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a b s t r a c t

A combined finite element method is presented in this paper to solve the elliptic problems
posted in domains with rough boundaries. Solving these problems numerically is difficult
because resolving the boundaries usually requires very fine meshes, while good quality
meshes often over-refine unnecessarily the interior of the domain. The basic idea of the
proposed method is to use a fine mesh with size h in the vicinity of oscillating boundaries
and a coarse mesh with size H ≫ h for other portions of the domain to reduce some
unnecessary computational effort. The transmission conditions across the fine-coarsemesh
interface are treated by the penalty technique. The key point of the method lies in the new
scheme employing a weighted average in the definition of the bilinear form, which avoids
the affection of the ratio H/h in the error estimate. We prove a quasi-optimal convergence
in terms of elements since there is no whole H2 regularity in the domain with rough
boundaries. Numerical results are provided for elliptic equations in domains with non-
oscillating or oscillating boundaries to illustrate the theoretical results.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Many problems arising in modern material sciences and engineering are described by partial differential equations in
domains with very rough boundaries. Typical examples include the electromagnetic scattering by an obstacle coated with
an absorbing inhomogeneous paint, the dynamics of two-fluid flow in porousmedia and past roughwalls, the hydrodynamic
lubrication of rough surfaces, and among many others (see [1–3] and the references therein). Solving these problems
numerically can be hard because resolving the boundaries usually requires very fine meshes and hence tremendous amount
of computer memory and CPU time. To overcome this difficulty, many papers have been devoted to the homogenization of
boundary value problems in domainswith fast oscillating boundaries (see [4–6,1] and the references therein). In general, the
homogenized problems are the boundary value problems for the same equations in the same domains but with themollified
boundary instead of the oscillating one. The mollified boundary and the effective boundary condition on it are determined
by the original boundary condition and the geometry of the oscillations.

The homogenization theorymainly studied the identification of the homogenized problems and proving the convergence
theorems for the solutions. To our knowledge, less work of multiscale methods has been done for the boundary value
problems in a domain with multiscale boundary. Only recently, some researchers began to concern about this topic. See,
for example, the multiscale finite element method (MsFEM) for Laplace equation with homogeneous Dirichlet boundary
value on rough domain [7], the MsFEM for Laplace equation with oscillating Neumann boundary conditions on rough
boundaries [8], and the multiscale methods based on the localized orthogonal decomposition (LOD) technique for problems
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with complex geometry [9]. Just as the classical MsFEM [10], the author in [7] defines the multiscale basis functions for the
elements near the rough boundary by solving a cell problem with the homogeneous Dirichlet condition on the rough edge
andwith linear nodal basis function as boundary condition on other edges. By this way, the influence of the geometry should
be captured by the basis functions. The MsFEM in [8] introduces a special Neumann boundary condition that incorporates
both the microscopically geometrical and physical information of the rough boundary for the local cell problem posed on
elements with rough edge. Compared to the method in [7], this approach can be applied to problems with non-Dirichlet
boundary conditions or problems with inhomogeneous Dirichlet boundary value over the rough boundary. However, the
analysis in [7,8] is limited to periodic data. In [9], the multiscale analysis based on the LOD technique is extended to elliptic
problems on domains with cracks or complicated boundary, in which corrected coarse test and trail spaces taking the fine
features of the domain into account are constructed. We remark that all of the above mentioned methods are based on
solutions of local problems which can be computed off-line and can thus be done in parallel. However, these methods are
still expensive since local problems depend on the small parameter that characterizes the roughness of the boundary. Of
course, all these methods are much cheaper than using pure piecewise linear FEM in the whole domain.

The oscillation of the boundary also stands for a kind of scale, which are subject to multiscale problems (see [11,9,8]). For
such problem, since the global regularity of the solution is low (especially near the boundary), the traditional finite element
method (FEM) becomes inapplicable because resolving the boundaries usually requires very fine meshes, and good quality
meshes often over-refine unnecessarily the interior of the domain. Thus, in this paper, we try to introduce a combined finite
element method (combined FEM) which uses a fine mesh with size h in the vicinity of oscillating boundary while uses a
coarse mesh with size H(≫ h) for the interior subdomains. By this way, we can cut down some unnecessary computational
effort. The negative effect of the processing method is that the generated mesh has many hanging nodes along the fine-
coarse mesh interface. For instance, here for each edge of the interface coarse-element, it has (H/h − 2) hanging nodes.
Along the interface, the numerical solution is discontinuous. Thanks to the penalty techniques used in the interior penalty
discontinuous (or continuous) Galerkin methods originated in 1970s [12–17], we may deal with the transmission condition
across the fine-coarse mesh interface by penalizing the jumps from the function values of the finite element solution on
the fine mesh to those on the coarse mesh. However, if we use the traditional variational form with the arithmetic average
of the function values from the fine and coarse grids respectively, the error analysis shows that the ratio H/h debases the
convergence rate (see [16,18]). Hence, in the proposed scheme,we employ aweighted average in the definition of the bilinear
form, which can eliminate the affection of the ratio H/h in the error estimates. The weighted coefficients are depended on
the sizes of coarse and fine meshes along the interface, namely H and h. The penalty coefficient is defined as γ /(H + h) for
some positive constant γ .We prove a quasi-optimal convergence in terms of elements since for the rough boundary problem
its solution is generally in Hs(Ω) with 1 < s < 2.

There are some other numerical methods to handle the complex geometrical boundary such as the cut finite element
method in [19] where the boundary and interface conditions are built into the discrete formulation by the Nitsche’s
method, the extended/generalized finite element method in [20] which is achieved by adding special shape functions to
the polynomial approximation space of the classical finite element method, and the composite finite elements in [21]. The
composite finite elementmethodwhich constructs a coarse basis that is fitted to the boundary has been successfully applied
to problems in domain with oscillating boundaries (see [22–24]).

Besides problems with oscillating boundaries, our method may be applied into other partial differential equations with
challenging singularities, e.g., well problems with the Dirac function singularities, partial differential equations on domains
containing small geometric details, high conductivity channels which appear in many fields of science and engineering. It
is also possible to combine the present method with the standard MsFEM to deal with the problems with both oscillating
coefficients and oscillating boundary data. Note that a lot of ways have been developed to deal with themultiscale problems
with singularities, such as, the MsFEMs (see [25–31]) and the localized orthogonal decomposition methods (see [32–35]).
The proposed method is very similar to the combined MsFEM introduced in [30], which uses the traditional linear FEM
directly on a fine mesh of the problematic part of the domain and the oversampling MsFEM on a coarse mesh of the other
part to solve the multiscale problems with singularities.

The outline of the paper is as follows. In Section 2, we describe the model problem and introduce the combined FEM. In
Section 3, we analyze the proposedmethod, including the continuity, the coercivity of the scheme, and the bound of the error
in energy norm which shows that there is no ratio H/h appearing in the error estimate and the convergence order is quasi-
optimal with respect to elements. In Section 4, we simulate some model problems in the domain with rough boundaries
by the combined FEM. The numerical experiments verify the theoretical results. We end with some conclusions which are
drawn in Section 5.

Throughout the paper, C , γ ′ and γ are used to denote the generic positive constants which are independent of H , h and
maybe depend on some constant parameters (e.g., penalty parameter γ ), which are different in different places. We also use
the shorthand notation A ≲ B and B ≳ A for the inequality A ≤ CB and B ≥ CA respectively. The notation A ≂ B is equivalent
to the statement A ≲ B and B ≲ A.
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Fig. 1. A diagram of the space discretization.

2. The combined finite element method

2.1. Model problem

Consider the following second order elliptic equation:

−∇ · (A∇u) = f in Ω,

u = 0 on ∂Ω,
(2.1)

where Ω ⊂ Rd (d = 2, 3) is a bounded convex or nonconvex domain with Lipschitz boundary. Assume the source term
f ∈ L2(Ω), and the matrix A(x) = [aij(x)] ∈ (W 1,∞(Ω))d×d is symmetric and satisfies the uniformly elliptic condition that
there exist two constants λ, Λ > 0 such that

λ|ξ |
2

≤ aij(x)ξiξj ≤ Λ|ξ |
2

∀ξ ∈ Rd. (2.2)

Note that the boundary ∂Ω of the domain Ω may be oscillating, which may possess the complex geometrical structure. In
this paper, we try to design the numerical method for complicate geometry which is quite general in the sense that we do
not impose any assumptions on the oscillating of the boundary. Hence, we have not given any detailed characterization of
the so-called complicate geometry. However, for further theoretical analysis, we give some regularity assumptionwhich can
be seen as the starting point of the method. We assume that the regularity of the solution in the interior of the domain Ω is
H2, while the local regularity of the solution in vicinity of the boundary ∂Ω is H1+s with 0 < s ≤ 1. The concrete illustration
of the regularity of the solution will be given later. As mentioned above, for problems in rough domain, the traditional FEM
needs meshes fine enough to resolve the multiscale boundary, and good quality meshes often over-refine unnecessarily the
interior of the domain. Note that, for simplicity, we consider only the homogeneous Dirichlet boundary condition while the
extension to non-homogeneous one is obvious and is omitted.

2.2. Space discretization

In order to reduce some unnecessary computational effort spending on the interior domain, we first separate the research
area Ω into two subdomains Ω1 and Ω2 such that Ω2 ⊂⊂ Ω and Ω = Ω1 ∪Ω2 ∪Γ , where Γ = ∂Ω1 ∩ ∂Ω2 is the interface
of Ω1 and Ω2 (see Fig. 1 for an illustration). Throughout the paper, we shall use the standard Sobolev space Hs(Ω), its norm
and inner product, and refer to [36,37] for their definitions.

For simplicity, we assume that the length/area of Γ satisfies |Γ | = O(1), and Γ is Lipschitz continuous. Let Th and TH be
the shape-regular and quasi-uniform triangulations of the domain Ω1 and Ω2 respectively, which constitute a triangulation
Th,H of Ω . Denote Γh and ΓH the two partitions of the interface Γ introduced by Th and TH , respectively. For any element
K ∈ Th,H , we define hK (or HK ) as diam(K ). Denote h = maxK∈ThhK , H = maxK∈THHK . n denotes outward normal vector on
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Γ pointing from Ω1 to Ω2, while ni denotes outside normal vector of Ωi, i = 1, 2. Let T Γ
h be the set of elements in Th whose

intersections with Γ are theirs faces, that is,

T Γ
h := {K : K ∈ Th whose one face ⊂ Γ } .

Let

T̃h := Th \ T Γ
h .

For s ≥ 0 and any subset M ⊂ Th,H , denote Hs(M) :=
∏

K∈MHs(K ) and

|·|
2
s,M :=

∑
K∈M

|·|
2
s,K .

Next we define the average and jump on Γ . Let v be a piecewise smooth function and let e ∈ Γ be a face (if d = 2, face
means edge) shared by two neighboring elements K1 in Ω1 and K2 in Ω2. If we denote by vi the trace of v taken from within
Ki, i = 1, 2, then the weighted averages {v}w , {v}

w , and the jump [v] of v over e are defined by

{v}w = w1v1 + w2v2, {v}
w

= w2v1 + w1v2, [v] = v1 − v2, (2.3)

where the weights

w1 =
h

H + h
and w2 =

H
H + h

.

For example, here we have

{(A∇v) · n}w = w1(A∇v1) · n + w2(A∇v2) · n. (2.4)

To present the combined FEM formulation, we introduce the following ‘‘energy’’ space:

V = {v ∈ L2(Ω) : v|Ωi
∈ H1(Ωi), i = 1, 2, v|∂Ω = 0,

v|K ∈ H2(K ), ∀K ∈ Th,H , K ∩ Γ ̸= ∅}. (2.5)

Denote by VH and Vh the H1-conforming linear finite element space over TH and Th respectively. For a given mesh Th,H ,
we define the corresponding finite element space for the combined FEM as follows:

Vh,H = {v ∈ L2(Ω) : v|Ω1
∈ Vh, v|Ω2

∈ VH , v|∂Ω = 0}. (2.6)

2.3. Formulations of the combined FEM

Testing Eq. (2.1) by any v ∈ V , using integration by parts, and using the ‘‘magic’’ formula [ab] = {a}w[b] + [a]{b}w , we
obtain∫

Ω1∪Ω2

A∇u · ∇v −

∫
Γ

{(A∇u) · n}w[v] =

∫
Ω1∪Ω2

f v.

Introduce the following bilinear form on V × V :

a(u, v) =

∫
Ω1∪Ω2

A∇u · ∇v −

∫
Γ

{(A∇u) · n}w[v] − β

∫
Γ

[u]{(A∇v) · n}w

+

∫
Γ

γ

H + h
[u][v], (2.7)

where β is a real number such as −1, 0, 1, and γ > 0 will be specified later. Clearly,

a(u, v) = (f , v) :=

∫
Ω

f v ∀v ∈ V . (2.8)

Then, our combined FEM is to find uh,H ∈ Vh,H such that

a(uh,H , vh,H ) = (f , vh,H ) ∀vh,H ∈ Vh,H . (2.9)

In order to estimate the error of the combined FEM solution, we introduce the following energy norm on the space V :

|||v||| :=

(A1/2
∇v

2
0,Ω1∪Ω2

+
γ

H + h
∥[v]∥

2
0,Γ

+
H + h

γ
∥{A∇v · n}w∥

2
0,Γ

)
1/2

∀v ∈ V . (2.10)
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3. Error estimates

For the combined FEM, we first show the stability of the bilinear form guaranteeing the existence and uniqueness of the
solution, and then prove the error estimate with β = 1. For other cases such as β = −1, 0, the analysis is similar and is
omitted here.

The following three inequalities will be used frequently in this paper (cf. [37]). They are the trace inequality:

∥v∥0,∂K ≲ h
−

1
2

K ∥v∥0,K + h
1
2
K ∥∇v∥0,K ∀v ∈ H1(K ), K ∈ Th,H , (3.1)

the inverse trace inequality:

∥v∥0,∂K ≤ Ctrh
−

1
2

K ∥v∥0,K ∀v ∈ P1(K ), K ∈ Th,H (3.2)

for some constant Ctr independent of K and v, and Young’s inequality:

∀ε > 0, ∀a, b ∈ R, ab ≤
ε

2
a2 +

1
2ε

b2. (3.3)

3.1. Céa’s Lemma

The following lemma gives the continuity and coercivity of the bilinear form a(·, ·) for the combined FEM:

Lemma 3.1. There exists a constant γ0 independent of H, h such that when γ ≥ γ0, it holds that

|a(u, v)| ≤ 2 |||u||| |||v||| ∀u, v ∈ V , (3.4)

a(vh,H , vh,H ) ≥
1
2

⏐⏐⏐⏐⏐⏐vh,H
⏐⏐⏐⏐⏐⏐2 ∀vh,H ∈ Vh,H . (3.5)

Proof. (3.4) can be proven by Cauchy–Schwarz inequality directly. Next, we prove (3.5). Denote vh = vh,H |Ω1
and

vH = vh,H |Ω2
. By use of the inverse trace inequality (3.2) and the uniformly elliptic condition (2.2), it follows that

H + h
γ

{A∇vh,H · n}w

2
0,Γ ≤ 2

∑
e∈Γh

w1
H + h

γ
∥A∇vh∥

2
0,e

+ 2
∑
E∈ΓH

w2
H + h

γ
∥A∇vH∥

2
0,E

≤
2Λ2

γ

∑
e∈Γh

h ∥∇vh∥
2
0,e +

2Λ2

γ

∑
E∈ΓH

H ∥∇vH∥
2
0,E

≤
2Λ2Ctr

γ

∑
K∈Th

∥∇vh∥
2
0,K +

2Λ2Ctr

γ

∑
K∈TH

∥∇vH∥
2
0,K

≤
2Λ2Ctr

λγ

∑
K∈Th

A1/2
∇vh

2
0,K +

2Λ2Ctr

λγ

∑
K∈TH

A1/2
∇vH

2
0,K

=
2Λ2Ctr

λγ

∑
K∈Th,H

A1/2
∇vh,H

2
0,K .

(3.6)

Further, applying the Young’s inequality (3.3), we obtain

a(vh,H , vh,H ) =
⏐⏐⏐⏐⏐⏐vh,H

⏐⏐⏐⏐⏐⏐2 − 2
∫

Γ

{A∇vh,H · n}w[vh,H ]ds

−
H + h

γ

{A∇vh,H · n}w

2
0,Γ

≥
⏐⏐⏐⏐⏐⏐vh,H

⏐⏐⏐⏐⏐⏐2 −
1
2

γ

H + h

[vh,H ]
2
0,Γ − 3

H + h
γ

{A∇vh,H · n}w

2
0,Γ

≥
⏐⏐⏐⏐⏐⏐vh,H

⏐⏐⏐⏐⏐⏐2 −
1
2

γ

H + h

[vh,H ]
2
0,Γ −

6Λ2Ctr

λγ

A1/2
∇vh,H

2
0,Ω1∪Ω2

≥

(
1 − max

(1
2
,
6Λ2Ctr

λγ

))⏐⏐⏐⏐⏐⏐vh,H
⏐⏐⏐⏐⏐⏐2.

Then (3.5) follows by taking sufficiently large γ0 such that 6Λ2Ctr
λγ0

≤
1
2 . The proof of the lemma is completed. □
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The following lemma is an analogue of the Céa lemma [37].

Lemma 3.2. Let u and uh,H be the solutions of (2.1) and (2.9) respectively. There exists a constant γ0 > 0 independent of H and
h such that when γ ≥ γ0, it holds:⏐⏐⏐⏐⏐⏐u − uh,H

⏐⏐⏐⏐⏐⏐ ≲ inf
vh,H∈Vh,H

⏐⏐⏐⏐⏐⏐u − vh,H
⏐⏐⏐⏐⏐⏐ . (3.7)

Proof. From (2.8) and (2.9), we have the following Galerkin orthogonality:

a(u − uh,H , vh,H ) = 0 ∀vh,H ∈ Vh,H . (3.8)

Then from (3.5) it follows that⏐⏐⏐⏐⏐⏐uh,H − vh,H
⏐⏐⏐⏐⏐⏐2 ≤ 2a(uh,H − vh,H , uh,H − vh,H )

= 2a(u − vh,H , uh,H − vh,H )
≤ 4

⏐⏐⏐⏐⏐⏐u − vh,H
⏐⏐⏐⏐⏐⏐ ⏐⏐⏐⏐⏐⏐uh,H − vh,H

⏐⏐⏐⏐⏐⏐ .
Hence, it follows from the triangle inequality that⏐⏐⏐⏐⏐⏐u − uh,H

⏐⏐⏐⏐⏐⏐ ≤
⏐⏐⏐⏐⏐⏐u − vh,H

⏐⏐⏐⏐⏐⏐ +
⏐⏐⏐⏐⏐⏐uh,H − vh,H

⏐⏐⏐⏐⏐⏐ ≤ 5
⏐⏐⏐⏐⏐⏐u − vh,H

⏐⏐⏐⏐⏐⏐ .
This completes the proof of the lemma. □

3.2. General polyhedral boundary

Let IH : C(Ω̄2) ↦→ VH be the standard Lagrange interpolation operator. It is well known that (see, e.g., [36])

|v − IHv|i,TH ≲ H2−i
|v|2,TH , 0 ≤ i ≤ 2, ∀v ∈ H2(TH ). (3.9)

Since the solution may be singular at the conner points, we use the Scott–Zhang interpolation in Ω1 instead of the Lagrange
one. Let Πh : H1(Ω1) ↦→ Vh be the Scott–Zhang interpolation (see [38,36]) so defined that the following estimates hold.

|v − Πhv|i,T Γ
h

≲ h2−i
|v|2,T Γ

h
, 0 ≤ i ≤ 2, ∀v ∈ H2(T Γ

h ),

|v − Πhv|i,T̃h ≲ h1+s−i
|v|1+s,T̃h , i = 0, 1, 0 ≤ s ≤ 1, ∀v ∈ H1+s(T̃h).

(3.10)

Define the new operator Ih,H via

(Ih,Hv)|Ω1
= Πh(v|Ω1

), (Ih,Hv)|Ω2
= IH (v|Ω2

). (3.11)

Based on the Céa Lemma 3.2 and the above approximation properties, we have the following theorem which gives the
error estimate in the energy norm.

Theorem3.1. Let u and uh,H be the solutions of (2.1) and (2.9) respectively. Assume that ∀K ∈ TH ∪T Γ
h , u ∈ H2(K ), and ∀K ∈ T̃h,

u ∈ H1+s(K ) with some constant 0 < s ≤ 1. Then there exists a constant γ0 > 0 independent of H, h such that when γ ≥ γ0, it
holds that⏐⏐⏐⏐⏐⏐u − uh,H

⏐⏐⏐⏐⏐⏐ ≲ H|u|2,TH + h|u|2,T Γ
h

+ hs
|u|1+s,T̃h . (3.12)

Proof. We first estimate
⏐⏐⏐⏐⏐⏐u − Ih,Hu

⏐⏐⏐⏐⏐⏐. It is obvious that⏐⏐⏐⏐⏐⏐u − Ih,Hu
⏐⏐⏐⏐⏐⏐2 =

A1/2
∇(u − Ih,Hu)

2
0,Ω1∪Ω2

+
γ

H + h

[u − Ih,Hu]
2
0,Γ

+
H + h

γ

{A∇(u − Ih,Hu) · n}w

2
0,Γ

:= E1 + E2 + E3.

From (3.9) and (3.10), we have

E1 =
A1/2

∇(u − IHu)
2
0,Ω2

+

∑
K∈T Γ

h

A1/2
∇(u − Πhu)

2
0,K

+

∑
K∈T̃h

A1/2
∇(u − Πhu)

2
0,K

≲ H2
|u|22,TH

+ h2
|u|22,T Γ

h
+ h2s

|u|21+s,T̃h
.
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Further, by use of the trace inequality (3.1), we obtain

E2 ≤ 2
∑
e∈Γh

γ

H + h
∥u − Πhu∥2

0,e + 2
∑
E∈ΓH

γ

H + h
∥u − IHu∥2

0,E

≲
∑
K∈T Γ

h

h−1(h−1
∥u − Πhu∥2

0,K + h ∥∇(u − Πhu)∥2
0,K

)
+

∑
K∈TH

H−1(H−1
∥u − IHu∥2

0,K + H ∥∇(u − IHu)∥2
0,K

)
≲ h2

|u|22,T Γ
h

+ H2
|u|22,TH

.

Similarly, we have

E3 ≤ 2
∑
e∈Γh

H + h
γ

w1
A1/2

∇(u − Πhu)
2
0,e

+ 2
∑
E∈ΓH

H + h
γ

w2
A1/2

∇(u − IHu)
2
0,E

≲
∑
K∈T Γ

h

h
(
h−1

∥∇(u − Πhu)∥2
0,K + h

∇
2(u − Πhu)

2
0,K

)
+

∑
K∈TH

H
(
H−1

∥∇(u − IHu)∥2
0,K + H

∇
2(u − IHu)

2
0,K

)
≲ h2

|u|22,T Γ
h

+ H2
|u|22,TH

.

Combining the estimates of E1, E2 and E3 together, we obtain⏐⏐⏐⏐⏐⏐u − Ih,Hu
⏐⏐⏐⏐⏐⏐ ≲ H|u|2,TH + h|u|2,T Γ

h
+ hs

|u|1+s,T̃h .

Finally, by Lemma 3.2, we complete the proof of the theorem. □

4. Numerical tests

In this section, we first provide some numerical results to verify the convergence rate of the combined FEM established
in Section 3. And then, we apply the combined FEM to the model problem in two kinds of domain such as the domain with
the oscillating boundary on one side and the domain with the oscillating boundary on all sides to show the efficiency of the
proposedmethod (see Figs. 3 and 5 for illustrations of such domains). For simplicity, in our numerical tests we only consider
the following Poisson equation:

−∆u = f in Ω,

u = g on ∂Ω.
(4.1)

For the combined FEM, the triangulationmay be done by the sameway as that of [30]. We recall the procedure as follows
(see Fig. 2 for an illustration):

• First, we triangulate the domain Ω with a coarse mesh whose mesh size H is much bigger than the extent of the
boundary oscillation.

• Secondly, we choose the union of coarse-grid elements adjacent to the boundary ∂Ω as Ω1 and denote Ω \Ω1 by Ω2.
For example, in our tests, we choose several layers of coarse-grid elements to form the domain Ω1. It has been shown
that the appropriate number of layers is determined by the decay of the H2-norm of the exact solution away from the
boundary (see [9]).

• Finally, in Ω2, we use the linear FE basis on coarse-grid elements. While, in Ω1 we use the linear FE basis on a fine
mesh. In our tests, we use the size of the fine mesh h = 2−9 or h = 2−10 which is small enough to resolve the smallest
scale of oscillations.

Remark 1. Let ε be the size of small structures of the rough boundary. According to the characterizations of the solution
near the rough boundary, the width δ of the band of finemeshes can be chosen such that δ ≳ εσ for some constant σ ∈ (0, 1)
(cf. [39,7]). In our numerical tests, we simply choose δ = H , which is easy to be implemented.

In all of these computations, we denote the exact solution by ue if there have. Otherwise, we use finely resolved numerical
solutions obtained via the traditional linear finite element method with mesh size hf = 2−10 as the ‘‘exact’’ solutions which
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Fig. 2. A sample mesh.

Fig. 3. The domain with rough bottom.

Table 1
Relative errors of the combined FEM for H/h = 23, β = 1, γ = 200.

H h L2 Rate L∞ Rate Energy error Rate

2−3 2−6 2.97e−02 \ 2.88e−02 \ 4.73e−02 \

2−4 2−7 7.40e−03 2.00 7.78e−03 1.89 2.34e−02 1.02
2−5 2−8 1.84e−03 2.01 2.10e−03 1.89 1.17e−02 1.00
2−6 2−9 4.60e−04 2.00 5.70e−04 1.88 5.80e−03 1.01
2−7 2−10 1.15e−04 2.00 1.53e−04 1.90 2.90e−03 1.00

are still denoted as ue. Denoting uh as the numerical solutions computed by the methods considered in this section, we
measure the relative error in L2, L∞ and energy norms as follows:

∥uh − ue∥L2

∥ue∥L2
,

∥uh − ue∥L∞

∥ue∥L∞
,

|||uh − ue|||

|||ue|||
.

4.1. Accuracy of the combined FEM

The purpose of this subsection is to verify the convergence rate of the combined FEM. To do this, we consider the model
problem (4.1) in the squared domainΩ = [0, 1]×[0, 1], the subdomains ofwhich areΩ2 := [

1
8 ,

7
8 ]×[

1
8 ,

7
8 ] andΩ1 := Ω\Ω2

(see Fig. 2).We assume that f = −1, g = (x2+y2)/4. It is easy to check the exact solution of problem (4.1) is ue = (x2+y2)/4,
and ue ∈ H2(Ω). Recall that in Section 3, we have asserted that the energy error is bounded by C1H + C2h + C3hs, where s
depends on the regularity of the solution. Noting here for this example, we have s = 1.

In our first test, we fix H/h and compute the model problem with a series of H ( corresponding h ). The results are
listed in Table 1. We observe that the convergence rate of energy error is about 1 which is coincided with our theoretical
result.
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Table 2
Relative errors of the combined FEM for h = 2−10, β = 1, γ = 200.

H h L2 Rate L∞ Rate Energy error Rate

2−4 2−10 7.45e−03 \ 7.86e−03 \ 2.36e−02 \

2−5 2−10 1.86e−03 2.00 2.14e−03 1.88 1.17e−02 1.01
2−6 2−10 4.63e−04 2.01 5.76e−04 1.89 5.83e−03 1.00
2−7 2−10 1.15e−04 2.01 1.53e−04 1.91 2.90e−03 1.01
2−8 2−10 2.77e−05 2.05 4.08e−05 1.91 1.41e−03 1.04

Table 3
Relative errors of the combined FEM for H/h = 23, β = 1, γ = 200.

H h L2 Rate L∞ Rate Energy error Rate

2−3 2−6 4.09e−02 \ 8.44e−02 \ 2.16e−01 \

2−4 2−7 1.12e−02 1.87 2.69e−02 1.65 1.13e−01 0.93
2−5 2−8 3.12e−03 1.84 1.02e−02 1.40 5.97e−02 0.92
2−6 2−9 8.39e−04 1.89 4.10e−03 1.32 3.04e−02 0.97
2−7 2−10 1.50e−04 2.48 6.90e−04 2.57 1.24e−02 1.29

The second test is to further verify the convergence rate with respect to H . To do this, we fix h = 2−10 and carry on the
numerical test with different H . The results are shown in Table 2. It is easy to see the convergence rate is about 1 which is
also confirming our theoretical result.

4.2. Application to Poisson equation in domain with oscillating boundaries

In this subsection, we apply the combined FEM to Poisson equation on domain with oscillating boundaries. It has been
shown that if the domain Ω is an arbitrary polygonal and f ∈ Lp(Ω), the solution u of (4.1) is always in a fractional order
Sobolev space H1+s for some s ∈ (0, 1], which depends on the maximal interior angle w of Ω and p (cf. [40]). A crucial
role in determining the regularity of the solution of (4.1) is played by the constant pw =

2
2− π

w
. According to [40, p. 233], if

f ∈ Lp, p > 1, then u ∈ W 2,p, where

p =

{
p, if p < pw,

γ , any γ < pw, if p ≥ pw,
pw =

2
2 −

π
w

.

By the imbedding theorem,W 2,p
⊂ H1+s, for s = 2 −

2
p , we obtain the following result:

If f ∈ Lp, p > 1, then u ∈ H1+s, s = 2 −
2
p
. (4.2)

We will implement three examples with different oscillating boundaries in this subsection. In the first example, we
assume that the domain Ω is a rectangle with a rough bottom, as depicted in Fig. 3. The rough domain is given by

Ω := {x ∈ R2
| 0 < x1 < 1, γ1(x) < x2 < 1},

where γ1(x) is a periodic function with period equal to 1/16. In one period, fox example, when x1 ∈ (0, 1/16), γ1(x) is a line
segment from (0, −1/16) to (1/16, 0). We choose f = 1 in (4.1), and set homogeneous Dirichlet boundary condition on ∂Ω .
It is easy to see that the maximal interior angle w of this example is 7

4π . Therefore, according to (4.2), the solution u belongs
to H11/7−δ(Ω) for some arbitrary small positive constant δ. In this example, we set

Ω1 := {x ∈ R2
| 0 < x1 < 1, γ (x) < x2 < 0.125},

and

Ω2 := {x ∈ R2
| 0 < x1 < 1, 0.125 < x2 < 1}.

The coarse-fine mesh interface Γ is defined by

Γ = {x ∈ R2
| 0 < x1 < 1, x2 = 0.125}.

We use mesh sizes h and H in the subdomain Ω1 and Ω2 respectively.
For the first example, we design three series of tests. Firstly, we fix H/h and compute the problem with a series of H

(corresponding h). The results are listed in Table 3. We observe that the convergence rate of energy error is less than 1. The
optimal convergence rate cannot be obtained due to the low regularity of the solution. This observation accords with our
theoretical result.

Secondly, in order to make the convergence rate dependency relationship with respect to the regularity of the solution
more clear, we fix h = 2−10, and carry on the numerical test with different H . The results are shown in Table 4. It is easy to
see the convergence rate of energy error is about 1 which is coincided with our theoretical result.
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Fig. 4. Left: a mesh for Ω . Right: a patch of elements intercepting Γ .

Table 4
Relative errors of the combined FEM for h = 2−10, β = 1, γ = 200.

H h L2 Rate L∞ Rate Energy error Rate

2−4 2−10 9.66e−03 \ 2.69e−02 \ 9.98e−02 \

2−5 2−10 2.43e−03 1.99 8.17e−03 1.72 5.00e−02 1.00
2−6 2−10 6.06e−04 2.00 2.40e−03 1.77 2.49e−02 1.01
2−7 2−10 1.50e−04 2.01 6.90e−04 1.80 1.24e−02 1.01
2−8 2−10 3.60e−05 2.06 1.94e−04 1.83 6.02e−03 1.04

Table 5
Relative errors of the combined FEM for H = 2−10, β = 1, γ = 200.

H h L2 Rate L∞ Rate Energy error Rate

2−10 2−4 2.95e−02 \ 6.34e−02 \ 1.86e−01 \

2−10 2−5 1.48e−02 1.00 3.87e−02 0.71 1.24e−01 0.58
2−10 2−6 6.99e−03 1.08 2.63e−02 0.56 8.08e−02 0.62
2−10 2−7 3.09e−03 1.18 1.72e−02 0.61 5.25e−02 0.62
2−10 2−8 1.24e−03 1.32 1.02e−02 0.75 3.26e−02 0.69

Finally, we fix H = 2−10, and simulate the problem with different h. The results are listed in Table 5. We find that the
convergence rate in energy error with respect to h is almost 0.6, which is close to 4/7, and then also accords with our
theoretical result.

The second example is designed to show the proposed method is competitive. As the first example, we assume that the
domain Ω is a rectangle with a rough bottom, as depicted in Fig. 4. The rough domain is given by

Ω := {x ∈ R2
|0 < x1 < 1, γ2(x) < x2 < 1},

where γ2(x) is a periodic function with period equal to 1/32.
In one period, e.g., when x1 ∈ (0, 1/32), γ2(x) is a broken line from (0, −3/64) to (1/64, −1/16), and from (1/64, −1/16)

to (1/32, −3/64). We choose f = 1 in (4.1), and set homogeneous Dirichlet boundary condition on ∂Ω . In order to
illustrate the performance of ourmethod, we implement theMsFEM introduced in [7]. Note for the first example, theMsFEM
introduced in [7] is inapplicable since the cell problem is not well-defined. The relative errors about L2, L∞, and energy norm
of which are listed in Table 6. We observe that the combined FEM gives much better approximation than the MsFEM in [7].
We also compare the CPU times T1 and T2 spent by the methods considered here, where T1 is the CPU time of computing the
multiscale basis functions, and T2 is the CPU time of assembling the stiffness matrix and solving the discretized system of
algebraic equations. For the combined method, there is no need to compute the basis functions. However, the CPU time T2 is
a little longer than that of the MsFEM. We remark that the CPU time T2 can be shortened further by applying more efficient
FEM in the problematic region.

In the last example, we consider a more general domain with arbitrary oscillating boundaries on all sides (see Fig. 5). The
extent of the boundary oscillation is 1

64 . In the simulation, we fix the fine mesh size h = 2−9, and employ the combined FEM
to test the convergence rate with respect to H . The results illustrated in Table 7 show the efficiency of the proposed method.
It also turns out that the convergence rate of the energy error with respect to H is about 1 which agree with the theoretical
result.
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Fig. 5. Domain with oscillating boundaries on all sides.

Table 6
Relative errors of the combined FEM with β = 1, γ = 200, H = 2−4 , h = 2−10 versus relative errors of MsFEM in [7] with H = 2−4 .

Relative error L2 L∞ Energy CPU time (s)

T1 T2
MsFEM 7.514e−01 7.506e−01 7.519e−01 1.61e−00 2.62e−02
combined FEM 1.032e−02 2.605e−02 8.034e−02 0 4.12e−01

Table 7
Relative errors of the combined FEM for β = 1, γ = 200.

H h L2 Rate L∞ Rate Energy error Rate

2−4 2−9 1.07e−02 \ 2.02e−02 \ 2.42e−02 \

2−5 2−9 2.68e−03 2.00 5.44e−03 1.89 1.20e−02 1.01
2−6 2−9 6.65e−04 2.01 1.46e−03 1.90 5.95e−03 1.01
2−7 2−9 1.60e−04 2.06 3.93e−04 1.89 2.90e−03 1.04
2−8 2−9 3.44e−05 2.22 1.05e−04 1.90 1.30e−03 1.16

5. Conclusion

In this paper, we have developed a combined FEM for the elliptic problems posted in domainswith oscillating boundaries.
The main purpose of this paper is to better approximate the singular features that occur in the vicinity of oscillating
boundaries. To aim this goal, we first separate the research domain into two parts Ω1 and Ω2 = Ω \ Ω1 that Ω1 contains
the regions where we need a very fine mesh to resolve it. Then we use the linear FEM on a fine mesh of Ω1 while use the
linear FEM on a coarse mesh of Ω2 to reduce unnecessary computational effort. In addition, we deal with the transmission
condition on the interface Γ = ∂Ω1 ∩ ∂Ω2 by penalizing the jumps from the linear function values of the discrete solution.
The interesting part of the proposed method lies in the new scheme employing a weighted average in the definition of the
bilinear form, which avoiding the affection of the ratio of the sizes of the coarse and fine meshes.

A rigorous and careful analysis has been given for elliptic equations with general coefficients and oscillating boundaries
to show the consistence, stability, and convergence of the numerical scheme. Since in different place the solution of the
equation may have different regularity, the error estimate is expanded in terms of elements, fromwhich actually we get the
quasi-optimal convergence.

Numerical experiments are carried out for Poisson equation with regular boundary, oscillating boundary on one side or
all sides to verify the theoretical findings. The numerical results demonstrate the accuracy and efficiency of the proposed
method. We also compute the convergence rate in energy error with respect to H and h respectively. All of the numerical
results are coincided with the theoretical results.

We remark that the condition number of the combined FEM depends onH , h, d, and the thickness of the fine-mesh region
Ω1 (denoted by δ). For example, in two dimensional case, the condition number is O

(
H−2

+ (h/δ)−2
)
. Clearly, if δ ≲ h/H ,
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the condition number is O(H−2). Since the thickness of the fine-mesh domain is usually small, the very fine mesh near the
boundary does not cause problem in the computations. In our tests, the condition number is about 105

∼ 106. More details
about the estimate of the condition number are arranged in the Appendix.

The combined FEMmay be applied intomany other singular problems, e.g., the porousmedia with channelized structure,
or in near-well region. It is also possible to combine the oversampling MsFEMwith the linear FEM on a very fine mesh of the
problematic portion to deal with the problems with both oscillating coefficients and oscillating boundaries.

Compared with the standard FEM on adaptively refined mesh, our combined FEM does not require the buffer zone with
gradually changingmesh size to connect the very finemesh zone and the very coarsemesh zone, and therefore, needs smaller
number of DOFs to achieve the same accuracy. When the regularity estimates of the solution near the rough boundary are
known priorly, the interface Γ and the meshes sizes can also be determined priorly, and there is no need to compute the
posteriori error estimators as the adaptive FEM, which also saves some CPU time. But when the singularities of the solution
are unknown, we have to develop adaptive algorithm for the combined FEM to achieve the quasi-optimal computational
complexity. This will be done in a future work.
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Appendix. Estimate of the condition number

In this appendix, we estimate the condition number of the stiffness matrix of the combined FEM. Recall that Ω2 ⊂⊂ Ω
and Ω = Ω1 ∪ Ω2 ∪ Γ , where Γ = ∂Ω1 ∩ ∂Ω2 is the interface of Ω1 and Ω2.

Lemma A.1. Suppose that dist(x, Γ ) ≤ δ for any x ∈ ∂Ω and some constant δ > 0. Then for all w ∈ {w : wi = w|Ωi
∈

H1(Ωi), i = 1, 2, w|∂Ω = 0}, it holds:

δ−1
∥w∥0,Ω1 + ∥w∥0,Ω2 ≲ ∥∇w∥0,Ω1∪Ω2 + ∥[w]∥0,Γ .

Proof. Since w1|∂Ω = 0, from the Friedrichs’ inequality, we have

∥w1∥0,Ω1 ≲ δ∥∇w1∥0,Ω1 . (A.1)

On the other hand, the norm-equivalent-theorem implies that

∥w2∥0,Ω2 ≲ ∥∇w2∥0,Ω2 + ∥w2∥0,Γ . (A.2)

From the trace inequality, it follows that
∥w2∥0,Γ ≤ ∥[w]∥0,Γ + ∥w1∥0,Γ

≲ ∥[w]∥0,Γ + δ−1/2
∥w1∥0,Ω1 + δ1/2∥∇w1∥0,Ω1 ,

which combining (A.1) and (A.2), yields the result. □

Theorem A.1. Let A be the stiffness matrix of the combined FEM (2.9). Then

cond(A) ≲ (H/h)d−2(H−2
+ (h/δ)−2). (A.3)

Proof. Let {φ1, φ2, . . . , φm} and {φm+1, φm+2, . . . , φn} be the bases of VH and Vh respectively. For any vh,H ∈ Vh,H , we have
vh,H = v1φ1 + · · · + vnφn. Denote v = (v1, . . . , vn)T . Hence a(vh,H , vh,H ) = vTAv, where A = (a(φj, φi))n×n.

Denote by ∥vh,H∥
2
0∗ = (H/h)2∥vh∥

2
0,Ω1

+ ∥vH∥
2
0,Ω2

. It is obvious that

vTAv

vTv
=

a(vh,H , vh,H )
∥vh,H∥

2
0∗

∥vh,H∥
2
0∗

vTv
. (A.4)

Thus, it suffices to estimate a(vh,H ,vh,H )
∥vh,H∥

2
0∗

and ∥vh,H∥
2
0∗

vT v
. From the definition of energy norm |||·|||, it follows that⏐⏐⏐⏐⏐⏐vh,H

⏐⏐⏐⏐⏐⏐ ≲ (1 + γ −1)∥∇vh,H∥
2
0,Ω1∪Ω2

+ γ (H + h)−1
∥[vh,H ]∥

2
0,Γ

≲ h−2
∥vh∥

2
0,Ω1

+ H−2
∥vH∥

2
0,Ω2

+ (H + h)−1h−1
∥vh∥

2
0,Ω1

+ (H + h)−1H−1
∥vH∥

2
0,Ω2

≲ H−2 (
(H/h)2∥vh∥

2
0,Ω1

+ ∥vH∥
2
0,Ω2

)
.

(A.5)
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Further, from Lemma A.1, we have

(H/h)2∥vh∥
2
0,Ω1

+ ∥vH∥
2
0,Ω2

≲
(
(Hδ/h)2 + 1

)
(∥∇vh,H∥0,Ω1∪Ω2 + ∥[vh,H ]∥0,Γ )

≲
(
1 + γ (H + h)−1) (

(Hδ/h)2 + 1
) ⏐⏐⏐⏐⏐⏐vh,H

⏐⏐⏐⏐⏐⏐2
≲

(
(Hδ/h)2 + 1

)
a(vh,H , vh,H ).

(A.6)

From (A.5) and (A.6), we conclude that(
1 + (Hδ/h)2

)−1
≲

a(vh,H , vh,H )
∥vh,H∥

2
0∗

≲ H−2. (A.7)

Next, we estimate ∥vh,H∥
2
0∗

vT v
. It is easy to see that

∥vh,H∥
2
0∗ = ∥vH∥

2
0,Ω2

+ (H/h)2∥vh∥
2
0,Ω1

≂ Hd
m∑
i=1

|vi|
2
+ (H/h)2hd

n∑
i=m+1

|vi|
2,

which implies that

H2hd−2 ≲
∥vh,H∥

2
0∗

vTv
≲ Hd. (A.8)

From (A.4), (A.7) and (A.8), it follows that

H2hd−2

1 + (Hδ/h)2
≲

vTAv

vTv
≲ Hd−2.

Finally, we conclude that

cond(A) ≲ (1 + (Hδ/h)2)(H/h)d−2H−2

≲ (H/h)d−2(H−2
+ (h/δ)−2).

This completes the proof of the theorem. □
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