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In this article, we present a new multiscale discontinuous

Petrov–Galerkin method (MsDPGM) for multiscale elliptic

problems. This method utilizes the classical oversampling

multiscale basis in the framework of a Petrov–Galerkin

version of the discontinuous Galerkin method, allow-

ing us to better cope with multiscale features in the

solution. MsDPGM takes advantage of the multiscale

Petrov–Galerkin method (MsPGM) and the discontinuous

Galerkin method (DGM). It can eliminate the resonance error

completely and decrease the computational costs of assem-

bling the stiffness matrix, thus, allowing for more efficient

solution algorithms. On the basis of a new H2 norm error esti-

mate between the multiscale solution and the homogenized

solution with the first-order corrector, we give a detailed

convergence analysis of the MsDPGM under the assump-

tion of periodic oscillating coefficients. We also investigate a

multiscale discontinuous Galerkin method (MsDGM) whose

bilinear form is the same as that of the DGM but the

approximation space is constructed from the classical over-

sampling multiscale basis functions. This method has not

been analyzed theoretically or numerically in the literature

yet. Numerical experiments are carried out on the multiscale

elliptic problems with periodic and randomly generated log-

normal coefficients. Their results demonstrate the efficiency

of the proposed method.

K E Y W O R D S

error estimate, multiscale discontinuous Petrov–Galerkin method, multi-

scale problems

184 Numer Methods Partial Differential Eq. 2018;34:184–210. wileyonlinelibrary.com/journal/num © 2017 Wiley Periodicals, Inc.

http://orcid.org/0000-0002-6314-1674


SONG AND DENG 185

1 INTRODUCTION

This article considers the numerical approximation of second-order elliptic problems with heteroge-

neous and highly oscillating coefficients. These problems arise in many applications such as flows in

porous media or composite materials. The numerical simulation of such problems in heterogeneous

media poses significant mathematical and computational challenges. Standard numerical methods such

as the finite element method (FEM) or the finite volume method usually require a very fine mesh size.

This necessitates a tremendous amount of computer memory and CPU time. In the past few decades,

a number of more efficient multiscale numerical methods have been proposed; see, for example, the

multiscale finite element method (MsFEM) [1–3], heterogeneous multiscale method (HMM) [4–6],

upscaling or numerical homogenization method [7–10], variational multiscale method (or the residual-

free bubble method) [11–15], wavelet homogenization techniques [16, 17], and multigrid numerical

homogenization techniques [18, 19]. Most of them are presented on meshes that are coarser than the

scale of oscillations. The small-scale effect on the coarse scale is either captured by localized multiscale

basis functions or modeled into the coarse scale equations with prescribed analytical forms.

In this article, we use the MsFEM framework and propose a new method. The two main ingredients

of MsFEM are the global formulation of the method such as various FEMs and the construction of

basis functions. The key of MsFEM is to construct a multiscale basis from the local solutions of the

elliptic operator for finite element formulation. There have been many extensions and applications

of the method in the past fifteen years (cf. [20–31]). We refer the reader to the book [32] for more

discussions on the theory and applications of MsFEMs.

It is shown that the oversampling MsFEM is a nonconforming FEM, where the numerical solution

has certain continuity across the inner-element boundaries, and its basis functions are discontinuous at

the inner-element boundaries (see [1, 2]). Note that DG methods do not require any continuity, which

inspires the natural use of the DGM as the global formulation coupled with the oversampling multiscale

bases (see [32]). DG methods for elliptic boundary value problems have been studied since the late

1970s, and it is now an active research area (see [33–35]). Examples of the DG methods include the

local discontinuous Galerkin (LDG) method [36–38], and the interior penalty discontinuous Galerkin

(IPDG) methods [34, 35, 39–43]. In this article, we are concerned with the IPDG method, still named

DGM. DG methods permit good local conservation properties of the state variable and also offer the

use of very general meshes due to the lack of interelement continuity requirement, for example, meshes

that contain several different types of elements or hanging nodes. These features are crucial in many

multiscale applications (see [44, 45]).

In the past 10 years, several multiscale methods related to DG methods have been introduced. For

instance, a multiscale model reduction technique in the framework of the DGM for use in high–contrast

problems, named Generalized Multiscale Finite Element Method, was presented in [46]. The use of

special multiscale basis functions of the DG approximation space to capture the singularity of the

solutions was discussed in [47–49]. The variational multiscale methods based on the DGM for use in

elliptic multiscale problems without any assumption on scale separation or periodicity were proposed in

[50, 51]. HMMs based on DGM for homogenization or advection–diffusion problems were presented

in [52, 53]. However, to our knowledge, the multiscale discontinuous Galerkin method (MsDGM),

which couples the classical oversampling multiscale basis with the discontinuous Galerkin method,

has not been studied in detail for error analysis. There is also no numerical testing in the literature. To

complete this task, in this article, we provide the formulation and the corresponding error estimate of

MsDGM. Our numerical experiments show that MsDGM takes advantages of MsFEM and DGM and

thus can eliminate the resonance error and obtain more accurate results than the classical MsFEM.

Further, we noticed that the Petrov–Galerkin (PG) formulation of the multiscale method can

decrease the computational costs of assembling the stiffness matrix, leading to more efficient algorithms.
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Moreover, it has been found that the MsPGM can eliminate the resonance error using the oversampling

technique [2] and the conforming piecewise linear functions as test functions [3, 30]. Therefore, in this

article, we try to use the discontinuous oversampling multiscale space in the framework of PG method,

which couples both DGM and MsPGM. The proposed method is called the multiscale discontinuous

Petrov–Galerkin method (MsDPGM), which has two key issues to consider. The first issue is how

to define its bilinear form and prove its coercivity, which requires the transfer operator between the

approximation space and the test function space. We emphasize that, compared to MsDGM, the bilin-

ear form of MsDPGM is not just choosing the discontinuous piecewise linear function space as test

function space. A finer choice of the terms of the bilinear form should be made. The second issue

is error estimate. We give a new H2 norm error estimate between the multiscale solution and the

homogenized solution with the first-order corrector. This error estimate plays an important role in the

latter convergence analysis. MsDPGM takes advantage of both MsPGM and DGM and is expected to

approximate the multiscale solution better than standard MsPGM.

The proposed method is related to a combined finite element and oversampling multiscale

Petrov–Galerkin method (FE-OMsPGM) [45], which utilizes the traditional FEM directly on a fine

mesh of the problematic part of the domain and use the OMsPGM on a coarse mesh of the other part. The

transmission condition across the FE-OMsPGM interface is treated by the penalty technique of DGM.

In [45], the transmission condition is handled by penalizing the jumps from linear function values as

well as the fluxes of the finite element solution on the fine mesh to those of the oversampling multiscale

solution on the coarse mesh. Compared to [45], in this article, we develop and analyze MsDPGM for

multiscale elliptic problems, using the PG formulation based on the discontinuous multiscale approx-

imation space. The jump terms across each interelement are dealt with using a penalty technique. The

penalty term of linear function values is taken as that of the FE-OMsPGM while penalizing the fluxes

is not needed.

Although the error analysis is done assuming periodic oscillating coefficients, our method is not

restricted to the periodic case. The numerical results show that the introduced MsDPGM is very efficient

for randomly generated coefficients. Recently, the multiscale methods on localization of the elliptic

multiscale problems with highly varying (non-periodic) coefficients are studied in some papers. For

instance, the new variational multiscale method is presented in [54]; a new oversampling strategy for

the MsFEM is presented in [55]. In our future work, more extensions and developments of our method

with the new oversampling strategy will be given.

The outline of this article is as follows. In Section 2, we present the model problem and recall the

DG variational formulation of the model problem in the broken Sobolev spaces. Section 3 is devoted to

deriving the MsDPGM. It includes the introduction of discontinuous oversampling multiscale approx-

imation space and the derivation of the formulations of MsDGM and MsDPGM. In Section 4, we

review the homogenization results and give some preliminaries for the error analysis. In Section 5, we

present the main results of our method. It includes the stability and a priori error estimate. In Section

6, we first give several numerical examples with periodic coefficients to demonstrate the accuracy of

the method. Then we do the experiment to study how the size of oversampling elements affects the

errors. Finally, we apply our method to multiscale problems on the L–shaped domain to demonstrate

the efficiency of the method. Conclusions are given in the last section.

2 MODEL PROBLEM AND DG VARIATIONAL
FORMULATION

In this section, we introduce the multiscale model problem and give the DG variational formulation

of the model problem. First, we state some notation and conventions. Throughout this article, the

Einstein summation convention is used: summation is taken over repeated indices. Standard notation
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on Lebesgue and Sobolev spaces is employed. Subsequently C, C0, C1, C2, ··· denote generic constants,

which are independent of ε, h, unless otherwise stated. We also use the shorthand notation A � B and

B � A for the inequality A ≤ CB and B ≤ CA. We write A � B for A � B and B � A.

2.1 Model problem
Let � ⊂ Rn, n = 2, 3, be a bounded polyhedral domain. Consider the following multiscale elliptic

problem:

{
−∇ · (aε(x)∇uε(x)) = f (x) in �,

uε(x) = 0 on ∂�,
(2.1)

where ε � 1 is a parameter that represents the small scale in the physical problem, f ∈ L2(�), and

aε(x) = (aεij(x)) is a symmetric, positive definite matrix:

λ|ξ |2 ≤ aεij(x)ξiξj ≤ �|ξ |2 ∀ξ ∈ Rn, x ∈ � (2.2)

for some positive constants λ and �.

2.2 DG variational formulation
In this subsection, we derive the DG variational formulation of the model problem in the broken

Sobolev spaces. Let Th be a quasiuniform triangulation of the domain�. We define hK as diam(K) and

denote by h = maxK∈Th hK .

We introduce the broken Sobolev spaces for any real number s,

Hs(Th) = {
v ∈ L2(�) : ∀K ∈ Th, v|K ∈ Hs(K)

}
,

equipped with the broken Sobolev norm:

‖|v‖|Hs(Th) =
⎛
⎝∑

K∈Th

‖v‖2
Hs(K)

⎞
⎠

1/2

.

Denote by �h the set of interior edges/faces of the Th. With each edge/face e, we associate a unit

normal vector n. If e is on the boundary ∂�, then n is taken to be the unit outward vector normal to ∂�.

If v ∈ H1(Th), the trace of v along any side of one element K is well defined. If two elements Ke
1

and Ke
2 are neighbors and share a common side e, there are two traces of v along e. We define the

average and jump for v. Assume that the normal vector n is oriented from Ke
1 to Ke

2 :

{v} := v|Ke
1
+ v|Ke

2

2
, [v] := v|Ke

1
− v|Ke

2
∀e = ∂Ke

1 ∩ ∂Ke
2 . (2.3)

We extend the definition of jump and average to sides that belong to the boundary ∂�:

{v} = [v] = v|Ke
1

∀e = ∂Ke
1 ∩ ∂�.



188 SONG AND DENG

In the following, assume that s = 2. Multiplying (2.1) by any v ∈ Hs(Th), integrating on each

element K, and using integration by parts, we obtain

∫
K

aε∇uε · ∇v dx −
∫
∂K

aε∇uε · nK v ds =
∫

K
fv.

Recall that nK is the outward normal to K. Summing over all elements and switching to the normal

vectors n yield

∑
K∈Th

∫
∂K

aε∇uε · nK v ds =
∑

e∈�h∪∂�

∫
e
[aε∇uε · nv] ds.

From the regularity of the solution uε, it follows that

∑
K∈Th

∫
K

aε∇uε · ∇v dx −
∑

e∈�h∪∂�

∫
e
{aε∇uε · n}[v]ds =

∫
�

fv,

where we have used the formula [vw] = {v} [w] + [v] {w} and the fact that [aε∇uε · n] = 0.

We now define the DG bilinear form a(·, ·) : Hs(Th)× Hs(Th) → R :

a(u, v) :=
∑
K∈Th

∫
K

aε∇u · ∇v dx −
∑

e∈�h∪∂�

∫
e
{aε∇u · n}[v]ds

+ β
∑

e∈�h∪∂�

∫
e
[u]{aε∇v · n}ds +

∑
e∈�h∪∂�

γ0

ρ

∫
e
[u][v]ds,

where β is a real number such as −1, 0, 1, γ0 is called penalty parameter, and ρ > 0 will be specified

later.

The general DG variational formulation of the problem (2.1) is as follows: Find uε ∈ Hs(Th)

such that

a(uε, v) = (f , v) ∀v ∈ Hs(Th). (2.4)

Remark 2.1 It is easy to check that if the solution uε of problem (2.1) belongs to H2(�),

then uε satisfies the variational formulation (2.4). Conversely, if uε ∈ H1(�) ∩ Hs(Th)

satisfies (2.4), then uε is the solution of problem (2.1).

3 MULTISCALE DISCONTINUOUS PETROV-GALERKIN
METHOD

This section is devoted to the formulations of multiscale discontinuous methods for solving (2.1).

In Subsection 3.1, we introduce the oversampling multiscale approximation space defined on the

triangulation Th. The formulations of the MsDG and MsDPG methods are presented in Subsection 3.2.

3.1 Oversampling multiscale approximation space
This subsection introduces the oversampling multiscale approximation space defined on the triangula-

tion Th (cf. [2, 32, 56]). Here, we only consider the case where n = 2. For any K ∈ Th with nodes
{
xK

i

}3

i=1
,
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FIGURE 1 Example of oversampling basis functions. Left: basis function for periodic media. Right: basis function

for random media [Color figure can be viewed at wileyonlinelibrary.com]

let
{
ϕK

i

}3

i=1
be the basis of P1(K) satisfying ϕK

i (xK
j ) = δij, where δij stands for the Kroneckers symbol.

For any K ∈ Th, we denote by S = S(K) a macroelement which contains K and dK = dist(∂S, K).
We assume that dK ≥ δ0hK for some positive constant δ0 independent of hK . The minimum angle of

S(K) is bounded from below by some positive constant θ0 independent of hK . In our later numerical

experiments, for any element K ∈ Th we put its macroelement S(K) in such a way that their barycenters

are coinciding and their corresponding edges are parallel. See Figure 2 for an illustration.

Let ψS
i , i = 1, 2, 3, with ψS

i ∈ H1(S), be the solution of the problem:

−∇ · (aε∇ψS
i ) = 0 in S, ψS

i |∂S = ϕS
i . (3.1)

Here
{
ϕS

i

}3

i=1
is the nodal basis of P1(S) such that ϕS

i (xS
j ) = δij, i, j = 1, 2, 3.

The oversampling multiscale basis functions on K are defined by

ψi
K =

3∑
j=1

cK
ijψ

S
j |K in K , (3.2)

with the constants so chosen that

ϕK
i =

3∑
j=1

cK
ij ϕ

S
j |K in K . (3.3)

The existence of the constants cK
ij is guaranteed because

{
ϕS

j

}3

j=1
also forms the basis of P1(K). To

illustrate the basis functions, we depict two examples of them in Figure 1 (cf. [45]).

Let OMS(K) = span
{
ψi

K
}3

i=1
be the set of space functions on K. Define the projection �K :

OMS(K) → P1(K) as follows:

�Kψ = ciϕ
K
i if ψ = ciψ

K
i ∈ OMS(K).

Further, we introduce the discontinuous piecewise “OMS” approximation space and the discon-

tinuous piecewise linear space:

V ms
h,dc = {

ψh ∈ L2(�) : ψh|K ∈ OMS(K) ∀K ∈ Th
}

,
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Vh,dc = {
vh ∈ L2(�) : vh|K ∈ P1(K) ∀K ∈ Th

}
.

Here we use the abbreviated indexes “ms,” “dc” for multiscale, discontinuous, respectively.

3.2 Formulation of the MsDGM/MsDPGM
Using the DG variational formulation (2.4) and the discontinuous piecewise “OMS” approximation

space, we are now ready to define the MsDG method: Find ũh ∈ V ms
h,dc such that

a(ũh, vh) = (f , vh) ∀vh ∈ V ms
h,dc. (3.4)

To define the discrete bilinear form for MsDPGM, we need the transfer operator�h : V ms
h,dc → Vh,dc

as following:

�hψh|K = �Kψh for any K ∈ Th,ψh ∈ V ms
h,dc.

Remark 3.1 In general, the trial and test functions of PGM are not in the same space. For

example, here we might use V ms
h,dc and Vh,dc as the trial function and test function spaces

respectively. However, it may result in a difficulty to prove the inf-sup condition of the

corresponding bilinear form. Hence, in this article, we introduce the transfer operator�h

to connect the two spaces and use it in the bilinear form which causes a simple way to

establish the stability of the MsDPGM. The idea of connecting the trial function and test

function spaces in the Petrov-Galerkin method through an operator was introduced in [57]

(see also [58]).

The discrete bilinear form of MsDPGM on V ms
h,dc × V ms

h,dc is defined as:

ah(uh, vh) :=
∑
K∈Th

∫
K

aε∇uh · ∇�hvh dx

−
∑

e∈�h∪∂�

∫
e
{aε∇uh · n}[�hvh]ds

+ β
∑

e∈�h∪∂�

∫
e
[�huh]{aε∇vh · n}ds

+ J0(uh, vh),

J0(uh, vh) :=
∑

e∈�h∪∂�

γ0

ρ

∫
e
[�huh][�hvh]ds,

where β is a real number such as −1, 0, 1, γ0 is the penalty parameter, and ρ will be specified later.

Remark 3.2 It is well known that DG methods utilize discontinuous piecewise poly-

nomial functions and numerical fluxes, which implies that the weak formulation subject

to discretization must include jump terms across interfaces and that some penalty terms

must be added to control the jump terms. Therefore, the methods require the restriction

on the penalty parameter to ensure stability and convergence in some sense. In fact, the

optional convergence is related with the penalty parameter (see [59]). In this article, the
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MsDPGM takes advantage of the penalty technique, which involves the selection of the

penalty parameter. In the theoretical analysis, the penalty parameter γ0 is constrained

by a large constant from below to ensure the coercivity of ah. However, in practice, the

penalty parameter is chosen through our experience. In following numerical tests, we try

a different choice of the penalty parameter to study its affection on the error.

Remark 3.3 The parameter ρ is chosen as ε in our later error analysis, which means the

theory requires an over-penalization in respect to h as in general, we assume that ε � h.

However, for the random coefficient case, there is no explicit ε in the multiscale problem.

In this case, we choose ρ as h.

Then, our MsDPG method is: Find uh ∈ V ms
h,dc such that

ah(uh, vh) = (f ,�hvh) ∀vh ∈ V ms
h,dc. (3.5)

Remark 3.4 The design of the last two terms in ah is tricky. As a matter of fact, we

have tried numerically different possibilities of using �h (or not before each uh or vh)

before we found that the current form of ah is the best one and, most importantly, the

corresponding MsDPGM can be analyzed theoretically. Indeed, our MsDPGM is a certain

pseudo Petrov-Galerkin formulation of the method that the test function space is formally

the same as the solution space. However, some terms involve a projection of the multiscale

test function into a piecewise linear function space.

We let the discrete norm for MsDPGM on V ms
h,dc be

‖vh‖h,� :=
( ∑

K∈Th

∫
K

aε∇vh · ∇vh dx +
∑

e∈�h∪∂�

ρ

γ0

∫
e
{aε∇vh · n}2ds

+
∑

e∈�h∪∂�

γ0

ρ

∫
e
[�hvh]2 ds

)1/2

.

Noting that the operator �h is not defined for the exact solution uε, we introduce the following

function to measure the error of the discrete solution:

E(v, vh) :=
( ∑

K∈Th

‖(aε)1/2∇(v − vh)‖2

L2(K)

+
∑

e∈�h∪∂�

ρ

γ0

‖ {aε∇(v − vh) · n} ‖2

L2(e)

+
∑

e∈�h∪∂�

γ0

ρ
‖[v −�hvh]‖2

L2(e)

)1/2

∀v ∈ H2(�), vh ∈ V ms
h,dc. (3.6)

From the triangle inequality, it is clear that, for any v ∈ H2(�), vh, wh ∈ V ms
h,dc,

E(v, vh) � E(v, wh)+ ‖wh − vh‖h,�. (3.7)
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4 HOMOGENIZATION RESULTS AND PRELIMINARIES

In this section, we first review the results of classical homogenization theory and give an important H2

norm error estimate between the multiscale solution and the homogenized solution with the first order

corrector. Then, we recall some preliminaries for our later analysis.

4.1 The homogenization results
Hereafter, we assume that aε(x) has the form a(x/ε) and aij(y) are sufficiently smooth periodic functions

in y with respect to a unit cube Y. For our analysis, it is sufficient to assume that aij(y) ∈ W 2,p(Y) with

p > n.

For convenience, we take

u1 = u0 + εχ j(x/ε)
∂u0

∂xj
,

where u0 is the homogenized solution, χ j is the periodic solution of the following cell problem (cf.

[60, 61]):

−∇y · (a(y)∇yχ
j(y)) = ∇y · (a(y)ej), j = 1, · · · , n (4.1)

with zero mean, that is,
∫

Y χ
jdy = 0, and ej is the unit vector in the jth direction.

The following theorem gives the H2 semi-norm estimate of the error uε − u1, which plays a pivotal

role in the error analysis. We arrange the proof in the Appendix A.

Theorem 4.1 Assume that u0 ∈ H3(�). Then, the following estimate is valid:

|uε − u1|H2(�) � |u0|H2(�) +
1√
ε
|u0|W1,∞(�) + ε|u0|H3(�). (4.2)

4.2 Preliminaries
In this subsection, we give some preliminaries for subsequent analysis. We first recall the definition of

ψS
i , i = 1, 2, 3 (see [3.1]). By the asymptotic expansion (cf. [1, 30]), we know that

ψS
i = ϕS

i + εχ j(x/ε)
∂ϕS

i

∂xj
+ εηj(x)

∂ϕS
i

∂xj
, (4.3)

with ηj being the solution of

−∇ · (aε∇ηj) = 0 in S, ηj|∂S = −χ j(x/ε). (4.4)

Substituting (4.3) to (3.2), we see that ψi
K

can be expanded as follows:

ψi
K = ϕK

i + εχ j(x/ε)
∂ϕK

i

∂xj
+ εηj(x)

∂ϕK
i

∂xj
. (4.5)

Recall that dK = dist(∂S, K), which satisfies: dK ≥ δ0hK . Denote by d = minK∈Th dK .



SONG AND DENG 193

Remark 4.1 It has been shown in [2, 30] that the distance dK is determined by the

thickness of the boundary layer of ηj. Numerically, it has been observed that the boundary

layer of ηj is about O(ε) thick (see [2]). It was also observed that dK = hK(> ε) is usually

sufficient for eliminating the boundary layer effect. Therefore, in our numerical tests we

choose hK as the oversampling size in this article. To study how the size of oversampling

elements affects the errors, in Section 6 we include a numerical test which uses a series

of dK with different δ0 to compare the corresponding errors.

By the Maximum Principle we have

‖ηj‖L∞(S) ≤ |χ j|L∞(S) � 1, (4.6)

which together with the interior gradient estimate (see [44, Lemma 3.6] or [1, Proposition C.1])

implies that

‖∇ηj‖L∞(K) � 1

dK
. (4.7)

Next, we give a trace inequality which will be used in this article frequently (see [62, Theorem

1.6.6], [63]).

Lemma 4.1 Let K be an element of the triangulation Th. Then, for any v ∈ H1(K), we
have

‖v‖L2(∂K) ≤ C
(

diam(K)−1/2‖v‖L2(K) + ‖v‖1/2

L2(K)‖∇v‖1/2

L2(K)

)
. (4.8)

The following lemma gives some approximation properties of the space OMS(K) (cf. [44,

Lemma 4.1]).

Lemma 4.2 Take φK
h = ∑

xK
i node of K u0(xK

i )ψ
K
i (x), ∀K ∈ Th. Then, the following

estimates hold:

|u1 − φK
h |H1(K) � hK |u0|H2(K) + εhn/2

K d−1
K |u0|W1,∞(K), (4.9)

‖u1 − φK
h ‖L2(K) � h2

K |u0|H2(K) + εhn/2
K |u0|W1,∞(K), (4.10)

|u1 − φK
h |H2(K) � ε−1hK |u0|H2(K) + hn/2

K d−1
K |u0|W1,∞(K) + ε|u0|H3(K). (4.11)

Moreover, we recall the stability estimate for �K , which will be used in our later analysis (cf.

Lemma 3.2 in [45]).

Lemma 4.3 There exist positive constants γ , α1, and α2 which are independent of h
and ε such that if ε/hK ≤ γ for all K ∈ Th, then the following estimates are valid for
any vh ∈ OMS(K),

‖∇vh‖L2(K) � ‖∇�K vh‖L2(K), (4.12)

α2‖∇vh‖2

L2(K) ≤ |
∫

K
aε∇vh · ∇�K vh dx| ≤ α1‖∇vh‖2

L2(K). (4.13)
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The following lemma gives an inverse estimate for the function in space OMS(K) [44, Lemma 5.2].

Lemma 4.4 Under the assumptions of Lemma 4.3, and assuming ε � hK � dK , we
have

|vh|H2(K) � 1

ε
‖∇vh‖L2(K) ∀vh ∈ OMS(K). (4.14)

5 MAIN RESULTS

In this section, we only carry out the convergence analysis of MsDPGM. For MsDGM, similar results

can be obtained by the same argument and are arranged in the Appendix B for the convenience of the

reader. For MsDPGM, we first show the stability of the bilinear form guaranteeing the existence and

uniqueness of the solution and then prove the error estimate with β = −1, ρ = ε. We omit other cases

such as β = 0, 1 as the analysis is similar.

5.1 Existence and uniqueness of the solution of MsDPGM
We start by establishing the stability of the bilinear form of MsDPGM.

Theorem 5.1 We have

|ah(uh, vh)| ≤ C‖uh‖h,�‖vh‖h,� ∀uh, vh ∈ V ms
h,dc. (5.1)

Further, let the assumptions of Lemma 4.4 be fulfilled and γ0 be large enough. Then,

ah(vh, vh) ≥ κ‖vh‖2
h,� ∀vh ∈ V ms

h,dc, (5.2)

where κ > 0 is a constant independent of h, ε, γ0

Proof From the definition of the norms, the Cauchy-Schwarz inequality, and Lemma

4.3, (5.1) follows immediately.

Next, we prove (5.2). From (4.13), we get

ah(vh, vh) ≥ C
∑
K∈Th

‖(aε)1/2∇vh‖2

L2(K) − 2
∑

e∈�h∪∂�

∫
e
{aε∇vh · n}[�hvh]ds

+
∑

e∈�h∪∂�

γ0

ε
‖[�hvh]‖2

L2(e).

It is easy to see:

2
∑

e∈�h∪∂�

∫
e
{aε∇vh · n}[�hvh]ds

≤ 2
∑

e∈�h∪∂�
‖{aε∇vh · n}‖L2(e)‖[�hvh]‖L2(e)

≤
∑

e∈�h∪∂�

γ0

2ε
‖[�hvh]‖2

L2(e) +
∑

e∈�h∪∂�

2ε

γ0

‖{aε∇vh · n}‖2

L2(e).
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Hence, we obtain

ah(vh, vh) ≥ C
∑
K∈Th

‖(aε)1/2∇vh‖2

L2(K) −
1

2

∑
e∈�h∪∂�

γ0

ε
‖[�hvh]‖2

L2(e)

− 2
∑

e∈�h∪∂�

ε

γ0

‖ {aε∇vh · n} ‖2

L2(e) +
∑

e∈�h∪∂�

γ0

ε
‖[�hvh]‖2

L2(e)

= C
∑
K∈Th

‖(aε)1/2∇vh‖2

L2(K) +
1

2

∑
e∈�h∪∂�

γ0

ε
‖[�hvh]‖2

L2(e)

+ 1

2

∑
e∈�h∪∂�

ε

γ0

‖ {aε∇vh · n} ‖2

L2(e) −
5

2

∑
e∈�h∪∂�

ε

γ0

‖ {aε∇vh · n} ‖2

L2(e). (5.3)

By Lemmas 4.1, 4.4 and ε � h, we have

ε

γ0

‖ {aε∇vh · n} ‖2

L2(e) ≤ C1

γ0

‖(aε)1/2∇vh‖2

L2(K). (5.4)

Therefore, from (5.3) and (5.4), we get

ah(vh, vh) ≥
(

C − 5C1

2γ0

) ∑
K∈Th

‖(aε)1/2∇vh‖2

L2(K)

+ 1

2

∑
e∈�h∪∂�

ε

γ0

‖ {aε∇vh · n} ‖2

L2(e)

+ 1

2

∑
e∈�h∪∂�

γ0

ε
‖[�hvh]‖2

L2(e),

where γ0 is large enough such that
5C1
2γ0

< C
2

. Choosing κ = min
(C

2
, 1

2

)
yields (5.2). This

completes the proof.

Theorem 5.1 guarantees the existence of a unique solution to our MsDPGM. Now we establish an

analog of the Céa lemma written in the following theorem:

Theorem 5.2 For large enough γ0, the following inequality holds:

E(uε, uh) � inf
vh∈Vms

h,dc
E(uε, vh), (5.5)

where the error function E is defined in (3.6).

Proof It is clear that by Theorem 5.1, we have

‖uh − vh‖2
h,� � ah(uh − vh, uh − vh)

= ah(uh, uh − vh)− ah(vh, uh − vh)

= (f ,�h(uh − vh))− ah(vh, uh − vh).
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From (2.4), it follows that

(f ,�h(uh − vh)) =
∑
K∈Th

∫
K

aε∇uε · ∇�h(uh − vh)dx

−
∑

e∈�h∪∂�

∫
e
{aε∇uε · n}[�h(uh − vh)]ds.

Then, with [uε] = 0 and [aε∇uε · n] = 0, we arrive at

(f ,�h(uh − vh))− ah(vh, uh − vh)

=
∑
K∈Th

∫
K

aε∇(uε − vh) · ∇�h(uh − vh)dx

−
∑

e∈�h∪∂�

∫
e
{aε∇(uε − vh) · n}[�h(uh − vh)]ds

+
∑

e∈�h∪∂�

∫
e
{aε∇(uh − vh) · n}[�hvh − uε]ds

−
∑

e∈�h∪∂�

γ0

ε

∫
e
[�hvh − uε][�h(uh − vh)]ds

� E(uε, vh)‖uh − vh‖h,�.

Therefore, we obtain

‖uh − vh‖h,� � E(uε, vh),

which together with (3.7) yields

E(uε, uh) � E(uε, vh)+ ‖uh − vh‖h,� � E(uε, vh).

The proof is completed.

5.2 A priori error estimate of MsDPGM
We present the main result of the paper on the error estimate of the MsDPGM.

Theorem 5.3 Let uε be the solution of (2.1), and let uh be the numerical
solution computed using MsDPGM defined by (3.5). Assume that u0 ∈ H3(�), f ∈ L2(�),
and that ε � h � d, and that the penalty parameter γ0 is large enough. Then there exists
a constant γ independent of h and ε such that if ε/hK ≤ γ for all K ∈ Th, the following
error estimate holds:

E(uε, uh) �
√
ε + ε

d
+ h + h3/2

√
ε

, (5.6)

where d = minK∈Th dK .
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Proof According to Theorem 5.2, the proof is devoted to estimating the interpolation

error. To do this, we define ψh by

ψh|K = φK
h =

∑
xK
i node of K

u0(xK
i )ψ

K
i (x) ∀K ∈ Th. (5.7)

Clearly, ψh ∈ V ms
h,dc. It is easy to see that

�Kφ
K
h = Ihu0|K ,

where Ih : Hs(Th) → Vh,dc is the Lagrange interpolation operator. Then, we set vh as ψh.

It is shown that in [44],

⎛
⎝∑

K∈Th

‖(aε)1/2∇(uε − vh)‖2

L2(K)

⎞
⎠

1/2

� h|u0|H2(�) +
√
ε|u0|W1,∞(�) +

ε

d
|u0|W1,∞(�). (5.8)

Next, we estimate the term

∑
e∈�h∪∂�

ε

γ0

‖ {aε∇(uε − vh) · n} ‖2

L2(e) := I.

From (4.8), we have

I � εh−1‖∇(uε − u1)‖2

L2(�)
+ εh−1

∑
K∈Th

‖∇(u1 − ψh)‖2

L2(K)

+ ε‖∇(uε − u1)‖2

L2(�)
‖∇2(uε − u1)‖2

L2(�)

+ ε

⎛
⎝∑

K∈Th

‖∇(u1 − ψh)‖2

L2(K)

⎞
⎠

1/2⎛
⎝∑

K∈Th

‖∇2(u1 − ψh)‖2

L2(K)

⎞
⎠

1/2

.

Therefore, it follows from Theorem 4.1, Lemma 4.2, and the assumption ε � h � d that,

I � h2|u0|2H2(�)
+ ε|u0|2W1,∞(�)

+ ε4|u0|2H3(�)
, (5.9)

where we have used ε√
h
<

√
ε and the Young’s inequality to derive the above inequality.

It remains to consider the term
∑

e∈�h∪∂�
γ0
ε
‖[uε − �hvh]‖2

L2(e). Noting that both uε
and u0 are continuous functions, we have

∑
e∈�h∪∂�

γ0

ε
‖[uε −�hvh]‖2

L2(e) =
∑

e∈�h∪∂�

γ0

ε

∫
e
[u0 −�hvh]2ds

�
∑

e∈�h∪∂�

γ0

ε

∫
e
(u0 −�hψh)

2 ds := II.
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Then, by use of Lemma 4.1, we have

∫
e
(u0 −�hψh)

2ds =
∫

e
(u0 − Ihu0)

2ds

� h−1‖u0 − Ihu0‖2

L2(K) + ‖u0 − Ihu0‖L2(K)‖∇(u0 − Ihu0)‖L2(K)

� h3|u0|2H2(K),

which yields

II � h3

ε
|u0|2H2(�)

. (5.10)

Hence, from (5.8-5.10), it follows (5.6) immediately.

6 NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to confirm the theoretical findings in Section 5.

We present the numerical results of MsDPGM (3.5) and those of MsDGM (3.4). To illustrate the

accuracy of our methods, we also implement the multiscale Petrov–Galerkin method (MsPGM) and

the oversampling multiscale Petrov–Galerkin method (OMsPGM; see [30]). We also show the results

of the traditional linear finite element method (FEM) and discontinuous Galerkin method (DGM)

on the corresponding coarse grid to get a feeling for the accuracy of the multiscale methods. All

numerical experiments are designed to demonstrate that MsDPGM has better performance than the

other MsPGMs.

For simplicity, we use in tests the standard triangulation, which is constructed by first dividing the

domain � into subsquares of equal length h and then connecting the lower-left and the upper-right

vertices of each subsquare. For any element K ∈ Th we put its macroelement S(K) in such a way

that their barycenters are coinciding and their corresponding edges are parallel. The lengths of the

horizontal and vertical edges of S(K) are four times of those of the edges of K. We assume that all

the right-angle sides of S(K), K ∈ Th, have the same length denoted by hS. Recall the definition of the

d = minK∈Th dK . Define

d̃ = (hS − h)/3. (6.1)

It is clear that d � d̃. See Figure 2, for an illustration.

In all of these computations, we have used highly resolved numerical solutions obtained using the

traditional linear finite element method with mesh size hf = 1/4096 as the reference solutions which

are denoted as ue. Denoting uh as the numerical solutions computed by the methods considered in this

section, we measure the relative error in L2, L∞ and energy norms as following:

‖uh − ue‖L2

‖ue‖L2

,
‖uh − ue‖L∞

‖ue‖L∞
,
‖uh − ue‖1,h

‖ue‖1,h
,

where

‖v‖1,h :=
⎛
⎝∑

K∈Th

‖(aε)1/2∇v‖2

L2(K) + ‖v‖2

L2(�)

⎞
⎠

1/2

.
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FIGURE 2 The element K and its oversampling element S(K): lower-right elements (left) and upper-left elements

(right)

In all tests, the coefficient aε is chosen as the form aε = aεI , where aε is a scalar function and I is the

2 by 2 identity matrix.

6.1 Application to elliptic problems with highly oscillating coefficients
We first consider the model problem (2.1) in the squared domain � = [0, 1] × [0, 1]. Assume that

f = 1 and the coefficient aε(x1, x2) has the following periodic form:

aε(x1, x2) = 2 + 1.8 sin(2πx1/ε)

2 + 1.8 cos(2πx2/ε)
+ 2 + 1.8 sin(2πx2/ε)

2 + 1.8 sin(2πx1/ε)
, (6.2)

where we fix ε = 1/100.

In this test, we choose h = 1/32 and report errors in the L2, L∞ and energy norms in Table 1. We

can see that MsDPGM and MsDGM give more accurate results than the other multiscale methods

considered here, while FEM and DGM give worse approximations to the gradient of the solution. We

also compare the CPU times T 1 and T 2 spent by MsDGM and MsDPGM, where T 1 is the CPU time

of assembling the stiffness matrix, and T 2 is the CPU time of solving the discrete system of algebraic

equations. We can observe that the CPU time T 1 of our MsDPGM for assembling the stiffness matrix

is shorter than that of MsDGM. For MsDPGM, the main computational cost of assembling the stiffness

matrix is to compute the element stiffness matrix which has entries of the type

∫
K

aε∇φi · ∇ϕj, φi ∈ V ms
h,dc, ϕj ∈ Vh,dc, (6.3)

TABLE 1 Relative errors in the L2, L∞, and energy norms for the model problem with periodic coefficient given

by (6.2). ρ = ε = 1/100, d̃ = h = 1/32, γ0 = 20.

Relative error L2 L∞ Energy norm CPU time(s)

T 1 T 2

FEM 0.1150 e−00 0.2311 e−00 0.8790 e−00 – –

DGM 0.2667 e−00 0.2634 e−00 0.5498 e−00 – –

MsPGM 0.7448 e−01 0.7342 e−01 0.2929 e−00 – –

OMsPGM 0.1430 e−01 0.1521 e−01 0.1641 e−00 – –

MsDGM 0.1007 e−01 0.1029 e−01 0.1629 e−00 1.300 0.028

MsDPGM 0.1266 e−01 0.1395 e−01 0.1631 e−00 1.119 0.027
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TABLE 2 Relative errors in the L2, L∞, and energy norms with respect to the

penalty parameter γ0 for MsDPGM to solve the model problem with periodic coefficient

given by (6.2). ρ = ε = 1/100, d̃ = h = 1/32.

Relative error L2 L∞ Energy norm

γ0 = 10 0.1100 e−01 0.1266 e−01 0.1637 e−00

γ0 = 20 0.1266 e−01 0.1395 e−01 0.1631 e−00

γ0 = 100 0.1397 e−01 0.1496 e−01 0.1638 e−00

γ0 = 1000 0.1426 e−01 0.1519 e−01 0.1641 e−00

γ0 = 10000 0.1429 e−01 0.1521 e−01 0.1641 e−00

where V ms
h,dc is the discontinuous multiscale approximation space and Vh,dc is the discontinuous linear

space. Using the fact that ∇ϕj,ϕj ∈ Vh,dc is a constant in element K, we save some CPU time in the

computing of integral (6.3).

Second, we do an experiment to study how the penalty parameter γ0 affects the errors. We fix

ρ = ε = 1/100, d̃ = h = 1/32 and choose a series of γ0 in the test. The results are shown in Table 2.

We observe that as γ0 grows larger, the relative error is close to the error of the OMsPGM. It seems

that MsDPGM converges to OMsPGM as the penalty parameter γ0 grows to infinity (cf. [64]).

The third numerical experiment demonstrates the role of the mesh size h described in Theorem

5.3. We fix d̃ = 1/32 and ε = 1/100. Four kinds of mesh size are chosen: h = 1/64, 1/32, 1/16, 1/8.

The results are given in Table 3. Relative error in energy norm against the mesh size h is depicted in

Figure 3. It is easy to see that as h grows larger, the relative error in energy norm grows larger, which

is in agreement with the theoretical results in Theorem 5.3. We remark that the classical oversampling

MsFEM suffers from the resonance error since the H1–error estimate has the term ε/h due to the

nonconforming error (see [3]). To show the difference, we list the corresponding errors in Table 3 and

plot the error in energy norm in Figure 3, respectively. It is easy to see that as h grows larger, the

relative error in energy norm of MsFEM grows lower first and higher later, which is in agreement with

the fact that its error has the nonconforming error ε/h. However, for MsDPGM, the error estimate in

Theorem 5.3, and the numerical results in Table 3 and Figure 3 show that the resonance error has been

removed completely.

6.2 Affection of the size of the oversampling patches
In this subsection, we study how the size of oversampling elements affects the error. The experiment

to verify the inequality (4.7) for the model example with coefficient (6.2) has been done in [45]. The

figures have been shown that ‖∇ηj‖L∞(K) · dK is bounded by a constant, which is consistent with (4.7);

(see Figure 5 in [45]).

TABLE 3 Relative errors in the L2 and energy norms with respect to the mesh size h for MsDPGM and the

oversampling MsFEM to solve the model problem with periodic coefficient given by (6.2).

ρ = ε = 1/100, d̃ = 1/32, γ0 = 20.

Relative error MsDPGM MsFEM

L2 Energy norm L2 Energy norm

h = 1/64 0.1371 e−01 0.1593 e−00 0.1200 e−01 0.1771 e−00

h = 1/32 0.1266 e−01 0.1631 e−00 0.1676 e−01 0.1644 e−00

h = 1/16 0.1948 e−01 0.1870 e−00 0.2438 e−01 0.1902 e−00

h = 1/8 0.5210 e−01 0.2620 e−00 0.5659 e−01 0.2682 e−00
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FIGURE 3 Relative error in energy norm against the mesh size h [Color figure can be viewed at wileyonlineli-

brary.com]

The following numerical experiment demonstrates the affection of the size of the oversampling

patches. Recalling the requirement of the oversampling size dK ≥ δ0hK , we show the relative over-

sampling size δ0 against the error. Note the distance d = minK∈Th dK , which is equivalent to d ≥ δ0h.

We set ρ = ε = 1/100, h = 1/32. The result is shown in Table 4. We can see that as δ0 (equivalently

d̃) grows larger, the relative error in energy norm shrinks, which matches the theoretical results in

Theorem 5.3. We also notice that when d̃ is close to
√
ε, the errors begin to decrease very slowly.

Recall that there is a homogenization error
√
ε in the error estimate (5.6). We think that when d is

large enough,
√
ε becomes the dominated error instead of ε/d.

6.3 Application to multiscale problems on L–shape domain
We consider the multiscale problem on the L–shaped domain of Figure 4 with Dirichlet boundary

condition so chosen that the true solution is u = r
1
3 sin(2θ/3) in polar coordinates. It is known that

the solution has the singular behavior around reentrant corners. So, the classical finite element method

fails to provide a satisfactory result.

First, we simulate the problem with coefficient given by (6.2). We fix ε = 1/100 and choose

h = 1/16. The relative errors are shown in Table 5. We observe that both MsDPGM and MsDGM give

better approximation than the other MsPG methods.

TABLE 4 Relative errors in the L2, L∞, and energy norms with respect to the

relative oversampling size δ0 for MsDPGM to solve the model problem with periodic

coefficient given by (6.2). ρ = ε = 1/100, h = 1/32, γ0 = 20.

Relative error L2 L∞ Energy norm

δ0 = 1/32 0.4304 e−01 0.4423 e−01 0.2184 e−00

δ0 = 1/16 0.2924 e−01 0.3172 e−01 0.1893 e−00

δ0 = 1/8 0.1969 e−01 0.2156 e−01 0.1728 e−00

δ0 = 1/4 0.1790 e−01 0.2372 e−01 0.1653 e−00

δ0 = 1/2 0.1531 e−01 0.1766 e−01 0.1642 e−00

δ0 = 1 0.1266 e−01 0.1295 e−01 0.1631 e−00

δ0 = 2 0.1197 e−01 0.1398 e−01 0.1631 e−00
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FIGURE 4 The L–shape domain [Color figure can be viewed at wileyonlinelibrary.com]

Second, we simulate the problem with the random log-normal permeability field a(x), which is

generated by using the moving ellipse average [8] with the variance of the logarithm of the permeability

σ 2 = 1.0, and the correlation lengths l1 = l2 = 0.01 in x1 and x2 directions, respectively. One

realization of the resulting permeability field is depicted in Figure 5, where amax(x)
amin(x)

= 2.9642e + 003.

In this test, we set ρ = h = 1/16 since there is no explicit ε in the example. The results are shown in

Table 6. We can see that MsDPGM gives a better approximation than the other MsPG methods, while

the standard MsPGM gives the wrong approximation to the gradient of solution.

7 CONCLUSION

In this article, we have proposed a new Petrov–Galerkin method based on the discontinuous multi-

scale approximation space for multiscale elliptic problems. Under some assumptions regarding the

coefficients, we give the error analysis of our method. The H1–error is of the order

O
(√

ε + ε

d
+ h + h3/2

√
ε

)
,

which consists of the oversampling multiscale approximation error and the error contributed by the

penalty. The unpleasant resonance error does not appear as our method uses discontinuous piecewise

linear functions as test functions, which are needed only to estimate the interpolation error. Several

numerical experiments have demonstrated the efficiency of MsDPGM. We also study the corresponding

MsDGM, which couples the classical oversampling multiscale basis with DGM. Our convergence

TABLE 5 Relative errors in the L2, L∞, and energy norm for the L–shaped problem

with periodic coefficient (6.2). ρ = ε = 1/100, d̃ = h = 1/16, γ0 = 20.

Relative error L2 L∞ Energy norm

MsPGM 0.7765 e−02 0.3635 e−01 0.2014 e−00

OMsPGM 0.6285 e−02 0.3277 e−01 0.1035 e−00

MsDGM 0.3903 e−02 0.2244 e−01 0.9260 e−01

MsDPGM 0.4654 e−02 0.2299 e−01 0.9275 e−01
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FIGURE 5 The random log-normal permeability field a(x). amax(x)
amin(x)

= 2.9642e + 003 [Color figure can be viewed at

wileyonlinelibrary.com]

analysis shows that MsDGM can also eliminate the resonance error completely. That is the reason why

MsDGM works just as well, if not slightly better than MsDPGM. Furthermore, we can see that the

CPU-time cost of MsDPGM for assembling the stiffness matrix is lower than that of the MsDGM due

to its PG version. Therefore, MsDPGM is a good choice considering both the computational accuracy

and the computer capacity simultaneously.

We emphasize that the proposed method is not restricted to the periodic case. The numerical exper-

iments show that it is highly applicable to the random coefficient case. However, with the classical

oversampling multiscale basis function space introduced in [2], the error estimate method is based

on the classical homogenization theory, which needs the assumption that the oscillating coefficient

is periodic. In the future, we plan to combine the Petrov–Galerkin method with the new oversam-

pling multiscale space [55] to consider elliptic multiscale problems without any assumption on scale

separation or periodicity. Besides, the introduced method may be inefficient for multiscale problems

that have singularities, such as the Dirac function singularities, which stem from the simulation of

steady flow transport through highly heterogeneous porous media driven by extraction wells [65] or

high-conductivity channels that connect the boundaries of coarse-grid blocks [66]. To solve these

problems, it needs special definitions of the multiscale basis functions around the channels such as

the local spectral basis functions (see [66]) or local refinement of the elements near the channels (see

[44]). We will couple these techniques with the introduced method in our future work. Finally, we

remark that Generalized Multiscale Finite Element method coupling DGM was explored in [46]. The

computation is divided into two stages: offline and online. In the offline stage, they construct a reduced

dimensional multiscale space for rapid computations in the online stage. In the online stage, they use

the basis functions computed offline to solve the problem for the current realization of the parameters.

Similar to MsDPGM, in the online stage, we can use the Petrov–Galerkin version of DGM to solve the

TABLE 6 Relative errors in the L2, L∞, and energy norm for the L–shaped problem

with random coefficient σ 2 = 1.0 and l1 = l2 = 0.01. d̃ = ρ = h = 1/16, γ0 = 20.

Relative error L2 L∞ Energy norm

MsPGM 0.9074 e−00 0.1290 e+01 0.6601 e+02

OMsPGM 0.9307 e−02 0.3851 e−01 0.1428 e−00

MsDGM 0.6504 e−02 0.3718 e−01 0.9931 e−01

MsDPGM 0.8587 e−02 0.3810 e−01 0.1013 e−00
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problem with the basis functions computed offline, which leads to one kind of Generalized Multiscale

Discontinuous Petrov-Galerkin method. The difficulty is the choice of the test function space and the

proof of inf-sup condition, which are worth studying.
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APPENDIX A: PROOF OF THEOREM 4.1

The following theorem plays a major role in our analysis (cf. [23, 56]).

Theorem A.1 Assume that u0 ∈ H2(�) ∩ W 1,∞(�). There exists a constant C
independent of u0, ε,� such that

‖uε − u1 − εθε‖H1(�) ≤ Cε|u0|H2(�),

‖εθε‖H1(�) ≤ C
√
ε|u0|W1,∞(�) + Cε|u0|H2(�),

where θε denote the boundary corrector defined by

−∇ · (aε∇θε) = 0 in �,

θε = −χ j(x/ε)
∂u0(x)
∂xj

on ∂�. (A.1)

We first estimate |εθε|H2(�).

Lemma A.1 Assume that u0 ∈ H2(�) ∩ W 1,∞(�). Then the following estimate holds:

|εθε|H2(�) � 1√
ε
|u0|W1,∞(�) + |u0|H2(�). (A.2)

Proof We only consider the case where n = 2. For n = 3, the proof is similar. Let ξ ∈
C∞

0 (R2) be the cut-off function such that 0 ≤ ξ ≤ 1, ξ = 1 in � \�ε/2, ξ = 0 in �ε, and

|∇ξ | ≤ C/ε, |∇2ξ | ≤ C/ε2 in �, where �ε := {x : dist {x, ∂�} ≥ ε}. Then

v = θε + ξ

(
χ j ∂u0

∂xj

)
∈ H1

0 (�)

satisfies

−∇ · (aε∇v) = −∇ ·
(

aε∇
(
ξχ j ∂u0

∂xj

))
in �, v|∂� = 0. (A.3)
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By use of Theorem 4.3.1.4 in [67], and together with Theorem A.1, we have

|v|H2(�) � 1

ε
‖v‖L2(�) + ‖∇ ·

(
aε∇

(
ξχ j ∂u0

∂xj

))
‖L2(�)

�
√
ε

ε2
|u0|W1,∞(�) +

1

ε
|u0|H2(�),

which implies

|θε|H2(�) �
√
ε

ε2
|u0|W1,∞(�) +

1

ε
|u0|H2(�). (A.4)

This completes the proof.

Proof of Theorem 4.1 It is shown that, for any ϕ ∈ H1
0 (�) (see [23, p.550] or [56,

p.125]),

(a(x/ε)∇(uε − u1), ∇ϕ)�
= (a∗∇u0, ∇ϕ)� −

(
a(x/ε)∇

(
u0 + εχ k ∂u0

∂xk

)
, ∇ϕ

)
�

= ε

∫
�

aij(x/ε)χ k ∂
2u0

∂xj∂xk

∂ϕ

∂xi
dx − ε

∫
�

αk
ij(x/ε)

∂2u0

∂xj∂xk

∂ϕ

∂xi
dx, (A.5)

where αk(x/ε) = (αk
ij(x/ε)) are skew-symmetric matrices which satisfy that (see [61,

p. 6])

Gk
i (y) = ∂

∂yj
(αk

ij(y)),
∫

Y
αk

ij(y)dy = 0

with

Gk
i = a∗

ik − aij

(
δkj + ∂χ k

∂yj

)
.

From (A.5), it follows that,

∇ · (a(x/ε)∇(uε − u1)) = ε
∂

∂xi

(
aij(x/ε)χ k ∂

2u0

∂xj∂xk
− αk

ij(x/ε)
∂2u0

∂xj∂xk

)
,

which combing the definition of θε, yields

∇ · (a(x/ε)∇(uε − u1 − εθε)) = ε
∂

∂xi

(
aij(x/ε)χ k ∂

2u0

∂xj∂xk
− αk

ij(x/ε)
∂2u0

∂xj∂xk

)
.

Thus, from Theorem 4.3.1.4 in [67], it follows that

|uε − u1 − εθε|H2(�) � 1

ε
‖uε − u1‖L2(�) + |u0|H2(�) + ε|u0|H3(�), (A.6)

which combing (A.2) and Theorem A.1, yields (4.2) immediately.
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APPENDIX B: THEORETICAL RESULTS OF MSDGM

We give some theoretical results of MsDGM here for the convenience of the reader. Detailed analysis

can be found in the first author’s Ph.D. thesis [68].

Lemma B.1 We have

|a(ũh, vh)| ≤ C‖ũh‖E‖vh‖E ∀ũh, vh ∈ V ms
h,dc. (B.1)

Further, let the assumptions of Lemma 4.4 be fulfilled and γ0 is large enough, then

a(vh, vh) ≥ 1

2
‖vh‖2

E ∀vh ∈ V ms
h,dc. (B.2)

Here

‖v‖E :=
⎛
⎝∑

K∈Th

∫
K

aε|∇v|2dx +
∑

e∈�h∪∂�

ρ

γ0

∫
e
{aε∇v · n}2ds

+
∑

e∈�h∪∂�

γ0

ρ

∫
e
[v]2ds

⎞
⎠

1/2

∀v ∈ V ms
h,dc.

Using the definition of the above norm, the Cauchy-Schwarz inequality and (4.8), Lemma 4.4, we

can obtain (B.1) and (B.2) immediately. The proof is similar to Theorem 5.1 and is omitted here.

Theorem B.1 Let uε be the solution of (2.1), and let ũh be the numerical solution
computed by MsDGM defined in (3.4). Assume that u0 ∈ H3(�), f ∈ L2(�), ε � h �
d, and that the penalty parameter γ0 is large enough. Then there exists a constant γ
independent of h and ε such that if ε/hK ≤ γ for all K ∈ Th, the following error estimate
holds:

‖uε − ũh‖E � h + h3/2

√
ε

+ √
ε + ε

d
, (B.3)

where d = minK∈Th dK .

Proof By use of the Galerkin orthogonality of a(·, ·), we only need to estimate the

interpolation error.

Take vh as ψh (see (5.7)). The following two estimates of the error have been shown

in the proof of Theorem 5.3:

⎛
⎝∑

K∈Th

‖(aε)1/2∇(uε − vh)‖2

L2(K)

⎞
⎠

1
2

� h|u0|H2(�) +
(√
ε + ε

d

)
|u0|W1,∞(�), (B.4)
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and

∑
e∈�h∪∂�

ε

γ0

‖ {aε∇(uε − vh) · n} ‖2

L2(e)

� h2|u0|2H2(�)
+ ε|u0|2W1,∞(�)

+ ε4|u0|2H3(�)
. (B.5)

It remains to consider the term
∑

e∈�h∪∂�
γ0
ε
‖[uε − vh]‖2

L2(e). Noting that [uε] = [u1] = 0,

then by use of the trace inequality (4.8) and Lemma 4.2, we have

∑
e∈�h∪∂�

γ0

ε
‖[uε − vh]‖2

L2(e) �
∑

e∈�h∪∂�

γ0

ε
‖[u1 − vh]‖2

L2(e)

� ε−1h−1
∑
K∈Th

‖u1 − vh‖2

L2(K)

+ ε−1

⎛
⎝∑

K∈Th

‖u1 − vh‖2

L2(K)

⎞
⎠

1/2⎛
⎝∑

K∈Th

‖∇(u1 − vh)‖2

L2(K)

⎞
⎠

1/2

� h3

ε
|u0|2H2(�)

+ ε|u0|2W1,∞(�)
, (B.6)

where we have used the assumption ε � h � d and the Young’s inequality to derive the

above inequality.

Hence, from (B.4), (B.5), and (B.6), it follows (B.3) immediately. This completes the

proof.


