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Abstract. We consider the linearly constrained separable convex minimization problem whose
objective function is separable into m individual convex functions with nonoverlapping variables.
A Douglas—Rachford alternating direction method of multipliers (ADM) has been well studied in the
literature for the special case of m = 2. But the convergence of extending ADM to the general case
of m > 3 is still open. In this paper, we show that the straightforward extension of ADM is valid
for the general case of m > 3 if it is combined with a Gaussian back substitution procedure. The
resulting ADM with Gaussian back substitution is a novel approach towards the extension of ADM
from m = 2 to m > 3, and its algorithmic framework is new in the literature. For the ADM with
Gaussian back substitution, we prove its convergence via the analytic framework of contractive-type
methods, and we show its numerical efficiency by some application problems.
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1. Introduction. In the literature, the Douglas—Rachford alternating direction
method of multipliers (ADM) proposed originally in [15] (see also [14]) has been well
studied for the following linearly constrained separable convex minimization prob-
lem, whose objective function is separated into two individual convex functions with
nonoverlapping variables:

min 6‘1($1) =+ ag(xg),
(1.1) Ay + Agwa =D,

xr1 € Xl and To € XQ,

where 6; : R™ — R and 63 : ™ — R are closed proper convex functions (not
necessarily smooth), X3 C #" and Xy C R"2 are closed convex sets, A; € R*"t and
Ay € RIX72 are given matrices, and b € R! is a given vector. We refer the reader to,
e.g., [11, 13, 16, 20, 28, 45], for some early references on ADM. More specifically, the
iterative scheme of ADM for solving (1.1) is

ot = argmin {61 (01) + £/ (Aves + Agah — ) = DV 21 € 4},

(12) { 2h+! = argmin {92(x2) + BJI(Araht + Agwa — b) — INF|? | 22 € Xg} :
ARFL = AR — B(Ayay ™ + Agay ™ —b),
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where \¥ € R is the Lagrange multiplier associated with the linear constraint and
B > 0 is the penalty parameter for the violation of the linear constraint.

If (1.1) is treated as a generic linearly constrained convex minimization problem
and its separable structure is ignored, the classical augmented Lagrangian method
(ALM) [26, 34] can be applied directly. The ADM scheme (1.2), however, decomposes
the subproblem of ALM into two subproblems in Gauss—Seidel fashion at each itera-
tion, and thus the variables x; and x5 can be solved separately in alternating order.
For many concrete applications of (1.1), the individual functions 6;(x1) and 602(x2)
both have specific properties, and the decomposition treatment of ADM makes it pos-
sible to exploit these particular properties separately. The decomposed subproblems
in (1.2) are thus often simple enough to have closed-form solutions or can be easily
solved up to high precision. We refer the reader to, e.g., [8, 12, 25, 32, 38, 39, 40, 43, 44]
and references cited therein, for some novel applications of ADM in such diverse areas
as image processing, statistical learning, and compressive sensing.

In this paper, we consider a general case of the linearly constrained separable
convex minimization problem with m > 3,

min i 0;(x;),
i=1

m
(1.3) Z A — b,

i=1

r,e€Xy,, 1=1,...,m,
where 6; : R — R (i = 1,...,m) are closed proper convex functions (not necessarily
smooth), X; C R™ (i = 1,...,m) are closed convex sets, A; € R!*™ (i =1,...,m) are
given matrices, and b € R! is a given vector. Throughout, we assume that the matrices
AT A; (i =1,...,m) are nonsingular and the solution set of (1.3) is nonempty. Note

that although we restrict our analysis to the case of (1.3) with vector variables, all
of the following results can be straightforwardly extended to the case with matrix
variables (see section 5.1).

Our consideration of the extension from (1.1) to (1.3) is motivated by a number
of concrete applications; see, e.g., [4, 3, 41, 31, 38]. Inspired by the efficiency of ADM,
a natural idea for solving (1.3) is to extend the ADM scheme (1.2) from the special
case (1.1) to the general case (1.3), and this straightforward extension results in the
following ADM iterative scheme.

ayft! :argmin{91($1)+ S (v + X5y Ay —b) = 5N 7 | 2 € Xl}7
25T —arg min {92($2)+ gH(AlxlfH + Agxa + 2213 ij? -9
_%AkHZ‘f,CQ € X2} )

2! = arg min {01-(3:1-)4— %H(Z;:lAja:?H—FAixi —|—Z;-n:i+1ij?— b)
—%/\kHQ}il € XZ‘},

7j=1
LN | 2 € Xm |
AFL = \F = B3 At ).

2kl —arg min {Hm(xm) + ?H(Zm_l ij?-i_l + A —b)
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Since the scheme (1.4) is obtained via splitting the (k+1)th ALM subproblem of (1.3)
alternatingly, we follow [40] and name (1.4) as the alternating splitting augmented
Lagrangian method (ASALM). Obviously, the ASALM scheme (1.4) can exploit each
particular property of 0;(x;) individually, and thus the advantage of the original ADM
(1.2) is preserved fully for solving (1.3). In fact, all of the z;-related subproblems in
(1.4) are in the form of

(1.5) min {Hl(xz) + g”Aszz — aiHZ | x; € Xl}

with certain known a; € R!. Note that for many applications the subproblems (1.5)
are often easy because of the simplicity of A;’s and 6;(z;)’s, e.g., the least-squares
data-fitting function, the Iy regularization [9], the Iy Tikhonov regularization [42],
and the nuclear norm to induce low-rank solutions [6, 36]. Thus, the desire to extend
ADM from (1.2) to (1.4) is rational.

The convergence of ASALM, however, has not yet been proved theoretically, even
though its efficiency has been verified empirically by some recent applications (see
[33, 40]). In fact, even for the special case of (1.3) with m = 3, the convergence of
ASALM is still open. We refer the reader to [18, 21, 22| for some recent efforts in
extending ADM to the general case (1.3).

In this paper, we provide a novel approach towards the extension of ADM for
(1.3). More specifically, we show that if a new iterate is generated by correcting
the output of (1.4) with a Gaussian back substitution procedure, then the resulting
sequence of such iterates converges to a solution of (1.3). From now on, the resulting
method is called the ADM with Gaussian back substitution (ADM-G). In essence,
ADM-G predicts the new iterate in the forward order (z¥+1 — 25+t — ... 5 gh+1
A1) via the ASALM (1.4), and then corrects the predictor in the backward order
(VL gl bty 28T 5 28 via a Gaussian back substitution
procedure. In this sense, each iteration of ADM-G consists of a forward procedure
(ADM procedure) and a backward procedure (Gaussian back substitution procedure).
Alternatively, ADM-G can be regarded as a prediction-correction type of method,
where the predictor is generated by ASALM and the correction is completed by a
Gaussian back substitution procedure. We prove the convergence of ADM-G under the
analytic framework of contractive-type methods [2] and show its numerical efficiency
via several concrete applications of (1.3) in various disciplines.

The rest of the paper is organized as follows. In section 2, we characterize (1.3)
by a variational reformulation, which is convenient for further analysis. Then, in
section 3, we present the iterative scheme of ADM-G and make some remarks. Im-
plementation details of the Gaussian back substitution procedure for some special
cases of (1.3) will also be delineated. In section 4, we prove the global convergence
of ADM-G. In section 5, we apply ADM-G to solve some concrete applications of
(1.3) and compare it with some existing methods numerically. Finally, we offer some
conclusions in section 6.

2. Variational inequality characterization of (1.3). In this section, we de-
rive a variational reformulation of (1.3) which will be used in future analysis.
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By attaching a Lagrange multiplier vector A € R! to the linear constraint, the
Lagrange function of (1.3) is given by

(21) L(xl,xz,...,xm,/\) = Zﬁl(xz) —)\T < Aiﬁi —b) N
1

i=1

and it is defined on the set
Wi=X, X Xy X - X X X R

Let (27,3,...,27,,\") be a saddle point of the Lagrange function (2.1). Then, for

»mo

any A€ Rl and z; € X; (i = 1,2,...,m), we have
Lz}, a5, ..,z o A) < L(xy,as, .. a0, , N) < Lz, 22,0 T, A).

For i € {1,2,...,m}, we denote by 90;(x;) the subdifferential of the convex function
0;(x;), and we use f;(x;) € 90;(x;) to denote a subgradient of 0;(x;). Then, finding a
saddle point of L(x1, z2, ..., Zm, A) is equivalent to finding w* = (z7, 25, ..., 2}, \*) €

W and fi(z}) € 00;(x}) (for i = 1,2,...,m) such that the following inequalities are
satisfied:

(z1 — =) {fila]) — AT X} > 0,
(w2 —a3)"{f2(25) — ATA"} > 0,

(2.2) Vw=(x1,22,...,Tm,\) € W.

(T — f;z)T{fm(f;tn) - Agz)\*} >0,
A=) (L, A —b) >0,

We denote by W* the set of such w* that satisfies (2.2). Then, under the afore-
mentioned nonempty assumption on the solution set of (1.3), obviously W* is also
nonempty.

3. ADM with Gaussian back substitution. In this section, we show the
combination of the ASALM (1.4) with a Gaussian back substitution procedure and
derive the resulting ADM-G for solving (1.3). We also elucidate how to realize the
Gaussian back substitution for some special cases of (1.3).

To present the Gaussian back substitution procedure, we first define some matrices
which will be frequently used for later analysis. More specifically, let

BAT A, 0 e . 0
BAT Ay BAT As
(31) M = . . . . . )
BAL Ay BAT A3 ... BAT A, 0
0 0 e 0 54
BAT Ay pATAs - BATA, AT
BATAy BATAs - BATA, AF
(3:2) Q= : : : S
BAT A, BAT A3 .- BAT A, AL
A, As . A, %Iz
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and

(3.3) H = diag (BAZT As, BAT A3, ..., BAT A,,,

)

Note that for any 8 > 0, under the assumption that all the AT A; matrices are
nonsingular, the matrix M defined in (3.1) is a nonsingular lower-triangular block
matrix, and the matrix H defined in (3.3) is a symmetric positive definite matrix. In
addition, according to (3.1) and (3.3), we easily have

| =

Ing (A%"A2)—1A5A3 . (AgAQ)_lAgAm 0
0
3.4) H'MT = ’
(3.4) (AL A PAL A, O
0 - 0 Inm 0
0 0 0 b/

which is an upper-triangular block matrix, and its diagonal components are all identity
matrices. We would highlight that the Gaussian back substitution procedure to be
proposed is based on the matrix H M7 defined in (3.4).

Before presenting the iterative scheme of ADM-G, we first clarify some nota-
tion for the convenience of further analysis. With the given w*, we will use the
notation w* = (&%, 75 7% ... 7k 5\’“) to denote the predictor which is generated by
the ASALM scheme (1.4), and the new iterate (i.e., the corrector) will be denoted
by whtl = (28T gh T gt gkl AR Moreover, by revisiting the iterative
scheme of the original ADM (1.2) and the ASALM (1.4), it is easy to observe that
the variable z; plays only an intermediate role and is not involved in the execution of
(1.2) or (1.4); e.g., see the elaboration in [4]. Therefore, the input for executing the
iteration of (1.4) is only the sequence {z5, 2%, ... 2% AF}. For this reason, we define

the following notation, which will simplify our analysis:

v=(Ta,. .. T A)y V=X X X Xy x R,

oF = (k. 2k ), oF =@k, B Y Y ke N,

»mo

vt = (xd, . xn N, Vi ={(ah, x| (e, s, xn, AT e WL

Now we are ready to propose the iterative scheme of ADM-G for solving (1.3).
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ALGORITHM (the ADM (ADM-G) (1.3)). Let 5 > 0 and o € (0,1), and let the
matrices M and H be defined by (3.1) and (3.3), respectively. With the given
iterate w”, the new iterate w**! is generated as follows.

Step 1. ADM step (prediction step). Obtain @w* = (7,75, ... ,iﬁl,:\k) in
the forward (alternating) order by executing the ASALM (1.4):

(3.5a)
7} =argmin {01 (21)+ 5| (Arer + X7, Ajah —b) — LVFJ? [y € 21}

75 =argmin {Hg(xg)—i— %H(Alj’f + Azzo + 3775 Ajak —b)
— LNz € A

Tk =argmin {Hi(xi)—i— %H(Ej»;iAjfc?—i-Aixi +Z;-n:i+1ij§— b)
— LNl € A

%, =argmin { O (@) + ZI(75" A58 + A — )
) — LN | o € X}
A= = BOTTL Aal —b).

Step 2. Gaussian back substitution step (correction step). Generate the
new iterate wf*t! by correcting @w* in the backward order:

HflMT(,UkJrl _ ’Uk) — Oz(f)k _ ’Uk),
(3.5D) { Bk

= .

Remark 1. Recall that the matrix H~'M7T defined in (3.4) is an upper-triangular
block matrix. The Gaussian back substitution step (3.5b) is thus easy to execute. In
fact, as we have mentioned, after the predictor is generated by the ADM scheme
(3.5a) in the forward (alternating) order, the proposed Gaussian back substitution
step corrects the predictor in the backward order.

Remark 2. To show the main idea with clearer notation, we restrict our theoretical
discussion to the case where 3 > 0 is fixed. Some strategies developed in [23, 24] for
adjusting the values of # dynamically during iterations can be easily combined with
the proposed algorithm.

Remark 3. The reason for the restriction a € (0, 1) becomes clear in Theorem 4.4
(see (4.21)). In practice, according to our experience, we recommend « € [0.5,1) (or
even more aggressively, « = 1), which may yield faster convergence empirically.

Remark 4. The Gaussian back substitution step (3.5b) can be rewritten as

(3.6) Pl =% —aM-TH@W* —o%).
As we will show, for any v* € V*, —M~TH (vF — 3%) is a descent direction of the dis-
tance function &|jv—v*||% with G = MH~'MT at the point v = v*. In this sense, the

proposed ADM-G can also be regarded as an ADM-based contraction method, where
the output of the ADM step (3.5a) contributes a descent direction of the distance
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function 1|jv —v*||%. Thus, the constant « in (3.5b) plays the role of a step size along
the descent direction —M ~T H (v* — o%). In fact, we can choose the step size dynam-
ically based on some techniques in the literature (see, e.g., [45]), and the Gaussian
back substitution procedure with the constant o can be modified accordingly into the
following form with a dynamical step size:

(3.7) HIMT (W —oF) = yaj, (f)k —b),
where v € (0,2), Q is defined as in (3.2), and

s B R el
k 2k — T,

Indeed, for any g > 0, the symmetric matrix @ is positive semidefinite. Then, for a
given v*, let 9* be obtained by the ADM procedure (3.5a), and we then have

m 1 5
loF =% = 83 || Aual — )| + 5l - M2
1=2

and
m 1 2
[v* — "3 =8 ZAi(azf—izf)+B<A’“—A‘“> :
1=2

where the notation ||z|gz and ||z|q are defined by (z” Hz)'/? and (z7Qx)'/?, re-
spectively. In fact, it is easy to prove that the step size aj defined in (3.8) satisfies
% <ap < _m2+ L

Remark 5. For i € {1,2,...,m}, according to the optimality condition of the
Fk-subproblem in (3.5a), there exists f;(Z¥) € 90;(Z¥) such that

(3.9)
(@i — &) @) — AT (N =B | Y Ash+ > Ajah b >0 Va; € X
j=1 j=i+1

In the following we elucidate how to realize the proposed Gaussian back substi-
tution procedure for some special cases of (1.3). The first special case of (1.3) is

min Y7, 6(r).
(3.10) S x=b,
neX; CRY, i=1,...,m,
where all A;’s are identity matrices in (1.3). For this case, we have
ATA;j =1, VYi,je{l,...,m}.

Thus, for (3.10), the matrices M and H defined, respectively, in (3.1) and (3.3) reduce
to

B, 0 0
BI,

M= : .0 0
0o -~ 0 0 %Il
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and
BI, 0 0 0
0
H = 0 0
0 0 BIL, 0
0 0 0 3in

Hence, the Gaussian back substitution procedure (3.5b) is characterized by the fol-
lowing system of linear equations:

xé“ xlge I, -1, 0 - 0 jlg _ x’g
. 0 .
k41 = k + a . . ~k ok
Tin—1 Tp—1 : .. In _In 0 Lop—1 Trn—1
k41 k ~k _ .k
T L 0 . 0 In 0 Ty, Ty,
PLan AP 0o -~ 0 0 I DU

1

Therefore, the Gaussian back substitution procedure (3.5b) for the special case (3.10)
can be completed by the following backtracking procedure:

ARFL = AR (W = \F),

ot = an £ al@y, — 2,
et = b 4 af(@F —af) — (b, -2k} fori=m—1,....2,
b =it

Recall that we require a € (0,1) for ADM-G. Therefore, the value of a can be ar-
bitrarily close to 1, and the asymptotical behavior (with o — 1) of the proposed
ADM-G for (3.10) should coincide with the following scheme:

AR L — S\k’
;rk+1 — j’,k
(3.11)  (Substitution form I) AR k .
r, =20 — (T i), t=m—1,...,2,
xlfH = 5clf

According to (3.11), for the special case of (3.10) with m = 2, the asymptotical
behavior (with o — 1) of the proposed ADM-G reduces to the original ADM (1.2).
Note that the back substitution procedure (3.11) differs slightly from the ASALM
(1.4) only in the way of generating 2¥™'’s (i = 2,3,...,m — 1). In this sense, for the
special case (3.10), the proposed ADM-G is asymptotically close to the ASALM (1.4)
when oo — 1.

Now, we consider the model

(3.12) min{i O;(x) |z e X C 3?”} ,
i=1
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which has applications in many areas; see, e.g., [4, 17, 31]. Obviously, (3.12) can be
easily reformulated as

m

1=1

Tl = T2 =+ = Tm,
r,eX, i=1,...,m,

(3.13)

which is a special case of the model (1.3) whose A; matrices are, respectively, the ith
column of the matrix

L, -I, O 0
0 L, -1,
14 A= .
(3.14) o
O e 0 In _In
-I, 0 0 I,

(mmn)x(mn)

and b = 0. For such A;’s, we then have

21, ifi=j,
ATA; ={ —1, if|j—i| =1,
0 otherwise.

Thus, for (3.12), the matrices M and H defined, respectively, in (3.1) and (3.3), reduce
to

28I, 0 . . 0
—BI, :
M= ' g 0 0
0 —BIL, 28I, 0
0 0 0 %Il
and
261, 0O 0 0
0
H= o o |’
0 0 28I, 0
0 0 0 %Il
and we have
I, —iI, 0 0
0 -
HMT = I, -1, 0
0 0 I, 0
0 0o 0 I
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Hence, the Gaussian back substitution procedure (3.5b) for (3.12) is characterized by
the following system of linear equations:

I, —-%i1, 0 0 k+1 k 7k k

2 Ty ' T — g Ty — Tg
0 .
k+1 k =« sk _ ok
I, —%In 0 Lip—1 = Tm—1 Tm—-1 " Tm-1
k+1 k ~k k
O - 0 I, 0 it —ay Ty, —
AFHL _ \F e Ak
0 0 0 I

Therefore, the Gaussian back substitution procedure (3.5b) for the special case (3.12)
can be completed by the following backtracking procedure:

AR = \E (AR — AF),

wt =g, + aliy, - o),
(ah Tt — k) — %(xfj:ll —ab ) =a(@ —aF) fori=m-1,...,2,
ah Tl = gk

Similarly, the asymptotical behavior (with v — 1) of the proposed ADM-G should
coincide with the following scheme. In particular, if & = 1, the last scheme is reduced
to

ARHL — ;\k7
xianrl = jﬁm
(3.15) (Substitution form II) bl n 1kl .
i :xi+§($i+1_$i+l)? Z:m_lv"'vza
xlerl =7k,

Again, the scheme (3.15) is identical to the original ADM (1.2) for the special case
of (3.12) with m = 2. Moreover, since the back substitution procedure (3.15) differs
slightly from the ASALM (1.4) only in the way of generating z%™1’s (i = 2,3,...,
m — 1), the proposed ADM-G is asymptotically close to the ASALM (1.4) when
a — 1 for solving (3.12).

4. Convergence of the ADM with Gaussian back substitution. In this
section, we prove the convergence of the proposed ADM-G for solving (1.3). Our proof
follows the analytic framework of contractive-type methods (see [2] for the definition),
and it consists of the following three phases:

(1) Show that —M~TH (v® — %) is a descent direction of the distance function
Lo —v*||% with G = MH~'MT at the point v = v* whenever 0% # v*.

(2) Show that the sequence generated by the proposed ADM-G is contractive with
respect to V*.

(3) Prove the convergence of the proposed ADM-G.

Accordingly, we divide this section into three subsections to address the tasks
listed above.

4.1. Verification of the descent direction. In this subsection, we mainly
show that —M ~TH (v* —©¥) is a descent direction of the distance function |jv—v*||%
at the point v = v* whenever o* # v¥, where ©* is generated by the ADM step (3.5a),
v* € V*, and G = MH-'M7. For this purpose, we first prove two lemmas.
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LEMMA 4.1. Let @* be generated by the ADM step (3.5a) from the given vector
k
v¥. Let

0 0 0 k ~k
Lo — Tp

AT A 0 0
s IR

T T
(1) di(h, o) = | PAsde PAA

BAT Ay BAT Ay ... BATA, 0 o
0 0 - (Y A=A
and
fu(@}) = AT AT
fZ(jIQC) - Ag)\k Ag m
(42)  do(v*, k) = : +8] DAk =) |,
ity e || an |\
Yy A = b 0

where fi(T¥) € 00;(7F) satisfies (3.9). Then, we have
4.3) wfew, (w — ") {do (V" 0*) — dy (%, 7)) >0 Vwe W.
Proof. By using \* = \F — B(3°™ | A;% —b), it follows from (3.9) that

J=1 J
(4.4)
# e X, (m— )T fi@) — ATN 4+ AT [ D Ay —a5) | >0 Vi € A
j=it1
Thus, it follows from (4.4) that
T, — Lf]f r
To — Lfg
(4.5)
Tn—1 = Ty,
Ty — TF
fi(@}) — AT AT (X520 Aj ey —37))
f2(x§) - Ag)‘k Ag (Zj:B ey (955 - 95?))
: +58 : >0
fm—1(E5,_1) — Agz—l;\k Al (Am(%]% - 551]31))
fm(jfn) - A%/\k 0

is satisfied for all z; € &; (i = 1,2,...,m). Then, by adding the term

_ sk T 0
331 331 2
Ty — Ik A3 (Zj:2 Aj(a:;? - 5:?))
8 : :
Tm—1 — jji]:n—l A%%l (Z;;Ln:;l AJ (]‘;C;C ilf?))
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to both sides of (4.5), we get ¥ € &; and

xr1 — Lf]f r
o — Lfg
(4.6)
Tm—1 — 5;113171
Ty — TF
Fi(@) — ATN 4 BAT (370, Ay (af — 35))

k
i) —
F2(5) — AT/\’“+ﬁAT(ZJ o Aj(]

fmfl(qu?n 1) A% 1/\k+ﬂAm 1(ZT:QA($§_‘%§))

j
F(@,) = ARNS + AT (3072, Ay (2 — 2)

o -t \ 7T 0

xy — 5 ﬁAT(Zj 2,%(3’?—5:?))
> : :

Top—1 — 51:012,1_1 BAL (Z;n 21 Aj (Tf — i)

T — B, BAL (27, Aj(af — 75))

Va, € Xy, i=1,...,m.

(A= AT <§: )z()\—S\k)T%()\k—:\k).

Adding together (4.6) and the last equality, we get @* € W and

X1 —{flf r
X9 —53]5
Tm—1 — ~ffn—l
Tm _;%fn
A — \F
1) — AN+ BAT (71, Ay (2 — 7))
fo(#5) - ATA’“+/5AT(ZJ 2 Ay() — 7

S (E, 1) AL 15\k+ﬂf4 (Z;nQAj( - @)
(T,

(@) — AT 3k 4 BAT, (ZJ LAk — b
Zl 1 A CE
~ T 0

Ty — Iy

vy — ik BAT (Y2, Aj(ah — b))
> : : YweW.

R BAL, (Z;n:Ql Aj (955 - 95?))
o — BAL (ST, A, - )
A — 2k (,\k )\k)
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Recall the definitions of dy(v¥, %) and da(v¥,@w") in (4.1) and (4.2); the assertion
(4.3) is proved. O

Remark 6. Note that d; (v, 7*) depends only on v* and o*, while do(vF,@") is
determined by both v* and @*. The first row of the matrix associated with d; (v*, o")
is completely zero and seems redundant. But, we keep it for consistency of the di-
mensionality of d; (v, %) and do(v*, @WF).

LEMMA 4.2. Let w* be generated by the ADM step (3.5a) from the given vector
v*, and let M be defined as in (3.1). Then we have

(4.7) (@ — o) TM@F = %) = (W= XN)T [ Ajh — &) | Vot eV
j=2

Proof. Recall that f;(Z¥) € 00,(zF) satisfies (3.9); it follows from (4.3) that
(4.8) (@ —w*)Tdy (vF,5%) > (0% — w*)Tdo(v*, %)  Vw* € W*.

We now focus on the right-hand side of (4.8). First, for notational convenience, we
denote

fm(@@n) - Aglj‘k
Z;il Aii’f —-b

Then, (4.2) can be rewritten as

AT
AT m
dy (v, %) = F(i*) + 8| - > Ay — &)
AT Jj=2
0

Therefore, we have

(4.9) (0" —w*)Tdo(v®, ")
T

=Y Ak —ahy | B D A - | + @ —w)TF(@").
j=2 j=1

Recall @w € W and use (2.2). Then it is easy to verify that
(@ —w*)TF(w*) > 0.

In addition, because

o Ajzr=b  and B Y AEF—b| =M=
j=1 j=1
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it follows from (4.9) that

(4.10) (@ —w)Tdao(v¥, %) = (W = M) 3" Ak — %) | vwr e wr.

Jj=2

Substituting (4.10) into (4.8), we obtain

@11) (@ - ) di(0F, ) > (=3T3 Ak -3 | ver e w.
j=2

On the other hand, since (3.1) and (4.1), we have

(@12) %) = pg ) )

which implies that

(4.13) (o8 — )T M(WF — %) = (0% — w*)Tdy (%, 0").

Therefore, the assertion (4.7) follows immediately from (4.11) and (4.13). O

Now, based on the last two lemmas, we are in position to prove a theorem which
will be crucial for establishing the convergence of ADM-G.

THEOREM 4.3. Let ©F be generated by the ADM procedure (3.5a) from the given
vector v*. Then, we have

1 1
(4.14) (vF — )T M@W* — %) > §Hvl~C — % + §||vk - ~]’CHQQ Vo* e VT,

where M, H, and Q are defined as in (3.1), (3.3), and (3.2), respectively.
Proof. First, for all v* € V*| it follows from (4.7) that

(4.15) (" — o) TM (W% — &%) > (0 — %) TM (% — &%)

+ W= XTI Ak — 2
j=2

Now we treat the first term of the right-hand side of (4.15). Using the matrix M (see
(3.1)), we have

(4.16)  (v* =T M(F —oF)

ok —@h\ [BATAy 0 o o0\ /ak gk
w5 || pATA, BATA; - : vy — I
T =& || BAT Ay BATAy - BATA, O | |%m—En
PN 0 0 0 %IL LY.
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Then, let us deal with the second term of the right-hand side of (4.15). By manipu-
lations, we have

(4.17) (AP =2H)T i Aj(ah —ah)
j=2

~ T ~
x§ — 75 0O 0 ... 0 0 x5 — 75
ok — 3k 0 0 ... 0 0 ok — 7k
xk — gk 0 0 0 0 xk — gk
A \F Ay Az A, 0 A3k

Adding together (4.16) and (4.17), it follows that

(0 =) TMF = 5%) + (N = M) YAk - 2h)
j=2

3312“—5:]2“ ﬂA§A2 0 0 f§—5:§

of — 7§ BATA, BATA; . : xf — 7%

T — T BAT Ay BAT Ay - BATA, 0 T — T

k k k k

AP — A Ao As e A %Iz AP — A

b — &5 \ T (26ATA, PATA; - BATA, AT\ [ ab -k
1 ok — &k BATA, 2BATA; .- PATA,, AT ok — &k

=3 : : : : : :
AF 2k Ao As e Am 21 AP\

Using the notation of the matrices H and @ in the right-hand side of the last equality,
we obtain

- n 1 1
(F =TT M (o = 5)+ (=3T3 Ay = 2b) | = Sl =¥+ 5 0t =
j=2

Substituting the last equality in (4.15), the assertion (4.14) is proved. |
It follows from (4.14) that

- X . - 1 -
(MH M (0% —v*), M~TH(%" - vk)> < —§Hvk — vk|\?H+Q).
In other words, by setting
(4.18) G=MH'MT,

MH~*M™ (v* —v*) is the gradient of the distance function §|lv—v*|%, and =M ~TH
(v* —5%) is a descent direction of 3 |lv—v*||% at the current point v* whenever % # v*.

4.2. The contractive property. In this subsection, we mainly prove that the
sequence generated by the proposed ADM-G is contractive with respect to the set V*.
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Recall that we follow the definition of a contractive-type method in the textbook [2].
With this contractive property, the convergence of the proposed ADM-G can be easily
derived via standard analysis in the context of contraction methods.

THEOREM 4.4. Let 0% be generated by the ADM procedure (3.5a) from the given
vector v*. Let the matriz G be given by (4.18). For the new iterate v**1 produced by
the Gaussian back substitution (3.6), there exists a constant c¢o > 0 such that

(429) o™ = o |IG < flo* = lIG = co(lo” = T + (10" - () Vot eV

where H and Q are defined as in (3.3) and (3.2), respectively. That is, the sequence
{v*} is G-norm contractive with respect to V*.
Proof. For G = MH'M™ and any a > 0, we obtain

[ = v [IE = o™ =¥
= [[o* —v*||E = | (" —v") —aMTH (" — )|
(4.20) = 2a(v* — )T MW* — %) — o2 ||o* — F||%.

Substituting (4.14) into the right-hand side of the last equation, we get
[o* — v [|E = 0" = "I
> a[|of = 0| + [l = 3*)3) — o?llv* = o*(1

= a(l = a)llv* = "% + all* — "3,

and thus
@

< ok — o3 — (L= @)llo® — P + oF — HB) Vot e V.
Set ¢g = (1 — @). Recall that o € (0,1). Thus the assertion is proved. |

Based on the assertion (4.19), some properties of the sequence {v*} can be im-
mediately derived, and we summarize them in the following corollary.

COROLLARY 4.5. Let % be generated by the ADM procedure (3.5a) from the given
vector v¥. Then

(1) the sequence {v*} is bounded; }

(2) limy oo [|Ai(2F — ZF)|| =0 fori=2,...,m, and lim_, [|N¥ — X\F|| = 0.

Proof. The first property is an obvious fact based on (4.19). For the second
property, it follows from (4.19) that

o0
> collvk — ¥ 17 < 00 — vt [
k=0
which implies that limy. [[0* — @*||% = 0. Thus, the second property is

proved. a

COROLLARY 4.6. The assertion of Theorem 4.4 also holds if the Gaussian back
substitution is (3.7).

Proof. Analogous to the proof of Theorem 4.4, we have that

(4.22) [Jo* —o*[[& = [W*F! = o1& > 2yag (0" —v*)TM (0" —0°) = (yag)?|lv* — 3|1,

where o is given by (3.8). According to (3.8), we have that

1
k_ ~k k o~k E ~k
agfv® — II?{=§(HU — oFlfF + [lv* = *13)-
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Then, it follows from the above equality and (4.14) that

[0* = o*|[& = [lv** = o

- - 1 - -
> o (Ilo" = 0% + [lv" = 5713) = 57k (lv® = 0% + [lv* = 5%]3)

1 N - -
= 572 = Mg (0* = |3 + 0" — 5 13).

Because o, > %, it follows from the last inequality that
(4.23)  [o* =3
* 1 ~ ~ * *
< l* —o*|E - 272~ N(I0* = o*F + lv* —3*3) Vo' e V™.

Since v € (0,2), the assertion of this corollary follows directly from (4.23). O

4.3. Convergence. The proved lemmas and theorems are adequate for estab-
lishing the global convergence of the proposed ADM-G, and the analytic framework
is standard in the context of contractive-type methods.

THEOREM 4.7. Let {w*} be the sequence generated by the proposed ADM-G.
Then, {wk} converges to a solution point of (2.2).

Proof. First of all, since it is bounded, the sequence {v*} has at least one cluster
point, and we denote it by v>*° = (z3°,25°,...,25°,A®) € V. In addition, let {v¥i}

be the subsequence converging to v°°. Obviously, it follows from (3.5a) that

Alxlfﬂ = Al!’fk = (/\}IC — S\k) — ZAJ{?I; —b
j=2

S

Therefore, assertion (2) of Corollary 4.5 implies that the sequence {z%¥} C X; gen-

erated by ADM-G is also bounded. We denote by z{° a cluster point and let {wlf] }
be the subsequence converging to x5°. Then, the sequence {w*} generated by the
proposed algorithm is bounded. Moreover, w™ = ({°,v°°) € W is a cluster point of
{wk}, and w* = (2% v*7) is the subsequence converging to w™.

Now, we show that w® is a solution of (2.2). By taking the limit over j in (3.9)
(see also (4.4)) and using assertion (2) in Corollary 4.5, we have that there exists
fi(x2°) € 00;(x°) such that

(4.24) (x; — xfo)T{fz(xfo) - A;fp/\oo} >0 Va,ed;, i=1,2,...,m.
In addition, it follows from (3.5a) and assertion (2) of Corollary 4.5 that

(4.25) > A —b=0.
j=1

Thus, (4.24) and (4.25) imply that
fi(age) — AT A
fa(a3) — AFA>
(4.26) w>® eW, (w—w>)T : >0 YweW,i=1,...,m.
fm(37) = AT
27:1 Ajr —b

Therefore, w™ is a solution point of (2.2).
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On the other hand, taking v* in (4.19) as v>°, it is obvious that the sequence {||v*—
v>||} is nonincreasing. Therefore, the sequence {v*} converges to v>. Accordingly,
the sequence {w"} converges to w™, which is a solution of (2.2). |

5. Numerical results. In this section, we apply the proposed ADM-G to solve
several concrete applications of the model (1.3) arising in different areas and report
the numerical results. To further verify its numerical efficiency, we also compare
the proposed ADM-G numerically with some customized efficient methods for these
applications. As we have mentioned, for a concrete application of the abstract model
(1.3), the involved 6; functions and the coefficient A; matrices usually have particular
properties, and thus the decomposed subproblems (3.5a) are often easy enough to
have closed-form solutions or can be easily solved up to high precision. As we shall
show, this fact contributes much to the numerical efficiency of the proposed ADM-G.

All code was written in MATLAB v7.1 (R14) and performed on a T6500 notebook
equipped with Windows XP, 2.1 GHz IntelCore 2 Duo CPU, and 2GB of memory.

5.1. Recovering low-rank and sparse components of matrices. In this
subsection, we apply the proposed ADM-G to solve the problem of recovering low-
rank and sparse components of matrices from incomplete and noisy observation, which
was launched in [40]. More specifically, the model is

o) ming,s 12|l + 7Sl
subject to || Po(C — L —8)||r <9,
where C € R™™ is a given matrix (data); || - ||« denotes the nuclear norm (defined
as the sum of all singular values) which aims at inducing the low-rank component
L € R™™ (see, e.g., [36]); || - |1 (defined as the sum of the absolute values of all
entries) is to induce the sparse component S; 7 > 0 is a constant balancing the
low-rank and sparsity;  is a subset of the index set {1,2,...,1} x {1,2,...,n}, and
we assume that only those entries {Cj;, (i, j) € Q} can be observed, the incomplete
observation information is summarized by the operator Pg : RYX™ — RX™, which is
the orthogonal projection onto the span of matrices vanishing outside of €2 so that the
ijth entry of Po(X) is Xj; if (7,7) € Q and zero otherwise; ¢ > 0 is the Gaussian noise
level; and || ||  denotes the standard Frobenius norm. Note that (5.1) is a generalized
model of the matrix decomposition problem in [7] and the robust principal component
analysis model in [5].
As analyzed in [40], by introducing M := Po(C), (5.1) can be rewritten as

ming sz || L[« + 7S]
(5.2) subject to L+ S+ 2 =M,
ZeB:={ZcR>"||Po(2)|F <6},

which is a special case of the model (1.3) (actually (3.10)) but with matrix variables
(as we have mentioned, the proposed method is still applicable for the extension of
(3.10) with matrix variables). Note that the substitution form (3.11) is applicable for
(5.2).

In [40], the ASALM (1.4) was shown to perform very efficiently, even though its
convergence is still ambiguous. Due to this lack of convergence, a variant of ASALM
(denoted by VASALM) with convergence was also proposed in [40]. But, according
to the numerical results in [40], empirically VASALM is less efficient than ASALM.
In the following, we shall compare the proposed ADM-G with both ASALM and
VASALM for solving (5.2).
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We generate the data of (5.1) randomly in the same way as [40]. More specifically,
let C' = L* + S*. The low-rank matrix L* is generated by L* = UR”, where U and R
are independent [ x r matrices whose entries are independently and identically (i.i.d.)
Gaussian random variables with zero mean and unit variance. Hence, the rank of L*
is r. The index of the observed entries, i.e., ), is determined randomly. The support
I' C Q of the sparse matrix S* is chosen uniformly and randomly, and the nonzero
entries of S* are i.i.d. uniformly in the interval [—500, 500] (thus, the nonzero entries of
S* can be large). Let sr, spr, and rr represent the ratios of sample (observed) entries
(i.e., |Q/In), the number of nonzero entries of S* (i.e., |[S*||o/In), and the rank of L*
(i.e., r/min(l,n)), respectively. In our experiments, we choose | = n = 500; s = 0.8,
and we set 7 = 1/y/n in (5.1). We test some scenarios of rr and spr. The value J is

chosen as § = v/n + +/8no.

As in [40], the stopping criterion is set as

- ||(Lk+1, SkJrl) _ (Lk,Sk)HF

(5.3) RelChg := TS 1 1 < Tol,

where T'ol is the tolerance of the relative errors of the recovered low-rank and sparse
components. Our numerical experiments focus on the cases of 0 = 0 (i.e., the Gaussian
noiseless case) and o = 1072 (i.e., the Gaussian noise case). For the case of o = 0, the
tolerance in (5.3) is set as le — 5, and for the case of ¢ = 1073, the tolerance in (5.3)
is set as 0.50. For all of the implemented methods and tested scenarios, the value of
[ is determined simply by

1©2] : —
(5.4) B = { 0-lrpoyy 1 spr = 0.05,
' 1] : —
0'15\\P9(C)||1 if spr =0.1,

and the initial iterate is (L°, S°, Z%) = (0,0,0). Since o can be arbitrarily close to
1, empirically we take a = 1 for ADM-G; i.e., we use the substitution scheme (3.11).
For the parameter y required by VASALM, we set it as 1.5. We denote by (L, S) the
iterate when the stopping criterion (5.3) is achieved.

In Table 5.1, we report the numerical results of VASALM, ASALM, and ADM-G.

More specifically, for different methods, we report the relative error of the recovered

5—5*|r
rank component (ErrsLR := WL the computing time in seconds (“Time(s)”)
and the number of eigenvalue decompositions required by the L-related subproblems
(“#Fig").

According to the data in Table 5.1, as we expect, ASALM still performs the best
among the tested methods in terms of both accuracy and speed. Nevertheless, the
proposed ADM-G has better numerical performance than VASALM and it is very
competitive with ASALM. As we have emphasized, the convergence of ASALM (i.e.,
(1.4)) is still ambiguous, while the convergence of ADM-G has been established in
this paper. Therefore, the proposed ADM-G with favorable numerical performance
and proved convergence can be used as a surrogate of ASALM whenever the latter is
efficient.

To see the comparison clearly, we focus on the particular case where [ = n = 500,
spr = 0.05, rr = 0.05, st = 0.7, and ¢ = le — 3, and we visualize the iterative
processes of different methods in Figure 5.1. More specifically, we plot the evolutions
of the rank of the recovered components, the relative error ErrsSP, and the relative
error ErrsLR, with respect to the iterations.

sparse component (ErrsSP := ), the relative error of the recovered low-
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TABLE 5.1
Numerical comparison of VASALM, ASALM, and ADM-G for (5.1).

Il =n =500, sr =0.8, and 0 =0
S—s* L—L*
rr spr w w Time(s) #Eig
IVASALM| ASALM | ADM-G [VASALM| ASALM | ADM-G [VASALM|ASALM|[ADM-G|VASALM|ASALM|(ADM-G
0.05|0.05 |[ 5.33e-6 | 3.18e-6 | 3.00e-5 | 1.96e-4 | 2.47e-5 | 1.66e-4 33.6 18.4 20.5 38 21 23
0.1 || 1.10e-5 | 9.22e-6 | 2.78e-5 | 2.65e-4 | 8.83e-5 | 2.63e-4 33.9 19.9 21.5 38 22 24
0.1 [0.05 || 2.44e-5 | 3.62e-6 | 3.29e-5 | 2.17e-4 | 3.94e-5 | 1.90e-4 34.9 21.3 25.8 44 26 31
0.1 || 7.68e-5|1.76e-5 | 4.20e-5 | 7.21e-4 | 1.73e-4 | 3.64e-4 31.5 23.4 29.8 36 26 32
Il =n = 500, sr = 0.8 and o = le — 3
0.05|0.05 |[ 2.26e-4 | 1.52e-4 | 3.20e-4 | 8.11e-3 | 1.24e-3 | 3.88e-3 14.6 10.0 10.1 18 12 12
0.1 || 3.37e-4 | 1.59e-4 | 3.43e-4 | 1.27e-2 | 2.41e-3 | 5.86e-3 13.7 10.0 11.0 17 12 13
0.1 [0.05 || 3.32e-4 | 1.61e-4 | 3.97e-4 | 8.82¢-3 | 2.37e-3 | 4.09¢-3 17.6 11.5 14.4 22 14 17
0.1 || 4.03e-4 | 2.46e-4 | 5.19e-4 | 8.55e-3 | 4.17e-3 | 6.73e-3 15.4 12.5 15.2 18 14 17
Rank(A%) Errors of low rank Errors of sparse component
* 10° 10°
I .
2850 ¢ ) QY >, O VASALM
. QO * -#-ASALM
2’ 0 e, ~-ADM-G
' ' 1 N
275 ‘ 10 OQ * “
[ O VASALM| X AW O VASALM|
&z P %~ ASALM Qb * ., %~ ASALM
265 | \ —~<4ADM-G ‘o ., 4 ADM-G
N 102 ‘Q 'S
26| * \o‘ *~-.,~‘
25.5 Y o, R
' \ Q *
............ 5 N
ST TR T T s 2 5 10 15 20 10 15 20
Iteration number Iteration number Iteration number

Fic. 5.1. Ewvolution of rank (left), relative errors of low-rank (middle), and sparse components
(right).

According to the curves in Figure 5.1, ADM-G performs as well as ASALM in
terms of the rank evolution of the recovered low-rank components. In terms of the
relative error evolutions of both recovered low-rank components and sparse compo-
nents, the performance of ADM-G is slightly worse than that of ASALM, but it is
still much better than that of VASALM.

5.2. Fermat—Weber problem. In this subsection, our purpose is to compare
the proposed ADM-G with the fast multiple splitting algorithm (FaMSA) proposed
n [17]. Thus, we consider the same Fermat—Weber problem as in [17],

(5.5) min F(z) = 3 [lz — ||,
i=1
where ¢t € R"(i = 1,...,m) are given points. Note that (5.5) is a special case of

(3.12) and can be reformulated as

m .
minz |z — '],
i=1

X1 =Ty = "= Tym-

Therefore, the proposed ADM-G is applicable.

We generate the ¢! vectors exactly in the way suggested in [17], i.e., the ¢'’s are
i.i.d. Gaussian entries from A (0, 7). To implement FaMSA, we take the recommended
values in [17] for all parameters of FaMSA. To implement ADM-G, we take 8 =
0.01 iy Z;'l:1 ‘C;‘

L and again set a = 1 in the Gaussian back substitution (i.e., we
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TABLE 5.2
Comparison of ADM-G and FaMSA in [17].

Problem It. Time(s) Obj-End

m n ADM-G | FaMSA | ADM-G | FaMSA ADM-G FaMSA

50 50 64 63 0.14 0.98 1.736863380e4 | 1.736863537e4
100 100 154 120 0.59 12.89 9.788833117e4 | 9.788836287e4
200 200 238 163 3.13 65.75 5.608766247e5 | 5.608770174eb
250 250 330 155 6.84 118.59 9.818182759¢e5 | 9.818192518e5

use the substitution scheme (3.15)). Both methods start with the initial iterate z; =
0(i=2,....m)and \;, =0 (i=1,...,m).

The authors of [17] suggested solving the second-order cone programming (SOCP)
reformulation of (5.5) first (e.g., by the Mosek package [30]) to obtain the solution z*,
and then using the following criterion to implement FaMSA:

_ mini—yo o {F(2})} — Fa)]

, -6
(5.6) RelErr := Flo) < 107"

At the same time, as mentioned in [17], for large-scale cases of (5.5), solving (5.5) a
priori based on its SOCP reformulation is either impossible or prohibitively expensive,
as the dimensionality of SOCP reformulation is significantly enlarged. For these
concerns, we choose the following stopping criterion to implement FaMSA:

_ |min;—y o m{F(zF)} - mini:l,Q,...,m{F(xfil)}|

|mini—1,.m{F(zf ")}

To implement ADM-G, our stopping criterion is

k
O S At PO P i 1
el =20 A =9

<1078,

In Table 5.2, for some cases of m and n, we report the iteration numbers (“It.”)
and computing times in seconds (“Time(s)”) for the proposed ADM-G and FaMSA.
As these two methods adopt different stopping criteria, for fair comparison we also
report the objective function values of (5.5) (“Obj-End”) when these two methods
are terminated.

Note that the computation load per iteration of FaMSA is much more than that
of ADM-G (O(m(m —1)n) versus O(mn)). Therefore, to obtain the same (or slightly
different) objective function values, the computing time of ADM-G has to be signifi-
cantly less than that of FaMSA even though it requires more iterations. The data in
Table 5.2 supports the efficiency of the proposed ADM-G for solving (5.5).

5.3. Super-resolution from a sequence of low-resolution frames. In this
subsection, we apply the proposed ADM-G to solve the super-resolution problem
from a sequence of low-resolution frames arising in the discipline of image processing,
which can be reformulated as a special case of (1.3). By this application, we shall
demonstrate that the proposed ADM-G performs as well as the ASALM (i.e, (1.4))
in the sense that both require the same number of iterations for reconstructing the
image with the same quality. This application thus further verifies the efficiency of
the proposed ADM-G.

For the background of the super-resolution imaging problem, we refer the reader
to, e.g., [3, 27]. Here we provide a brief review. An image acquisition system composed
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of an array of sensors, where each sensor has a subarray of sensing elements of suitable
size, has recently been popular for increasing the spatial resolution with high signal-
to-noise ratio (SNR) beyond the performance bound of technologies that constrain the
manufacture of imaging devices. The multiframe-based super-resolution problem is to
reconstruct a high-resolution image (HRI) from a sequence of low-resolution images
(LRIs) about a scene (which may be blurred and noised), and the aliasing effects in
LRIs (e.g., subtle shift or shake between LRISs) enable the possibility of reconstruction.
Note that the LRIs can be yielded when an HRI is blurred, noised, motioned, and
down-sampled. Thus, we have

(57) b; = RS;Giu+n;, i=1,...,p,

where b; € R! (i = 1,...,k) are observed frames of LRIs, R € R!*" is a down-
sampling operator, S; € R"*"™ are motioning operators, G; € R™ ™ are blurring
operators, n; € R! are noise to individual LRIs, and v € R" is the HRI to be
reconstructed.

The inverse problem (5.7) is usually ill-posed and computationally challenging.
Therefore, it is not practical to solve it directly, and certain regularization techniques
are required. One of the most popular regularization techniques is the total varia-
tion (TV) regularization, proposed in the seminal work [37], mainly because of its
capability of preserving the edges of images. More specifically, let 9 : R" — R"
and Js : R™ — R" be the finite-difference operators in the horizontal and vertical
directions, respectively, and let V := (91, 02) denote the gradient operator. The TV
model for reconstructing the HRI from a sequence of LRIs can be formulated as

12

(5.8) min {§Z|RSiGiu—bj||2+T|Vu||1 | uEQ},
i=1

where Q := {u € R" | 0 <u < 255}, 7 > 0 is a constant balancing the data-fitting

and regularization, and || - ||; defined on R™ x R™ is given by

Hyllly == N(yDll - Yy = (y1,92) € R" x R™.

Here, |y| := /y? +y3 € R™ is understood in the componentwise sense: (|y|); =

(y1)7 + (y2)? (see, e.g., [35, Chapter 1]). However, the model (5.8) is not easy due
to the nonsmoothness of the term || - |1, the high dimensionality, and the ill-posedness.
Here, we focus on the case that G; = I; i.e., there is no blur on the HRI, and the
motion operator is known. Thus, we consider the following model for reconstructing
the HRI from a sequence of LRIs:

12
(5.9) min {giZ;HRSiu—biH?—i—ﬂVqu | uEQ}.
Note that the model (5.9) differs from the super-resolution model in [10] in that
the additional constraint 2 is required for u. In fact, as [29] shows, this additional
constraint ) often results in a reconstructed image with much higher quality.

We now illustrate that the model (5.9) can be reformulated as a special case of
(1.3). In fact, introducing the auxiliary variables x; and letting x; = S;u, the model
(5.9) can be reformulated as

1 p
(5.10) min{iz: |Rx; — bl + 7|yl | @ = Siuyi=1,...,psy = Vu,u € Q} .

i=1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/20/13 to 137.189.49.65. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ADM WITH GAUSSIAN BACK SUBSTITUTION 335

We further rename y, v in (5.10) as zp41, Tpt2, and then (5.10) can be rewritten as

1 .
(5.11) mln{§ Z ||Rajl — szQ =+ 7'||33p+1||1 ‘ €T = Sixp+2, 1= 1, ey D Tt
=1

= V$p+2, Tp42 S Q} 5

which is obviously a special case of (1.3) with m =p+2,b=0:

3Rz —bi||* ifi=1,....p,

(512) Gz(xl) = T|‘V$il|1 ifi = p+1,
0 ifi=p+2;
1 0 0 -5
O : O —SQ
(513) A = . .,Ai = I 1,.. .,Ap+1 = s Ap+2 = ;
' s -S,
0 0 I -V
and
o R ifi=1,....,p4+1,
(5.14) Xi—{ O ifi=p+2.
According to (5.13), it is easy to verify that
I, ifi=j, ije{l,....p},
0 345, ij€{L,....p},
ATA: _Sj7 Z:p+27]€{177p}7
¢ J _Si7 ]:p+2726{177p}7
_va Z#]a Z,]E{p—l—l,p—l—Q},

YE 8IS+ VIV, i=j=p+2

Therefore, for the model (5.11), the matrix H~'M7T defined in (3.4) for performing
the Gaussian back substitution reduces to

I, 0 — S5 0
0
H'MT =
-V 0
0 0 I 0
0 0 0 I(p+1)n
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Accordingly, by taking o = 1, the Gaussian back substitution step (3.5b) yields the
(k 4+ 1)th iteration by

AL = Xk,
Tpls = Tpias
(5.15) wftt =gk 4+ Si(afty —ak,,), i=2,....p,
x’;ﬁ = 55];+1 + (W’Si% - Vx’;“),
ot = gk

On the other hand, based on (5.12)—(5.14), it is easy to verify that in order to generate
the (k 4 1)th iteration, the ADM procedure (3.5a) for (5.11) reduces to the following
tasks:

If = (RTR+ BI) " (RTbi + \f + 8Sizk ), i=1,...,p,
&y = argmin |y || + §llzper — Vi, — &I,

SNVapya — &5 12+ X0 (AF, Sjapa)
(0%, Vo) + 5 50 (|75 — Sjwp 0l } ’
o= \b— g(ik — Siak ), j=1,...,p,

ok = o — ﬁ(j’;_,_l - V5CIS+2);

(5.16) 555+2 =argming, ,co {

where Jy, is also a Lagrange multiplier. Note that the ADM procedure (5.16) of the
next iteration relies only on a:’;jt% and \¥t1 generated by the last iteration, while the
back substitution step (5.15) shows that the proposed ADM-G makes no difference
from the ASALM (i.e., (1.4)) in xﬁié and A1, Therefore, although it requires an
additional back substitution step, the proposed ADM-G actually generates the same
input for the ADM procedure (5.16) as ASALM does. For this reason, these two
methods require the same numbers of iterations to satisfy a given stopping criterion,
and they differ only in the last iteration, which is caused by (5.15). In addition, since
the variable x,19 (i.e., u in (5.10)) denotes the image to be reconstructed, (5.15)
indicates that these two methods actually reconstruct the same images. Overall, the
proposed ADM-G performs as well as ASALM: reconstructing the same images with
the same number of iterations. But, the computation time of ADM-G is expected to
be longer due to the additional computation in (5.15). We will verify it numerically.

For the numerical experiment, we choose the images of “MRI” (128 x 128) and
“montage.png” (256 x 256), shown in Figure 5.2. Both of the original HRIs are
degraded by the motion operators proposed in [10] and noised by the Gaussian noise
with 0.01 standard deviation and zero mean. Then, we down-sampled the degraded
HRIs with various factors to obtain 32 LRI frames. Therefore, the tested problems
are special cases of (1.3) with p = 32. Some frames of LRIs are shown in Figure 5.3.

In our numerical experiments, we set 7 = le — 3 in (5.9) and 8 = 5e — 3 for both
ADM-G and ASALM. The initial point xg+2 is set as 0. We apply the method in [1]
to solve the zp4o-related subproblem in (5.16), and the iterative number for the inner
iteration is set as 10. The stopping criterion is

| xkié — Ty ol
(5.17) RelChg := —F——F"= < le —3.
Hirp+2||
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original image original image

100

150)

Fi1G. 5.2. Original images: MRI (left) and montage.png (right).

5th LRimage 21th LRimage 5th LRimage

20 30 40 50 60 5 10 15 20
5th LRimage 21th LRimage

15 20 25 30 5 10 15 5 10 15
5th LRimage 5th LRimage

80 20 30 40 50
5th LRimage 21th LRimage

F1G. 5.3. Frames of LRIs with various down-sampling factors s. Top two rows: LRIs of MRI
with s = 2, 4, 8. Bottom two rows: LRIs of montage.png with s =2, 4, 8.
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TABLE 5.3
Numerical result of ASALM and ADM-G for (5.11).

MRI (128 x 128)
SNRo SNR It. Time(s)
ASALM & ADM-G | ASALM & ADM-G | ASALM ADM-G
2 | —12.45 —22.85 46 4.14 5.06
=4 —9.84 —16.30 50 5.48 6.56
8 —8.50 —11.67 62 8.81 10.25
montage (256 x 256)
SNRo SNR It. Time(s)
ASALM & ADM-G | ASALM & ADM-G | ASALM ADM-G
s=2 | —16.50 —33.36 30 14.97 18.75
s=4 | —14.79 —25.82 41 21.38 26.98
=8 | —13.27 —18.36 50 33.36 39.89
HR image HR image HR image

l'--u-

40 60 80 100 120 40 60 80

HR image HR image HR image

Fia. 5.4. Top row: Recovered HRIs of MRI by ADM-G and ASALM with s = 2,4,8. Bottom
row: Recovered HRIs of montage.png with s = 2,4, 8.

The SNR in the unit of dB is defined by (see, e.g., [35, Appendix 3])

|z — x|
)
[l

where Z is the restored image and x is the original.

In Table 5.3, for various values of the down-sampling factor (denoted by “s”), we
report the SNR values (“SNR”) of the reconstructed images, the number of iterations
(“It.”) and the computing time in seconds (“Time(s)”) when the stopping criterion
(5.17) is satisfied. The column of “SNR(” reflects the SNR values when a simple
linear interpolation is performed for the middle frame of the generated LRIs. As
we have analyzed, for the application (5.9), ADM-G and ASALM recover the same
images by the same number of iterations. Thus, the columns of “SNR” and “It.” are
the same for these two methods, and the only difference between these two methods
is the computing time. In Figure 5.4, we show the reconstructed images by ADM-G
and ASALM.
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According to Table 5.3 and Figure 5.4, both ADM-G and ASALM are efficient
for the TV super-resolution model (5.9), and their effectiveness is exactly the same
despite the fact that ADM-G requires moderately more computation in the Gaussian
back substitution step.

6. Conclusions. By combining a Douglas-Rachford alternating direction
method of multipliers (ADM) with a Gaussian back substitution procedure, this pa-
per develops an efficient method for solving the linearly constrained separable convex
minimization problem, whose objective function is separated into m (m > 3) indi-
vidual functions with nonoverlapping variables. The efficiency of the new method is
shown for solving some concrete applications arising in various disciplines. In the fu-
ture, we will investigate combinations of various ADM schemes with some substitution
procedures and study the convergence rate of such methods.

Acknowledgments. We are grateful to Professor Stephen Wright and three
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