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A Fast Alternating Direction Method for TVL1-L2
Signal Reconstruction From Partial Fourier Data

Junfeng Yang, Yin Zhang, and Wotao Yin

Abstract—Recent compressive sensing results show that it is pos-
sible to accurately reconstruct certain compressible signals from
relatively few linear measurements via solving nonsmooth convex
optimization problems. In this paper, we propose the use of the
alternating direction method—a classic approach for optimization
problems with separable variables (D. Gabay and B. Mercier, “A
dual algorithm for the solution of nonlinear variational problems
via finite-element approximations,” Computer and Mathematics
with Applications, vol. 2, pp. 17-40, 1976; R. Glowinski and A.
Marrocco, “Sur lapproximation par elements finis dordre un, et
la resolution par penalisation-dualite dune classe de problemes
de Dirichlet nonlineaires,” Rev. Francaise dAut. Inf. Rech. Oper.,
vol. R-2, pp. 41-76, 1975)—for signal reconstruction from partial
Fourier (i.e., incomplete frequency) measurements. Signals are
reconstructed as minimizers of the sum of three terms corre-
sponding to total variation, ¢;-norm of a certain transform,
and least squares data fitting. Our algorithm, called RecPF and
published online, runs very fast (typically in a few seconds on
a laptop) because it requires a small number of iterations, each
involving simple shrinkages and two fast Fourier transforms (or
alternatively discrete cosine transforms when measurements are
in the corresponding domain). RecPF was compared with two
state-of-the-art algorithms on recovering magnetic resonance
images, and the results show that it is highly efficient, stable, and
robust.

Index Terms—Compressive sensing (CS), compressed sensing,
alternating direction method, magnetic resonance imaging (MRI),
MRI reconstruction, fast Fourier transform (FFT), discrete cosine
transform (DCT), total variation.

1. INTRODUCTION

ET @ € RY be an unknown signal. Following the standard
L treatment, we vectorize two-dimensional images or higher
dimensional data into one-dimensional vectors. In most cases,
the number of salient features hidden in a signal is much fewer
than its resolution, which means that # is usually sparse or com-
pressible under a suitable basis. Let U = [, 12, ..., UN] €

Manuscript received January 28, 2009; revised November 19, 2009. Current
version published March 17, 2010. The work of J.-F. Yang was supported by the
Chinese Scholarship Council during his visit to Rice University. The work of Y.
Zhang was supported in part by the National Science Foundation (NSF) under
Grant DMS-0811188 and the Office of Naval Research (ONR) under Grant
NO00014-08-1-1101. The work of W. Yin was supported in part by the NSF CA-
REER Award DMS-0748839, ONR Grant N00014-08-1-1101, Air Force Of-
fice of Scientific Research Grant FA9550-09-C-0121, and an Alfred P. Sloan
Research Fellowship. The associate editor coordinating the review of this man-
uscript and approving it for publication was Dr. Mario Figueiredo.

J.-F. Yang is with the Department of Mathematics, Nanjing University, Nan-
jing, Jiangsu 210093, China (e-mail: jfyang @nju.edu.cn).

Y. Zhang and W. Yin are with the Department of Computational and
Applied Mathematics, Rice University, Houston, TX 77005 USA (e-mail:
yin.zhang @rice.edu; wotao.yin@rice.edu).

Digital Object Identifier 10.1109/JSTSP.2010.2042333

CNV*N be an orthonormal basis of CV. Then there exists an
unique Z € C such that

N
o=y ;= Vz. 1)
=1

We say that @ is K-sparse under ¥ if ||Z||o, the number of
nonzeros in Z, is no more than K, and that % is compressible
if Z has only a few large (in magnitude) components. The case
of interest is when K < N or « is highly compressible.

Traditional data acquisition and reconstruction from fre-
quency data follow the basic principle of the Nyquist density
sampling theory, which states that the sample rate for faithful
reconstruction is at least two times of the frequency bandwidth.
In many applications, such as digital images and video cameras,
the Nyquist sampling rate is so high that signal compression
becomes necessary prior to storage and transmission. For
example, in transform coding only the K (usually K < N)
dominant components of Z determined by (1) are saved while
the rest are computed and then thrown away. The idea of
compressive sensing (CS) goes against conventional wisdoms
in data acquisition. In CS, a sparse or compressible signal is
reconstructed from a small number of its projections onto a
certain subspace. Let M be an integer satisfying K < M < N
and @ € CM*N be a general nonadaptive sensing matrix.
Instead of acquiring u, one first obtains

b=0du=Azc CM, A=0V )

and then reconstructs # (and thus % by (1)) from the much
shorter projection vector b via some reconstruction algorithms.
Here, nonadaptiveness means that ® does not depend on @. The
basic CS theory [10], [11], [20] justifies that it is highly probable
to reconstruct Z accurately from b as long as T is compressible
(or even exactly when Z is sparse and b is noiseless) and A pos-
sesses certain nice attributes. To make CS practical, one needs to
design a good sensing matrix A (encoder), which ensures that b
morally contains at least as much information as z does, and an
efficient reconstruction algorithm (decoder), which can recover
Z from b.

A. Encoders and Decoders

For encoders, recent results indicate that stable reconstruction
for both K -sparse and compressible signals can be ensured by
the restricted isometry property (RIP) [13], [11]. It has become
clear that for a sparse or compressible z to be reconstructed
from b, it is sufficient if A satisfies the RIP of certain degrees.
While verifying the RIP is a difficult task, the authors of [11],
[20] showed that this property holds with high probability for
Gaussian random matrices, e.g., matrix with independent and
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identically distributed (i.i.d.) Gaussian entries. For orthonormal
WU, moreover, A = ®V will have the desired RIP attribute if
® is an i.i.d. Gaussian matrix. For other distributions which
lead to the RIP, see, e.g., [2]. It is implied from the results in
[47] that for “almost all” random sensing matrices, including
the class of sub-Gaussian matrices, the probability of getting
from b is asymptotically at least 1 — exp(—co(N — M)) pro-
vided that M > ¢1 K log(N/K), where ¢o,c; > 0 are abso-
lute constants. Aside from random sensing matrices, exact re-
construction is also attainable when A is a random partial or-
thonormal matrix [12] and particularly random partial Fourier
matrix [11], which has important applications in magnetic res-
onance imaging (MRI) and is the focus of this paper. The anal-
ysis of such cases relies on the incoherence between the sensing
system and the sparsifying basis of the underlying signal, see
[12] and [8]. We point out that these theoretical analyses apply
to merely random but not regular sampling sometimes neces-
sary in practical applications such as MRI due to hardware con-
straints.

Being underdetermined, (2) usually have infinitely many so-
lutions. Given that b is acquired from a highly sparse signal, a
reasonable approach would be to seek the sparsest one among
all the solutions of (2), i.e.,

mT1n{||:1:||0 : Az = b}. 3)

Decoder (3) is able to recover a K -sparse signal exactly with
overwhelming probability using only K +1 i.i.d. Gaussian mea-
surements [3]. Unfortunately, directly solving this £y problem is
generally impractical in computation. A common substitute for
(3) is the well-known basis pursuit problem [17]

min{||z||; : Az = b}. 4

It has been shown that, under some desirable conditions, with
high probability problems (3) and (4) share common solutions
(see, for example, [21]). For the /1 decoder (4), the number of
measurements sufficient for exact reconstruction of a K -sparse
signal is O(K log(N/K)) when A is i.i.d. Gaussian [14] and
O(Klog N) when A is a random partial Fourier matrix (as
in MRI) [11], both of which are, though larger than K, much
smaller than N. Moreover, (4) is easily transformed to a linear
program (when z is real) and thus can be solved efficiently
at least in theory. Therefore, decoder (4) is both sparsity pro-
moting and computationally tractable, establishing the theoret-
ical soundness of the decoder. When Z is compressible but not
sparse, or when measurements are contaminated with noise, an
appropriate relaxation to Az = b is desirable. For example, an
appropriate relaxation under Gaussian noise is given by

min{|lz[y : | Az = blls < o} ®)

where o > 0 is related to the noise level. There exist stability
results saying that the /5 distance between Z and the solution of
(5) is no more than O(o + K~/2||z — Z(K)||1), where Z(K)
keeps the K dominant components in Z and zero filling the rest;
see [10] for example. A related problem to (5) is

min ||zly + pl| Az - b]13 6)

where p > 0. From the optimization theory, problems (5) and
(6) are equivalent in the sense that solving one of the two will de-
termine the parameter in the other such that both give the same
solution. Aside from /1 related decoders, there exist other recon-
struction techniques including the class of greedy algorithms;
see [39] for example.

B. Compressive Imaging via a TVLI-L2 Model

Hereafter, we assume that u is a two-dimensional grayscale
digital image with N pixels, and its partial frequency observa-
tion is given by

fp=PTu+w (7

where 7 € CV*¥ represents a specific transform matrix, P €
RPN is a selection matrix containing p rows of the identity
matrix of order N, and w € CP represents random noise. In
CS, PT serves as a sensing matrix. Model (7) characterizes the
nature of a number of data acquisition systems. In the appli-
cation of MRI reconstruction, data collected by an MR scanner
are, roughly speaking, in the frequency domain (called k-space)
rather than the spatial domain. Traditionally, MRI acquisition
includes two key stages: k-space data acquisition and analysis.
During the first stage, energy from a radio frequency pulse is
directed to a small section of the targeted anatomy at a time. As
a result, the protons within that area are forced to spin at a cer-
tain frequency and get aligned to the direction of the magnet.
Upon stopping the radio frequency, the physical system returns
to its normal state and releases energy that is then recorded for
analysis. This recorded data consists of one or more entries of
PTu. This process is repeated until enough data is collected
for reconstructing a high-quality image in the second stage. For
more details about how the MRI system works as related to CS,
see [34] and references therein. Unfortunately, this data acqui-
sition process is quite time consuming due to physiological and
hardware constraints, so patients must endure long scanning ses-
sions while their bodies are restrained in order to reduce motion
artifacts. All these facts hint at the importance of reducing the
scan time, which means collecting less data, without sacrificing
the image quality.

In the rest of this paper, we will concentrate on the case of
partial Fourier data, i.e., in (7) 7 = F being a two-dimensional
discrete Fourier transform matrix. We will propose and study a
new algorithm for reconstructing an image « from a subset of
its Fourier coefficients, though our results will equally apply to
other partial spectral data, such as DCT, under proper boundary
conditions.

We consider reconstructing % from f,, via the CS method-
ology. Let 7, = PF and

0(u, f,) = (1/2) - || Fpu — foll3-

In our approach, @ is reconstructed as a solution of the following
TVL1-L2 model:

min || Dgullz + 7% T ully + pf(u, f,) ®

where ), is taken over all pixels, >, || D;ul|2 is a discretization
of the total variation (TV) of u, ||¥ Tu||; is the #1-norm of the
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representation of u under ¥, and 7, > 0 are scalars which
are used to balance regularization and data fidelity. Since MR
images commonly possess a blocky structure, the use of TV
in regularization exploits image sparsity and preserves edges.
In addition, it is known that MR images usually have sparse
representations under certain wavelet bases [34]. Therefore, we
will choose the sparsity promoting basis U as a wavelet and
particularly the Haar wavelet basis in our experiments.

Inverse imaging problems with TV and /; regularization have
been considered in [34] for MRI reconstruction. Specifically,
model (8) has been used in [9], [32], and [35] and reported
to reconstruct high quality MR images from a small number
of Fourier coefficients [35]. An algorithm for inverse problems
with compound regularization (e.g., (8)) was recently proposed
in [7], and an alternating Bregman iterative method [36], [46]
was recently applied to these problems in [1]. In addition, varia-
tional image restoration with an /1 -like regularizer was studied
in [4], which also suggested decreasing data fidelity by fixed-
step gradient descents followed by solving denoising problems.
We note that the algorithm in [4] reduces to the well known itera-
tive shrinkage/thresholding (IST) method (e.g., [26], [19]) when
the regularization is TV or the ¢;-norm of wavelet coefficients,
and thus has practical performance similar to those of the IST
method.

The main contribution of this paper is a very simple and
fast algorithm, called RecPF, based on the general optimiza-
tion framework of Glowinski and Marocco [28] and Gabay and
Mercier [27] for solving model (8). In addition, we compare our
algorithm to the recent two-step IST algorithm proposed in [6]
and an operator splitting approach proposed in [35].

Two versions of RecPF have been developed for solving the
same model (8), and they are based on different algorithms. The
first version RecPF_vl implements the algorithm in our pre-
vious paper [45], which is based on variable splitting, quadratic
penalty, as well as parameter continuation. The second version
RecPF_v2 was finished afterward, and it has improved perfor-
mance thanks to the use of the classic augmented Lagrangian
and an alternating direction technique. Both versions have been
put online for download.! This paper mainly focuses on the
algorithm and performance of RecPF_v2, but the algorithm of
RecPF_v1 and the differences between the two algorithms are
summarized in Section II-C.

C. Notation

Let the superscript T denote the transpose (conjugate trans-
pose) operator for real (complex) matrices or vectors. For vec-
tors v; and matrices A;, i = 1,2, we let (vi;v2) = (v] ,v9 )T
and (A1; As) = (A{,A7)T. Forany i, D; in (8) is a 2-by-N
matrix such that the two entries of D;u represent the horizontal
and vertical local finite differences of w at pixel ¢, whereas D;
near the boundary are defined to be compatible with 7 (more
information will be given in Section II). The horizontal and ver-
tical global finite difference matrices are denoted by D) and
D®) | respectively. As such, D) and D) contains, respec-
tively, the first and second rows of D, for all :. In the rest of this

Thttp://www.caam.rice.edu/optimization/L 1/RecPF/

paper, we let || - || = || - ||2. Additional notation is defined where
it occurs.

D. Organization

The paper is organized as follows. In Section II, we present
the basic algorithm of RecPF_v2, explain its relationship to
RecPF_v1, and discuss its connections to some recent work in
the field of signal and image processing. A convergence result
is also given without proof. Section III reports the results of
our numerical experiments in which RecPF_v2 was compared
to TwIST [6] and an operator splitting based algorithm [35].
Finally, some concluding remarks are given in Section IV.

II. BASIC ALGORITHM AND RELATED WORK

The main difficulty in solving (8) comes from the nondiffer-
entiability of its first and second terms. Our approach is to re-
formulate it as a linearly constrained problem and minimize its
augmented Lagrangian. Instead of using the classic augmented
Lagrangian method (ALM), which solves each unconstrained
subproblem almost exactly, we propose the use of the cheaper
alternating direction method (ADM).

This section is organized as follows. In Section II-A, we
reformulate (8) as a constrained problem and describe the
ALM. In Section II-B, we describe the use of ADM. Finally,
in Section II-C we discuss the connections of this ADM to the
previous RecPF_v1, as well as some recent work in signal and
image processing.

A. Problem Reformulation and the ALM

By introducing auxiliary variables w = [wyq,...,Wy],
where each w; € R?, and z € RY, problem (8) is equivalently
transformed to

min Y fwil| + 7l2lls + u6(u, £)

st.w; = Dju, Vi; z2=""u. 9)

We point out that the splitting technique above is different from
the one used in [7], which introduces a variable vector v and con-
straints « = v, minimizes ) ., || D;v||, applies quadratic penalty
|lu — v||? to penalize the violation of u = v. Despite the small
difference between the two splitting strategies, ours enables fast
solutions that take advantage of the fast Fourier transform (FFT)
(which becomes clear in Section II-B next).

To tackle the linear constraints, we consider the augmented
Lagrangian function of (9). For convenience, we introduce some
notation. Given (31, 82 > 0, and for s,t,v € R, s,t,7 € R? we
let

b1(s,t,v) =7|s| —v(s —t) + (B1/2) - |s — t|*
and
pa(s, t,7) = |||l = 77 (s — t) + (B2/2) - [|s — t]|*.

The augmented Lagrangian function of (9) is given by

La(W,2,u,A1,00) = do(Wi, Diu, (A2)i)

+ > b1 (29T w (M)s) + wb(u, fp)  (10)
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where, for each i, (A\1); € R, (M\2); € R?, and 1); is the ith
column of ¥. For simplicity, we assume 1 = (3, = [ without
loss of generality because, otherwise, letting 7 «— 7+/82/01,
A1 — /Ba/BiAr and (¥, 2) — +/B1/62(V, z) equalizes the
penalty parameters.

Given (w, z,u)* £ (w*, 2% u*), (A\1)* and (\)¥, the ALM
for (9) is an iterative algorithm based on the iteration

(w,z,u)F T — argmin L4 (W, z,u, (A1)¥, (A2)¥)

A = (A)F = BT — gl ub ), Vi,

(11
(a)FH — (o)t — Bwht! — Db+l Vi,

To guarantee convergence of the ALM, each minimization sub-
problem needs to be solved to certain high accuracy before the
iterative updates of multipliers. In our case, the joint minimiza-
tion with respect to all w, z and u in (10) is not always nu-
merically efficient. Therefore, each iteration of the ALM is rel-
atively expensive. In contrast, the ADM approach described in
the next subsection has a much cheaper per-iteration cost. In a
nutshell, by utilizing the separable structure of the variables in
(9), the ADM decreases L4 at each iteration by just one alter-
nating minimization followed by immediate multiplier updates.

B. Solving the TVLI-L2 Model by the ADM

Although (10) has more decision variables than (8), it is easier
to minimize (10) especially with respect to w, z, and u each.
First, for fixed u and A (here and after A = (A1, A2)), the min-
imization of £ 4 with respect to w and z can be carried out in
parallel because all w; and z; are separated from one another.

For fixed u and A, the minimizer z; is given by

zi=s1 (Y] u+ (MN)i/B.7/B), Vi (12)

where s1(+,7//3), known as the one-dimensional shrinkage op-
erator, is defined as

s1(§,7/P) & max{l¢] = 7/B,0} -sgn(), €€R  (13)
and the minimizer w; is given by
w; = s2(Dju+ (N\2)i/B,1/0), Vi (14)

where s5(+, 1/3), known as the two-dimensional shrinkage first
introduced in [40], is defined as

52(€,1/8) £ max{||€]] — 1/8,0} - €/|I€]l,

where 0-(0/0) = 0 is assumed. We note that the computational
costs for both (12) and (14) are linear in V.

Second, for fixed (w, z) and A, the minimization of £ 4 with
respect to u becomes a least squares problem which is diago-
nalized by a 2-D discrete Fourier transform. To simplify repre-
sentation, we let w; = (w1(j);...;wn(4)), 7 = 1,2, w 2
(wy;wy), and D 2 (DM: D?)). With this notation, the mini-
mization of £ 4 with respect to u, after variable reordering, can
be rewritten as

EeR? (15

min (%) (w — Du) + (8/2) - |w — Dul]
— () (= TTu) 4+ (8/2) - 2 = T ull? + plu. £,) (16)

which, by noting the orthonormality of W, is equivalent to the
normal equations

Mu=y (I7)

where

M=DTD+T+up) - FIF,
and
y=D"(w—Xo/B) + V(2= A1 /B)+ (1)) 'FPTfr

Since DM and D®) are finite difference matrices, under the pe-
riodic boundary conditions for u, they are block circulant ma-
trices and can be diagonalized by the 2-D discrete Fourier trans-
form F. It is worth pointing out that if 7 is a discrete cosine
transform, the same result holds under the symmetric boundary
conditions. Let D) = FDW@W FT which is diagonal, j = 1,2,
and D = (DM; D®)). Multiplying by F on both sides of (17),
we obtain

MF(u) = § (18)

where
M=D"D+T+(u/B)-PTP
is a diagonal matrix noting that P P is diagonal, and
j=F (DTw+Vz) +(u/B) P,

Therefore, solving (18) is straightforward, which means that
(17) can be easily solved for given w and z as follows. Before
iterations begin, compute M. At each iteration, first compute
D Tw and 2. Then, obtain 5 by applying an FFT. Finally, solve
(18) using M to obtain F(u) and thus v after applying an in-
verse FFT to F(u).

We note that the orthonormality of W is required. For non-or-
thonormal U, the above procedure cannot be applied to mini-
mize (16). Moreover, the above alternating technique is limited
to the cases where 7 in (7) must correspond to an orthonormal
matrix that can diagonalize the finite difference operators D)
and D® under suitable boundary conditions (e.g., 7 can be a
FFT (or DCT) matrix together with the periodic (or symmetric)
boundary conditions imposed on u).

One can circularly applying (12), (14), and (17) until £ 4 is
minimized jointly with respect to (w, z, u) and update the mul-
tipliers as in the ALM (11). However, we choose to update A
immediately after computing (12), (14) and (17) just once. This
gives the ADM as follows.

Algorithm 1: Input problem data P, f, and model parameters
7,0 > 0.Given 8 > 0 and v € (0,(v/5 + 1)/2). Initialize
u = ’UJO7 A= ()\1)0 and Ay = ()\2)0. Setk = 0.

While “not converged,” Do
1) Compute z and w by

2 — s (g uf + (M\)F/B,7/B) | Vi,
WL sy (Duf + (M2)F/B,1/8) , Vi
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2) Compute u**1 by solving (17), where y depends on

(w,z) = (W, 2M 1) and A = ((M)*, (A2)F).
3) Update A\; and A5 by
<A1)§+1 - (Al)f; - ’yﬂ (Zf+1 - Il/};ruk—’—l) ’ v”?
A2)i™ = (No)F = (With = D), Wi
4) k — k+1.
End Do

We simply terminated Algorithm 1 when the relative change
becomes small enough, i.e.,

[ — ] < €1+ [luf]) (19)
where € > 0 is a tolerance.

The idea of ADM described above dates back to the work
by Glowinski and Marocco [28] and Gabay and Mercier [27],
who proposed the method to utilize the separable structure of
variables. The ADM was extensively studied in optimization
and variational analysis. For example, in [30] it is interpreted as
the Douglas—Rachford splitting method [22] applied to a dual
problem. The equivalence between the ADM and a proximal
point method was shown in [23]. Moreover, the ADM has been
extended to inexact minimization of subproblems; see [23] and
[33].

In step 3) of Algorithm 1, a step length of v € (0, (v/5+1)/2)
is permitted. Similarly, without invalidating the convergence of
the ALM (11), the update to the multipliers can also be multi-
plied by v € (0, 2). The shrinkage in the permitted range from
(0,2) to (0, (v/5 + 1)/2) is related to relaxing the exact mini-
mization of £ 4 in the ALM to merely one round of alternating
minimization in the ADM. To the best of our knowledge, the
convergence of the ADM for v € (0, (v/5 + 1)/2) was first es-
tablished in [29] in the context of variational inequality, which
covers the proof of the follow theorem.

Theorem 2.1: For any # > 0 and v € (0,(v/5 + 1)/2),
the sequence {(w*, z*, u*)} generated by Algorithm 1 from any
starting point (w?, 2%, u®) converges to a solution of (9).

C. Connections to Recent Work

The splitting technique for TV regularization shown in (9)
for model (8) was first proposed in [40] and [41] without using
the Lagrange multipliers, in the context of image deconvolution,
where the authors used the classic quadratic penalty method
to enforce the equality constraints and continuation technique
to accelerate convergence. Similar ideas were applied to multi-
channel deconvolution in [43] and impulsive noise removal in
[44].

Since the splitting/penalty approach utilizes shrinkage and
FFT in the same way described in the previous subsection (with
A = 0) and thus gives rise to robust and efficient algorithms, we
applied the same idea to solving (8) in [45]. The resulting al-
gorithm was called initially RecPF (reconstruction form partial
Fourier data) and now RecPF_v1, which minimizes a function
of the form

2:(¢>2(W1;7 Diu, 0) 4+ ¢1 (2,9, u,0)) + pb(u, f,)

K2

where ¢ and ¢ are as defined in Section II-A with 51, 82 > 0.
Continuation on (31, (2 significantly reduces the total number
of iterations. Soon after submitting [45], we became aware
that RecPF_v1 can be further improved by introducing the
augmented Lagrangian (10) and applying the ADM. We imple-
mented the ADM for (8), as well as the TV-based deconvolution
problems in [41] and [44], and have publicized the MATLAB
programs RecPF_v2 online. As expected, the ADM-based
programs run faster. One can attribute the improvement in per-
formance to the fact that the use of the augmented Lagrangian
eliminates the need of excessively large values for the penalty
parameters (1, 32, which cause ill-conditioning. Therefore,
in Section III we merely present comparison results between
RecPF_v2 and other algorithms. For practical performance of
RecPF_vl and its convergence properties, see [45].

By combining the splitting technique for TV [40] and the
Bregman iterative algorithm [36], [46], a split Bregman method
was proposed in [31] for a class of inverse problems, which is
equivalent to the ALM. It was empirically observed that the
split Bregman method converges well enough when only one
alternating minimization is performed at each iteration in the
same way as in the ADM. Lately, an alternating Bregman it-
erative method was proposed in [1] for the solution of inverse
problems with compound regularizers, which is essentially an
ADM. Also, a variable splitting and constrained optimization
approach was recently applied to frame-based deconvolution in
[25]. The split Bregman algorithm and its relationship with the
Douglas—Rachford splitting was analyzed in [38]. Lately, [24]
describes the relationships between the split Bregman method,
ALM, and ADM, and [18] discusses a proximal decomposition
method for convex variational inverse problems.

III. EXPERIMENTAL RESULTS

A. General Description

In the remaining of this paper, RecPF refers to RecPF_v2.
In this section, we present MR image reconstruction results of
RecPF and two other recently proposed algorithms: a two-step
iterative shrinkage/thresholding algorithm (TwIST) [6] and an
operator splitting-based algorithm that we call OS [35], both of
which have been regarded fast for solving inverse sparse recon-
struction problems, see, e.g., [5], [16], and [42]. All experiments
were performed under Windows Vista Premium and MATLAB
v7.8 (R2009a) running on a Lenovo laptop with an Intel Core
2 Duo CPU at 1.8 GHz and 2 GB of memory. The finite dif-
ference and shrinkage operations were implemented in the C
programming language, which was linked to MATLAB via the
mex interface.

We generated our test sets from three images, the
Shepp—Logan phantom and two real brain MR images. The
CS measurement data f,, were generated according to (7). In
each test, we obtained f,, by first rescaling the intensity values
of the tested image to [0,1], then applying a partial FFT to
the resulting image, and finally adding Gaussian noise to the
partial FFT result. The partial FFT generated the samples in
the Fourier domain along a number of radial lines through the
center; for example, Fig. 1 shows 22 radial lines in a Fourier

Authorized licensed use limited to: Nanjing University. Downloaded on March 17,2010 at 05:14:01 EDT from IEEE Xplore. Restrictions apply.



YANG et al.: FAST ALTERNATING DIRECTION METHOD FOR TVL1-L2 SIGNAL RECONSTRUCTION 293

Fig. 1. Fourier domain sampling positions with 22 radial lines for test 1.

TABLE I
TEST IMAGES INFORMATION AND MODEL PARAMETER VALUES
(RLs =NUMBER OF RADIAL LINES)

Test Image Size RLs | Sample Ratio (p, 1)
1 phantom | 256 x 256 22 9.36% (1e2~1e9, 0)
2 brain-1 256 x 256 66 26.85% (2e3, 1)
3 brain-2 512 x 512 88 18.59% (2e3, 1)

domain. Different numbers of radial lines resulted in different
sampling ratios. In all tests, we added Gaussian noise to both
the real and the imaginary parts of Fourier coefficients. The
additive noise had a mean zero and standard deviation 0.01.

In our experiments, we simply set 31 = (2 = 10 and v =
1.618 for Algorithm 1, which, though may be suboptimal, are
sufficient to demonstrate the efficiency of RecPF. The param-
eters used in TwIST and OS were set to be optimized values
after our numerous trials, and they are described in the subsec-
tions below. We tried different starting points for the three al-
gorithms and found that their performance was insensitive to
starting points. Therefore, we simply set the starting image u to
be zero. Table I summarizes the test data, as well as the values
of the parameters p and 7 used in (8).

We note that both TWIST and OS can be applied to problem
(8) with F,, being replaced by a general linear operator A as
long as the matrix-vector multiplications Au and AT v are easy
to compute, but RecPF cannot because it needs (17) to be diag-
onalizable by fast transforms.

In addition, because both TwIST and OS scale (8) by 1/u
(in their models, small parameters are put in front of the regu-
larization terms), to keep compatibility we multiply the objec-
tive function by 1/ for RecPF. Hence, the objective values pre-
sented below for (u, 7) have been scaled by 1/p.

B. Comparison With TwIST

In test 1, we compared RecPF with TwIST on solving
1
i i By () + [ Au — b/

where @, ( - ) can be either TV or /; regularization and A is a
linear operator. The iteration framework of TwIST is

Uk41 = (1 — a)uk,l + (a — 5)uk + (S\I/H(fk)
where v, § > 0 are parameters, &, = uy, + AT (b — Auy,), and

- 1
Wp(6) = argmin 7 Breg(w) + llu— &7 Q0)

TABLE II
RESULTS OF TWIST ON TEST 1

TwIST (without continuation) TwIST (with continuation)
o Err Obj Tter T Err Obj Iter | T
le2 5.5% 14.96 38 30 55% | 1496 | 38 31
le3 5.1% 1.854 140 90 53% | 1.869 | 45 | 46
led 6.5% 2906 571 337 53% | 2904 | 74 | 59
le5 147% | 1298 | 3167 | 1686 84% | 1290 | 53 | 43
TABLE III

RESULTS OF RECPF ON TEST 1

Results of RecPF: p = 10P
p Err Obj Iter | T P Err Obj Iter T
2 | 7.8% | 1449 | 63 3.0 6 | 46% | 1.7¢e-3 | 79 | 4.7
3| 52% | 1.665 | 74 | 3.7 T 1 47% | 1.7e-4 | 79 | 4.8
4 1 6.0% | 1725 | 76 | 4.1 8 | 47% | 1.7e-5 80 | 44
51 60% | 0173 | 76 | 3.8 9 | 46% | 1.7e-6 | 80 | 4.5

Its latest version, TWIST_v1, was not designed to solve problem
(8) with both the TV and ¢; regularization terms. Hence, in order
to compare RecPF with TWIST on solving the same model, we
dropped the /;-term in (8) by setting 7 = 0 for RecPF and
letting @ = >, ||Diul|, A = F, and b = f, for TWIST.
TwIST_vl1 solves the subproblem (20) using Chambolle’s algo-
rithm [15]. In contract, RecPF without the ¢; term has a much
cheaper per-iteration cost of two FFTs (including one inverse
FFT).

First, we ran the monotonic variant of TwIST in TwIST_v1,
which was terminated when the relative change in the objective
function fell below tol = 1075, In TwIST_v1, the parameters
« and ¢ were determined carefully based on the spectral dis-
tribution of AT A. In our case of A = Fp, the minimum and
maximum eigenvalues of A" A were obviously 0 and 1, respec-
tively. Therefore, we assigned a relatively small value 1073 to
the TWIST parameter lam1 (which was used to compute « and
), as recommended in the TWIST_v1’s documentation. Further-
more, to speed up convergence, TWIST allowed maximally ten
iterations as default for each call of Chambolle’s algorithm to
solve (20). Based on our experimental results, TwIST deterio-
rates as p becomes large. Therefore, we also applied heuristic
continuation on g when it is large, i.e., initialize p a smaller
value and increase it gradually to the target one. Warm start
technique was used. In our experiments, we applied continua-
tion when p > 103, in which case we initialize it to be 102
and multiply it by ten in each continuation step. Similar con-
tinuation was also applied to tol correspondingly. The results
of TwIST (with and without continuation) for 1 between 10 to
105 are listed in Table II. For the same range of p, we termi-
nated RecPF when the obtained function value is no bigger than
that of TwWIST and the condition (19) is satisfied with € = 10~%.
We also tested y values bigger than 10°, in which case RecPF
was terminated by condition (19) only. The results of RecPF are
given in Table III. In both tables, the following quantities are
listed: the error in the reconstructed image relative to the orig-
inal image (Err), the final objective function value (Obj), the
number of iterations (Iter), and the CPU time (T) in seconds.
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Fig. 2. Reconstructed images in test 1. Top left: original image. Top right: re-
construction by TwIST with ¢ = 103 (Err = 5.1%). Bottom left: reconstruc-

tion by RecPF with ¢ = 102 (Err = 5.2%). Bottom right: reconstructed by
RecPF with ;1 = 10° (Exr = 4.6%).

We point out that upon termination, RecPF returned smaller
objective values than TwIST in all tests, though TwIST’s solu-
tions had smaller relative errors for = 10% and 10. From
Tables II and III, it can be seen that RecPF is much faster than
TwiST in attaining a comparable accuracy, primarily because
of the difference in their per-iteration costs: TwIST solves the
TV problem (20) using Chambolle’s algorithm (which takes its
own iterations) but RecPF solves (17) at a smaller cost of two
FFTs. Furthermore, the multiplier update lets RecPF to con-
verge without a large 3 and thus makes it robust and efficient. It
can be seen from Tables II and III that RecPF had stable itera-
tion numbers and CPU times for different values of y but TWIST
was not as stable. The parameter ;1 = 102 gave the reconstructed
images in the best quality for both TwIST and RecPF when p is
between 102 and 10°, which are depicted in Fig. 2.

We also tested the two algorithms on data containing less
or no noise and observed similar relative performance. For ex-
ample, on noiseless data, both algorithms (with the above de-
scribed settings) were able to converge to solutions with rela-
tive errors less than 1% for pu = 103, but RecPF was faster than
TwIST. We note that, although it is possible to make TwIST
faster by tuning some parameters (e.g., setting the maximum de-
noising steps allowed in Chambolle’s algorithm to smaller than
10), TwIST_vl1 is generally not as efficient as RecPF on problem
(8).

In our experiments, we observed that TwIST_v1 required
careful selections of parameters such as «, é, . and error tol-
erance tol in order to obtain results comparable to those of
RecPF. In comparison, RecPF requires very little tuning. As
mentioned, § = 10 and v = 1.618 were used throughout our
tests where only the error tolerance € in (19) varied. Interest-
ingly, the performance of RecPF appeared to be insensitive
to the values of yu, and it converged well even with huge p
values. The results of RecPF with y values as large as 10° are

given in Table III, where the resulting relative errors are even
a little better than those results with o between 10% and 10°.
For example, the recovered image by RecPF with y = 10°
has a relative error 4.6%, which is depicted at the bottom right
corner in Fig. 2. We tested even larger ;4 values and obtained
equally good images. This behavior can be explained by closely
examining the linear system in (18).

Recall that P is a selection matrix. From the formulations
of M and y (18) it becomes clear that 1) the value of ;1 only
affects those Fourier coefficients in F(u) corresponding to the
sample positions; and 2) as u gets larger, the entries of F(u)
corresponding to the sampled positions get closer to f,. In the
limit as 4 — oo, solving (18) simply fills F(u) with f, at the
sample positions and updates the remaining entries of F(u) in-
dependent of p. This separation makes RecPF very stable with
respect to large values of 1 and allows it to faithfully executes
TV regularization.

C. Comparison With OS

In tests 2 and 3, we compared RecPF with OS [35] on solving
problem (8) with both TV and /; terms. OS iterates the fix-point
(21) below, in which s € R, w;,t; € R?,i = 1,..., N, are
auxiliary variables and 61, 6 > 0 are constants

s =Wu—(81/p) - W (3, D wi + pVo(u, f,))
t; = w; + 62D;u, Vi
w = W{max(|s| — 617/u,0) osgn(s)}
w; = min(1/82, ||t;]]) - t:/||t:]], V.
2D

The authors showed that for any fixed 61, 62 > 0, w is a solution
of (8) if and only if it satisfies (21). Given u* and {wF, Vi},
s¥ and {t¥  Vi} can be computed by the first two equations,
and then be used to compute ©**1 and {w¥*!, Vi} in the last
two equations in (21). For §; and ¢, in certain ranges, such
iterations converge. Similar to RecPF, every iteration of OS
involves shrinkages, FFTs, and discrete wavelet transforms
(DWTs). Furthermore, OS takes advantage of continuation, i.e.,
decreasing 7 and 1/p from larger values to prescribed small
ones. For a fixed pair of (7, 1), the fixed-point iterations of OS
terminate once one of the following two conditions is met:

fo— frs1 < EQ\/TC/Tt max{l, fk} (22)
||[ugr1 — vl < €1 max{1, ||ug||} (23)

where f}, is the objective value at uy, 7., and 7, are the current
and the target values of 7, respectively, and €1,e5 > 0 are stop-
ping tolerances.

In both tests, we set 9 = 8 = 0.8, e; = 107* and e =
5 x 10~* for OS. For RecPF, we set ¢ = 1072 in (19) which,
although much looser than the previous tolerance used in test 1,
was sufficient for RecPF to return better results than OS.

Since the two algorithms used different stopping criteria and
the multiple tuning parameters of OS such as ¢; and é, affect
the convergence speed, it was rather difficult to compare them at
their best performance. Since OS implements the fixed-point it-
erations based on (21) that do not directly aim at decreasing the
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Fig. 4. Comparing RecPF with OS: relative error versus iteration numbers.

objective function, its objective values do not decrease mono-
tonically for certain choices of §. We tried different ¢ values
and observed the following. For smaller ¢’s, OS tended to yield
monotonically decreasing objectives but converged slowly. For
larger §’s and looser stopping criteria, OS was faster but lost ob-
jective monotonicity and returned solutions with larger relative
errors. After trying different combinations of €’s and §’s for OS,
we determined to use the above parameter values, giving the best
compromise between convergence speed and image quality, to
generate the results presented next.

In both tests 2 and 3, the sparsity promoting basis ¥ was set to
be the Haar wavelet transform using the Rice Wavelet Toolbox
and its default setting [37]. The per-iteration computational cost
of both methods is two FFTs (including one inverse FFT) and
two DWTs (including one inverse DWT). Therefore, it is fair to
present our numerical results in plots of objective value and rel-
ative error versus iteration numbers, which are given in Figs. 3

Fig. 5. Results of tests 2 and 3. Top row (results of test 2) from left to right:
original, recovered by OS (Err: 10.18%) and RecPF (Err: 8.21%); Bottom row
(results of test 3) from left to right: original, recovered by OS (Err: 8.28%) and
RecPF (Err: 6.96%).

and 4, respectively. The reconstructed images are given in Fig. 5.

As can be seen from Figs. 3 and 4, RecPF converged much
faster than OS in terms of both objective functions and relative
errors. Moreover, in both tests RecPF achieved and maintained
both lower objective values and relative errors throughout the
entire iteration process. In both tests, RecPF took much fewer
iterations than OS to attain the same level of relative error. In
addition, images reconstructed by RecPF have higher qualities
than those by OS as is evidenced by Fig. 5.

Our other experiments yielded consistent results. In general,
when stricter tolerances are used, better results can be obtained
from both algorithms at a cost of more iteration numbers. Inde-
pendent of tolerances used, the ratio of their performances stays
similar.

IV. CONCLUSION

Based on the classic augmented Lagrangian approach and a
simple splitting technique, we proposed the use of alternating di-
rection method for solving signal reconstruction problems with
partial frequency data (DFT or DCT coefficients). Our algo-
rithm minimizes the sum of a TV and/or ¢; -norm regularization
terms together with a fidelity term. At each iteration, the main
computation of RecPF only involves fast and stable operations
consisting of shrinkages and FFTs (or DCTs).

Compared to the two efficient algorithms TwIST [6] and OS
[35], RecPF is more efficient and robust for reconstructing large-
scale signals or images. Furthermore, RecPF requires very little
tuning of parameters, and it consistently performs well with a
very large dynamic range of regularization/fidelity weight pa-
rameters. We hope that RecPF is useful in relevant areas of com-
pressive sensing such as sparsity-based, rapid MR image recon-
struction.
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