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a b s t r a c t

We study a multi-item, multiple classes of demand, assemble-to-order system. The inventory of each

item is kept at the item level and controlled by the base-stock policy with a finite capacity. Each item is

replenished by an independent unreliable machine. Each type of demand arrives according to a Poisson

process with an individual rate and requires a subset of the items. When the item requirements of an

arriving demand cannot be satisfied entirely, two kinds of stockout may occur, namely total-order-

service and partial-order-service. We formulate the system as a queuing network and deduce that it is a

quasi-birth–death process. Applying the matrix-geometric solution approach, we derive the exact joint

steady-state distribution of on-order inventories, based on which we compute the order-based and

item-based the fill rate within a time window and the service level. We present numerical examples to

show how system performance varies with changes in system parameters to show the importance of

taking machine failures into consideration.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

This paper studies order-based and item-based performance
measures of a multi-item, multiple classes of demand, assemble-
to-order (ATO) production-inventory system with unreliable
machines. The inventory of each item (component) is kept only
at the item level and controlled by the base-stock policy. Upon the
arrival of a demand, the required components are assembled if
necessary to satisfy the demand. Each item is replenished by a
dedicated failure-prone machine that processes orders on a first-
come-first-served (FCFS) basis. In this paper we use the terms
item and component interchangeably.

The ATO system described above is widely used in manufac-
turing, especially in the electronics manufacturing industry, as a
means to quickly respond to market uncertainty by postponing
product differentiation to the latest stage of production possible.
An example of firms that use the ATO system is Dell, which
supplies standard changeable computer components, including
main boards, processors, display units, cache memory chips, etc.,
and assembles the required components into PCs according to
customer demands. In China, many firms have implemented the
ATO system in their manufacturing facilities, too. The adoption of
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the ATO system is not confined to manufacturing. For example,
the multi-item distribution system commonly adopted in the
logistics industry is an ATO system.

Considerable research has been devoted to the modelling and
analysis of the ATO system. We only focus on the literature on
continuous time models. The reader is referred to Song and Zipkin
(2003) and Benjaafar and EI Hafsi (2006) for details on research on
this topic.

Most of the existing research on the continuous time ATO
system focused on the base-stock policy, the FCFS service
discipline, but they differed in their model assumptions and
solution approaches. These studies can be further classified into
two categories based on the component supply process, namely
(1) the system with exogenous lead times and (2) the system with
endogenous lead times. The literature on exogenous lead times
models includes Song (1998, 2002), Song and Yao (2002), Lu et al.
(2003, 2005), Lu and Song (2005), Lu (2008), Zhao (2009), and
Xiao et al. (2010). Studies on the ATO system with endogenous
lead times always assumed that components are made to stock by
production facilities with finite capacity. These studies are most
relative to ours. But the literature on this subject is relatively
scant. Song et al. (1999) studied the multi-component, multi-
product ATO system, where each of the components is made to
stock and replenished by its dedicated machine that has
exponential processing times, and inventory is controlled by the
base-stock policy. They modelled the system as a network of
M/M/1/N queues and derived some key performance measures
from the exact joint stationary distribution of outstanding orders,
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which can be determined by modelling the system as a quasi-
birth–death (QBD) process. Recently, Hoen et al. (2010) also
considered a lost-sales partial order service model. They showed
that the order-based performance measures can be calculated
through analyzing its decomposed subsystems. Dayanik et al.
(2003) re-considered their model. They developed and compared
several lower bounds on the outstanding orders in the partial-
order-service ATO system. Benjaafar and EI Hafsi (2006) con-
sidered a single-product ATO system with multiple customer
classes. They obtained some structural properties of the optimal
policy. Subsequently, El Hafsi (2009) extended their model to the
compound Poisson demand case. The literature on multi-product
ATO systems almost always assumed that each component is
replenished with the exponentially distributed processing
time. Such an assumption makes the system tractable. But in
manufacturing, the replenishment processes face uncertainty,
such as machine breakdowns. Machines are subject to deteriora-
tion with usage and age, and machine reliability becomes
a key factor that affects system performance. This uncertainty
challenges the assumptions of exponential processing times,
because the total processing time may follow a more general
distribution. In this paper we consider an ATO system with
machine failures as a special case of generally distributed
processing time.

A large body of work has studied production-inventory system
with unreliable machines. Buzacott and Shanthikumar (1993) and
Gershwin (1994) presented various systems with failure-prone
machines. Song (2009) extensively reviewed the literature on the
manufacturing system with machine failures. In this paper we
extend the model of Song et al. (1999) to the more realistic case of
the multi-item, multiple classes of demand ATO system with
unreliable machines. We develop an inventory-queue model
for performance analysis and examine how machine parameters
such as the machine failure rate and repair rate affect
system performance. We also present some numerical examples
to show the importances of taking the machine failures into
consideration.

The rest of this paper is organized as follows: We present the
model description and assumptions in Section 2. In Section 3 we
discuss the total-order-service ATO model. Section 4 studies the
partial-order-service model. In Section 5 we give some numerical
examples to show how different system parameters affect system
performance and generate managerial insights on the ATO
system. We conclude the paper in Section 6.
2. Model description

We adopt the basic model assumptions and notation as those
in Song et al. (1999). There are J different items with
O¼ f1,2, . . . ,Jg being the set of item indices. Let K be a subset of
O, i.e., KDO, and let jKj denote the number of elements in K.
There are multiple classes of demand, each of which requires a
fixed kit (subset) of the items and arrives independently
according to a Poisson process. We say that a demand is of type
K if it requires only one unit of each item in K and zero unit in
O�K . Let c be the collection of all types of demand. Let lK be the
arrival rate of type K demand, l be the overall demand arrival rate,
i.e., l¼

P
K Acl

K , and qK be the probability that an arriving
demand is of type K, i.e., qK ¼ lK=l. We use S(i) to denote the set of
all types of demand containing item i, i.e., SðiÞ ¼ fK : iAK ,KAcg, so
the demand rate for item i is li ¼

P
K ASðiÞl

K .
For any i, iAO, the inventory of component i is independently

controlled by the base-stock policy with the base-stock level si

and replenished by its corresponding dedicated unreliable
machine i. The processing time is exponentially distributed with
a rate mi and the machine processes the items on the FCFS basis.
Economies of scale in replenishment are not considered. We
assume that each machine failure is operational dependent, which
means that a machine may fail only when it is operating. The up
time of machine i follows an exponential distribution with a mean
1=xi. Machine i is repaired immediately once it breaks down and it
takes an exponentially distributed time with a rate ri to complete
the repair. Let fRi

ðxÞ denote the probability density function of the
time to repair machine i. Note that when ri-þ1, i¼ 1, . . . ,J, the
model reduces to that of Song et al. (1999). After repair, a machine
works as good as new. The processing time, up time and repair
time of each machine are mutually independent. We ignore the
assembling time because it is much shorter than the item
processing time.

The demand for item i can be filled immediately from its buffer
if possible; otherwise, it joins the backlog queue i with a finite
capacity birþ1 until item i is available. bi can be interpreted as
customers’ patience (see Song et al., 1999); bi¼0 means backlog is
not allowed, while bi ¼ þ1means completely backlogging. When
a demand arrives requiring more than one item, but finds some of
the required items’ backlog queues are full while the others’ are
not, two kinds of stockout may occur as Song et al. (1999)’s
model: total-order-service (TOS), where the demand is accepted
or rejected as a whole, and partial-order-service (POS), where the
demands for the items are treated separately. Further, if we accept
a demand but some of the required items cannot be filled
immediately from their buffers, then the whole demand is
delayed and backlogged. Throughout the paper we use a super-
script to denote the demand type and a subscript to denote the
item type.

Notation:
FKx
 order-based type K order fill rate with window x. It is
equal to the probability of satisfying a type K order
within time period x
SLK
 order-based type K service level. It is equal to the
probability of accepting a type K order
Fx
i
 item-based fill rate of item i. It is the probability of

satisfying the requirement for item i immediately from
buffer i
SLi
 item-based service level of item i. It is the probability of
accepting the requirement for item i
WK
 the waiting time until a type K demand is filled

OHi(t)
 on-hand inventory of item i at time t
Bi(t)
 backorder of item i at time t
IOi(t)
 on-order inventory of item i at time t
Mi(t)
 the state of machine i at time t, Mi(t)¼0 or 1, where 0
denotes that the machine is down and 1 denotes that
the machine is in operation
Wi
 the waiting time of filling a requirement for item i
3. Performance analysis of the TOS model

In this section we study the performance measures of the
total-order-service ATO model. Without loss of generality, we
assume that at the initial time the on-hand inventory of item
i,iAO, is si. Inventory is controlled by the base-stock policy. From
basic inventory theory, we have

OHiðtÞ ¼ ½si�IOiðtÞ�
þ , BiðtÞ ¼ ½IOiðtÞ�si�

þ , ð1Þ

where the marginal distribution function of IOi(t) can be derived
from the joint distribution function of ½ðIO1ðtÞ,M1ðtÞÞ,ðIO2ðtÞ,
M2ðtÞÞ, . . . ,ðIOJðtÞ,MJðtÞÞ�. In the following subsections we derive
this joint distribution function.
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3.1. Stationary distribution

Let ðIOðtÞ,MðtÞÞ ¼ ½ðIO1ðtÞ,M1ðtÞÞ,ðIO2ðtÞ,M2ðtÞÞ, . . . ,ðIOJðtÞ,MJðtÞÞ�.
It is evident that (IO(t), M(t)) is a 2J-dimensional positive
recurrent, irreducible, aperiodic Markov process with a finite
state space Y¼ fðn,mÞ ¼ ½ðn1,m1Þ,ðn2,m2Þ, . . . ,ðnJ ,mJÞ� : ðni,miÞA
Yi,iAOg, where Yi ¼ fð0,1Þ

S
fðni,miÞ : ni ¼ 1,2, . . . ,Ni,Ni ¼ si

þbi,mi ¼ 0,1gg. Therefore there exists a unique stationary dis-
tribution. Let ½ðIO1,M1Þ, . . . ,ðIOJ ,MJÞ� be the stationary state and
pðn,mÞ be the stationary distribution, i.e.,

pðn,mÞ ¼ Pr½ðIO1 ¼ n1,M1 ¼m1Þ,ðIO2 ¼ n2,M2 ¼m2Þ, . . . . . . ,

ðIOJ ¼ nJ ,MJ ¼mJÞ�:

There are PJ
i ¼ 1½2Niþ1� system states. The system state

changes at any instant when a demand arrives, a machine breaks
down, a machine is repaired or an order of item is released.
Therefore with transition rate lK , the state ½ðn1,m1Þ,ðn2,m2Þ, . . . ,
ðnJ ,mJÞ�, satisfying 0rnirNi�1 for any iAK , transits to state
ðn0,m0Þ ¼ ½ðn01,m01Þ,ðn

0
2,m02Þ, . . . ,ðn

0
J ,m
0
JÞ�, where m0i ¼mi, and

n0i ¼
niþ1, iAK ,

ni otherwise:

(

With transition rate mi, the state ½ðn1,m1Þ, . . . ,ðni,1Þ, . . . ,ðnJ ,mJÞ�,
where niZ1, transits to the state ½ðn1,m1Þ, . . . ,ðni�1,1Þ, . . . ,ðnJ ,mJÞ�.
With transition rate xi, the state ½ðn1,m1Þ, . . . , ðni,1Þ, . . . ,
ðnJ ,mJÞ�,niZ1, transits to the state ½ðn1,m1Þ, . . . , ðni,0Þ, . . . ,ðnJ ,mJÞ�;
and the converse transition rate is ri. Then we can derive the
infinitesimal generator ~Q in lexicographical order as given by

~Q ¼

~B0
~C 0

~A1
~B ~C
~A ~B ~C

& & &
~A ~B

2
6666664

3
7777775

,

where

~A0 ¼
0

m1I

 !
, ~A ¼

0 0

0 m1I

 !
, ~C 0 ¼ ð0 CÞ, ~C ¼

C 0

0 C

� �
,

~B0 ¼ B0, ~B ¼
B0�r1I r1I

x1I B0�ðm1þx1ÞI

 !
, ~B1 ¼

B1 r1I

x1I B2

 !
:

It is noted that Q has the block-tridiagonal form, where Bi,
i¼0,1,2, and C are all PJ�1

i ¼ 1ð2Niþ1Þ- dimensional square matrices,
which can be obtained from the above analysis of the state
transition rates and I is an identity matrix with order
PJ�1

i ¼ 1ð2Niþ1Þ. More details on the infinitesimal generator are
given in Latouche and Ramaswamy (1999). This special form of
the infinitesimal generator indicates that (IO(t),M(t)) is a finite
QBD process. Let p¼ ðp0,p1, . . . ,pN1

Þ denote the system stationary
distribution of the joint on-order inventories, where pi denotes
the joint probability distribution of the states with level i.

According to the equilibrium equation p ~Q ¼ 0, we have

p0
~B0þp1

~A0 ¼ 0,

p0
~C 0þp1

~Bþp2
~A ¼ 0,

pk�1
~Cþpk

~Bþpkþ1
~A ¼ 0, k¼ 2,3, . . . ,N1�1,

pN1�1
~CþpN1

~B1 ¼ 0:

Solving the above equations recursively, we obtain

pk ¼ pk�1Rk, k¼ 1,2, . . . ,N1,
where

R1 ¼�
~C 0½

~BþR2
~A��1,

Rk ¼�
~C ½ ~BþRkþ1

~A��1, k¼N1�1, N1�2, . . . ,2,

RN1
¼� ~C ~B

�1

1 :

p0 can be obtained by the normalization equation, i.e.,

p0e1þ
XN1

i ¼ 1

pie2 ¼ p0e1þp0

XN1

i ¼ 1

Yi

j ¼ 1

Rje2 ¼ 1,

where ei, i¼1,2, are column vectors of ones.
Note that we solve the

QJ
i ¼ 1ð2Niþ1Þ equations by the matrix-

geometric solution approach, instead of by the direct approach,
because it is not only efficient but also effective to do so. To deal
with large-scale systems, Song et al. (1999) proposed two
approximate methods, which are applicable to our model. One
method only focuses on several major demands due to the Pareto
phenomenon, while the other method divides the multiple items
into several disjoint sets that are either independent or weakly
dependent. We propose another method here that does not
consider the failure of a machine if its failure rate is much smaller
than its production rate.
3.2. Order-based performance measures of the TOS model

The order-based performance measures can be easily obtained
by the joint stationary distribution of on-order item inventories.
Let

ðn,mÞK ¼ fðni,miÞ : iAKg,

CK ¼ fðn,mÞK : for any iAK ,niosiþbi,mi ¼ 0,1g,

CK ðLÞ ¼ fðn,mÞK : LDK , if iAL, then i satisfies sirniosiþbi,mi

¼ 0,1; else jAK�L, and j satisfies njosj,mj ¼ 0,1g,

CK
L0
ðLÞ ¼ fðn,mÞK ACK ðLÞ,L0DL

: if iAL0, then mi ¼ 0; else iAL�L0,mi ¼ 1g,

~p
ðn,mÞK ¼ Pfðn,mÞK jðn,mÞK ACKg ¼ p

ðn,mÞK =
X
ðn,mÞK ACK

p
ðn,mÞK :

Obviously, CK
L0
ðLÞDCK ðLÞDCK and |AL0. CK(L) is the set of

states upon the arrival of a type K demand if it is accepted. Given
the requirement for item i,iAK , if iAL, then the item cannot be
filled immediately from its buffer and the demand joins the
backlog queue; otherwise, if iAK�L, then the requirement for
item i can be satisfied immediately.

Therefore we have

FK ¼ Pfðn,mÞK : ðn,mÞK ACK ð|Þg ¼ Pfðn,mÞK : niosi, for any iAKg,

ð2Þ

SLK
¼ Pfðn,mÞK : ðn,mÞK ACKg ¼ Pfðn,mÞK : niosiþbi, for any iAKg:

ð3Þ

In order to calculate the order-based fill rate within a time
window, we define ~Si as the total time needed to complete the
processing of item i, which includes the actual processing time
and the machine repair time. It follows that the Laplace–Stieltjes
Transform (LST) of ~Si is ~F ~Si

ðsÞ ¼ ~F Si
ðsþxi�xi

~F Ri
ðsÞÞ (see Buzacott

and Shanthikumar, 1993), where ~F Si
ðsÞ and ~F Ri

ðsÞ are the LSTs of
the processing time and the repair time, respectively. Therefore
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we have

~F ~Si
ðsÞ ¼

miðriþsÞ

s2þsðriþxiþmiÞþrimi

: ð4Þ

We can obtain the probability distribution function of f ~Si
ðxÞ from

(5) as follows:

FKx ¼ PfWK rxg ¼
X

ðn,mÞK ACK ð|Þ

~p
ðn,mÞK þ

X
LDK ,La|

X
L0 DL

X
ðn,mÞK ACK

L0
ðLÞ

PfWK

rxjðn,mÞKg ~p
ðn,mÞK ¼

X
ðn,mÞK ACK ð|Þ

~p
ðn,mÞK þ

X
LDK ,La|

X
L0 DL

X
ðn,mÞK ACK

L0
ðLÞ

Y
iAL0

Z x

0
fRi
ðtÞ � f ðni�siþ1Þ

~Si
ðtÞdt �

Y
jA L�L0

Z x

0
f
ðnj�sjþ1Þ
~Sj

ðtÞdt � ~p
ðn,mÞK

2
4

3
5,

ð5Þ

where f ðnÞ~Sj
denotes the n-fold convolution of f ~Sj

.

3.3. Item-based performance measures of the TOS model

The item-based fill rate and the service level can also be
obtained from the joint stationary distribution function of (IO,M)
as follows:

Fi ¼
X

K A SðiÞ

lK

li
Pfðn,mÞK : IOiosi, and for all jAK�fig,IOjosjþbjg,

ð6Þ

SLi ¼
X

K A SðiÞ

lK

li
SLK
¼
X

K ASðiÞ

lK

li
Pfðn,mÞK ACKg: ð7Þ

Let ~pK
i ðni,miÞ be the conditional probability of the system being in

state IOi¼ni, Mi¼mi, given a type K ,KASðiÞ, demand is accepted. It
is equal to

~pK
i ðni,miÞ ¼

Pfðn,mÞK : IOi ¼ ni,Mi ¼mi, and for all jAK�fig,IOjosjþbjg

Pfðn,mÞK ACKg
, ð8Þ

Fx
i ¼ PfWirxg ¼

X
K A SðiÞ

lK

li

� Xsi�1

ni ¼ 0

~pK
i ðni,0Þþ ~p

K
i ðni,1Þ

h i

þ
Xsiþbi�1

ni ¼ si

Z x

0
fRi
ðtÞ � f ðni�siþ1Þ

~Si
ðtÞdt

� �
~pK

i ðni,0Þ

�

þ

Z x

0
f ðni�siþ1Þ
~Si

ðtÞdt

� �
~pK

i ðni,1Þ

��
:

Therefore the average expected item-based waiting time is

E½Wi� ¼
X

K ASðiÞ

lK

li

Xsiþbi�1

ni ¼ si

(
~pK

i ðni,0Þ

ri

þðni�siþ1Þ
1

mi

þ
xi

miri

� �
ð ~pK

i ðni,0Þþ ~p
K
i ðni,1ÞÞ

)
:

4. Performance analysis of the POS model

In this section we consider the partial-order-service model.
Under this model, a type K demand is no longer accepted or
rejected as a whole, but the constituent items are treated
separately, whereby the requirements for items whose backlog
queues are not full are accepted, while the requirements for items
whose backlog queues are full are rejected.
4.1. Order-based performance measures of the POS model

The analysis is similar to that of the TOS model, with
differences in matrices Bi, i¼ 0,1, . . . ,4, and C of the infinitesimal
generator. In other words, the only differences are in rate lK ,KAc,
and in the way in which state (n,m) enters state ðn0,m0Þ, where
m0i ¼mi,

n0i ¼
niþ1 if iAK and niosiþbi,

ni otherwise:

(

No changes happen to the other transition rates. Therefore
following the same procedure as that we applied to the TOS
model, we can derive the joint steady-state distribution p of
(IO,M), from which we can obtain the stationary performance
measures. Define

DKðQ Þ ¼ fðn,mÞK ,Q DK : if iAQ ,niosiþbig, where Q a|,

DKðQ ÞðIÞ ¼ fðn,mÞK ADKðQ Þ,IDQ
: if iA I,sirniosiþbi; else iAQ�I,niosig,

DKðQ Þ½IðI0Þ� ¼ fðn,mÞK ADKðQ ÞðIÞ,I0D I
: if iA I0,mi ¼ 0; else iA I�I0,mi ¼ 1g,

p
ðn,mÞK ¼ pðn,mÞK =½1�Pfðn,mÞK : for all iAK ,niZsiþbig�:

The order-based fill rate of the POS model is the probability
that accepted orders for items can be satisfied immediately, while
other orders are rejected and no orders join the backlog queues.
Therefore

FK ¼ Pfðn,mÞK : ðn,mÞK ADKðKÞð|Þg, ð9Þ

SLK
¼ Pfðn,mÞK : ðn,mÞK ADKðKÞg, ð10Þ

FKx ¼ PfWK rxg ¼
X

Q DK

X
IDQ ,Ia|

X
I0 D I

X
ðn,mÞK ADKðQ Þ ½IðI0Þ�

Y
iA I0

Z x

0
fRi
ðtÞ � f ðni�siþ1Þ

~Si
ðtÞdt �

Y
jA I�I0

Z x

0
f
ðnj�sjþ1Þ
~Sj

ðtÞdt

2
4

3
5 � p

ðn,mÞK

þ
X

Q DK

X
ðn,mÞK ADKðQ Þð|Þ

p
ðn,mÞK : ð11Þ

4.2. Item-based performance measures of the POS model

The stationary item-based performance measures of item i in
the POS model can be determined by the marginal distribution of
IOi,iA J, which can be obtained from the joint stationary distribu-
tion of (IO,M). But we present another method. POS means that
when a demand arrives, the requirements for the items are
treated independently, which are either accepted or rejected.
Therefore we formulate the system as an M/M/1/Ni queue with
unreliable server i. Let piðni,miÞ,ðni,miÞAfð0,1Þ

S
fðni,miÞ :

1rnirNi,mi ¼ 0,1gg denote the stationary distribution of the
system being in state (IOi¼ni, Mi¼mi) and pi(ni)¼ (pi(ni, 0),pi(ni,
1)), i.e.,

pið0,1Þ ¼ T ,

pið1Þ ¼
lixi

ðliþriÞmi

,
li

mi

� �
T ,

piðniÞ ¼ pið1ÞR
ni�1
i , ni ¼ 2,3, . . . ,Ni�1,

piðNiÞ ¼ piðNi�1ÞR0i, ð12Þ
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where

Ri ¼

li

liþri
1þ

xi

mi

� �
li

mi

li

liþri

xi

mi

li

mi

0
BBB@

1
CCCA, R0i ¼

li

ri
1þ

xi

mi

� �
li

mi

lixi

rimi

li

mi

0
BBB@

1
CCCA
0 1 2 3 4 5 6 7 8 9 10
0
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and T can be derived by the normalization equation. Then
we have

Fi ¼ pið0,1Þþ
X

1rni o si

piðniÞe, ð13Þ
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2
¼ 3, l3

¼ 4, m1 ¼ m2 ¼ 3, x2 ¼ 0:5, r1¼r2¼1, s1¼s2¼6, b1¼b2¼2.
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¼ 4, m1 ¼ m2 ¼ 3, x1 ¼ x2 ¼ 0:5, r2¼1, s1¼s2¼6, b1¼b2¼2.
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SLi ¼ pið0,1Þþ
X

1rni oNi

piðniÞe, ð14Þ

where e is a column vector of ones.
Let ~piðni,miÞ be the conditional probability that, given that an

order for item i occurs and the order is accepted, the system is in
state (IOi¼ni, Mi¼mi), i.e.,

~piðni,miÞ ¼
piðni,miÞ

1�piðNiÞe
: ð15Þ

It follows that

Fx
i ¼ PfWirxg ¼ ~pið0,1Þþ

Xsi�1

ni ¼ 1

~piðniÞe

þ
XNi�1

ni ¼ si

Z x

0
fRi
ðtÞ � f ðni�siþ1Þ

~Si
ðtÞdt � ~piðk,0Þ

�

þ

Z x

0
f ðni�siþ1Þ
~Si

ðtÞdt � ~piðk,1Þ

�
, ð16Þ

EðWiÞ ¼
XNi�1

ni ¼ si

1

ri
� ~piðk,0Þþðni�siþ1Þ

1

mi

þ
xi

miri

� �
~piðkÞe

� �
: ð17Þ

5. Numerical examples

In this section we present some numerical examples to
investigate the effects of changes in various system parameters
on both order-based and item-based performance measures of the
TOS and POS models. We assume that there are two items and
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Fig. 3. Performance measures of both TOS and POS versus l1: l2
¼ 3,
three types of demand for the ATO system under study. We use l1,
l2 and l3 to denote the arrival rates of demands requiring only
item 1, only item 2 and both items, respectively.

Fig. 1 shows how performance measures respond to changes in
the failure rate x1. From Fig. 1, we see that the order-based fill rate
and service level of demand K ,KASðiÞ, the item-based fill rate and
service level of item i decrease with xi, while the order-based fill
rate and service level of demand K ,KJSðiÞ, increase with xi. The
item-based fill rate and service level of item j,ja i, in the TOS
model also increase with xi, but they do not change in the POS
model. The effect of increasing the repair rate is equivalent to that
of decreasing the failure rate of a machine, so the performance
measures respond to repair rate changes in a manner opposite to
that to failure rate changes. We skip the analysis of repair rate’s
effects on system performance. The reader may refer to Fig. 2 for
details. Particularly, when r1-1, the performance measures tend
to be steady and the influence of repair rate on system
performance decreases. Under such a condition, our model
reduces to the ATO system with reliable machines. In other
words, the machine failure rate and repair rate have a profound
effect on system performance.

Figs. 3–5 show how demand arrival rates affect system
performance measures. Fig. 3 shows the effects of l1 on the
performance measures of the TOS model and the POS model,
where the other parameters were fixed. From the graphs, we can
conclude that the order-based fill rate and service level of demand
K, and the item-based fill rate and the service level of item i,
where iAK , decrease with lK in both models. It is noted that the
arrival rate of demand K has no influence on the order-based fill
rate and service level of demand M, where M=2f[iAK SðiÞg, in both
models. This means that the order-based fill rate of demand M is
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l3
¼ 4, m1 ¼ m2 ¼ 3, x1 ¼ x2 ¼ 0:5, r1¼r2¼ 1, s1¼s2¼6, d1¼d2¼2.
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only affected by the demand rate of
S

iAMSðiÞ. The item-based fill
rate and service level of item j, where j=2K , in the POS model are
not affected by lK . These results are not surprising. In Fig. 4, we
kept the total demand rate for item 1 at a fixed level, i.e.,
l1 ¼ l1

þl3
¼ 6, and investigated the performance measures. First,

the order-based fill rate and service level of demand 2 in both
models increase with l1. This is because l3 decreases as l1

increases, which could increase the probability of filling demand 2
immediately. Second, the order-based fill rate and service level of
item i in the POS model are unchanged since li is fixed. Third, the
item-based fill rate and service level of item 2 in the TOS model
change without the monotone property because demand 3
requires item 2. Fourth, in the POS model, the item-based fill
rate and service level of item i decrease with the total demand
rate for item i, i.e., li. In Fig. 5, we changed the arrival rate of a
demand that requires multiple items. From the figure we see that
the performance measures associated to that required items are
affected. Obviously, the order-based fill rate and service level of
demand K decrease with lK . In particular, the item-based fill rate
and service level of item i,iAK , in the POS model decrease with lK .

How to allocate inventory buffers with capacity limits to each
inventory item in order to improve performance measures and
save cost is a great challenge faced by inventory managers.
Tables 1 and 2 show the performance measures by fixing
s1+s2¼12 in both models. We see that the performance
measures fluctuate to some extent. In Table 1, the order-based
fill rate of demand 1 reaches the maximum at s1¼6, while that of
demand 2 reaches the maximum at s1¼2. The fluctuations of the
order-based fill rate and service level of demand 3 are much
smaller because demand 3 requires both two items, so increasing
one but decreasing the other balances out their individual
influences. In Table 2, the changes in the POS model are not
obvious, which may look unreasonable at first sight. But if we look
deeper, we see that the reason may be due to machine failure. It is
evident that items are consumed more quickly in the POS model,
which means the machines must keep operating, which increases the
probability of machine breakdown. In conclusion, increasing s1 while
simultaneously increasing the probability of machine breakdown
neutralizes base-stock level’s influence on system performance. These
observations provide good insights to inventory management in that
if inventory capacity is limited, we can adjust the base-stock level of
each item to maximize system performance.
6. Concluding remarks

We examined a multi-item, multiple classes of demand assemble-
to-order system. Each demand arrives according to a Poisson process
with a certain rate and requires a subset of the items. Inventories are
kept at the item-level and controlled by the base-stock policy with
unreliable production facilities. Stockout of the ATO system is divided
into two kinds, namely total-order-service and partial-order-service.
Under certain assumptions, we formulated the system as a queuing
network with the infinitesimal generator being a QBD process.
Applying the matrix-geometric solution approach, we derived the
exact joint stationary distribution of on-hand inventories effectively
and efficiently, based on which we computed some key system
performance measures. We then presented numerical examples to
show how various system parameters affect system performance and
generate useful managerial insights into the ATO system.
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Table 1

Performance measures of TOS versus s1 with fixed s1+s2¼12: ðl1
¼ 2, l2

¼ 3, l3
¼ 4, m1 ¼ m2 ¼ 3, x1 ¼ x2 ¼ 0:5, r1 ¼ r2 ¼ 1, d1 ¼ d2 ¼ 2Þ.

s1 s2 F1 F2 F3 SL1 SL2 SL3 F1 F2 SL1 SL2

2 10 0.213 0.145 0.011 0.544 0.429 0.178 0.108 0.089 0.300 0.286

3 9 0.253 0.141 0.013 0.563 0.423 0.182 0.130 0.087 0.309 0.285

4 8 0.279 0.138 0.014 0.576 0.419 0.185 0.143 0.086 0.315 0.285

5 7 0.296 0.135 0.015 0.586 0.415 0.187 0.152 0.084 0.320 0.285

6 6 0.309 0.132 0.015 0.593 0.412 0.188 0.159 0.082 0.323 0.284

7 5 0.318 0.128 0.015 0.599 0.409 0.189 0.164 0.080 0.326 0.283

8 4 0.326 0.123 0.015 0.604 0.405 0.189 0.168 0.077 0.327 0.282

9 3 0.333 0.114 0.015 0.608 0.400 0.189 0.171 0.072 0.329 0.279

10 2 0.340 0.098 0.014 0.614 0.391 0.188 0.174 0.062 0.330 0.275

Table 2

Performance measures of POS versus s1 with fixed s1+s2¼12: ðl1
¼ 2, l2

¼ 3, l3
¼ 4, m1 ¼ m2 ¼ 3, x1 ¼ x2 ¼ 0:5, r1 ¼ r2 ¼ 1, d1 ¼ d2 ¼ 2Þ.

s1 s2 F1
¼F1 F2

¼F2 F3 SL1
¼SL1 SL2

¼SL2 SL3

2 10 0.0561 0.0438 0.0046 0.3274 0.2857 0.1081

3 9 0.0624 0.0438 0.0049 0.3307 0.2857 0.1090

4 8 0.0650 0.0437 0.0051 0.3322 0.2857 0.1094

5 7 0.0661 0.0437 0.0051 0.3328 0.2857 0.1096

6 6 0.0665 0.0437 0.0052 0.3331 0.2856 0.1096

7 5 0.0668 0.0435 0.0051 0.3332 0.2855 0.1096

8 4 0.0668 0.0430 0.0051 0.3333 0.2852 0.1095

9 3 0.0669 0.0417 0.0050 0.3333 0.2845 0.1093

10 2 0.0669 0.0382 0.0046 0.3333 0.2826 0.1087
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Many interesting problems remain to be explored.
Demands are not necessarily serviced on the FCFS basis and
they may have different priorities. Does the priority allocation
policy outperform the FCFS allocation policy? Does an
optimal inventory allocation policy exist? What is the
optimal inventory allocation policy? We should also
consider how preventive maintenance improves system perfor-
mance.
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