraints, in Pro-

ceedings of the 1st IEEE International Conference on Image Processing (ICIP), Vol. 1, 1994, pp.
31–35.

[33] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys.
D, 60 (1992), pp. 259–268.

http://numipad.sourceforge.net/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

592 JUNFENG YANG, WOTAO YIN, YIN ZHANG, AND YILUN WANG

[34] G. Sapiro, Color snakes, Comput. Vis. Image Underst., 68 (1997), pp. 247–253.
[35] G. Sapiro, Vector-valued active contours, in Proceedings of the Conference on Computer Vision and

Pattern Recognition, IEEE Computer Society, Washington, DC, 1996, pp. 680–685.
[36] G. Sapiro and D. L. Ringach, Anisotropic diffusion of multivalued images with applications to color

filtering, IEEE Trans. Image Process., 5 (1996), pp. 1582–1586.
[37] D. Strong, P. Blomgren, and T. F. Chan, Spatially adaptive local feature-driven total variation

minimizing image restoration, in Proceedings of SPIE, Vol. 3137, 1997, pp. 222-233.
[38] D. Strong and T. F. Chan, Relation of Regularization Parameter and Scale in Total Variation Based

Image Denoising, UCLA CAM Report 96–7, University of California, Los Angeles, CA, 1996.
[39] B. Tang, G. Sapiro, and V. Caselles, Color image enhancement via chromaticity diffusion, IEEE

Trans. Image Process., 10 (2001), pp. 701–707.
[40] A. Tekalp and G. Pavlovic, Multichannel image modeling and Kalman filtering for multispectral image

restoration, Signal Process., 19 (1990), pp. 221–232.
[41] A. Tikhonov and V. Arsenin, Solution of Ill-Posed Problems, V. H. Winston, Washington, DC, 1977.
[42] C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput.,

17 (1996), pp. 227–238.
[43] Y. Wang, J. Yang, W. Yin, and Y. Zhang, A new alternating minimization algorithm for total

variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), pp. 248–272.
[44] Y. W. Wen, M. K. Ng, and Y. M. Huang, Efficient total variation minimization methods for color

image restoration, IEEE Trans. Image Process., 17 (2008), pp. 2081–2088.
[45] B. Wohlberg and P. Rodŕıguez, An iteratively reweighted norm algorithm for minimization of total

variation functionals, IEEE Signal Process. Lett., 14 (2007), pp. 948–951.
[46] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman iterative algorithms for �1-minimization

with applications to compressed sensing, SIAM J. Imaging Sci., 1 (2008), pp. 143–168.
[47] W. P. Ziemer, Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation,

Grad. Texts in Math. 120, Springer, New York, 1989.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

