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ACCELERATED UZAWA METHODS

FOR CONVEX OPTIMIZATION

MIN TAO AND XIAOMING YUAN

Abstract. We focus on a linearly constrained strongly convex minimization
model and discuss the application of the classical Uzawa method. Our prin-
cipal goal is to show that some existing acceleration schemes can be used
to accelerate the Uzawa method in the sense that the worst-case convergence
rate (measured by the iteration complexity) of the resulting accelerated Uzawa
schemes is O(1/k2) where k represents the iteration counter. Our discussion
assumes that the objective function is given by a black-box oracle; thus an in-
exact version of the Uzawa method with a sequence of dynamically-chosen step
sizes is implemented. A worst-case convergence rate of O(1/k) is also shown
for this inexact version. Some preliminary numerical results are reported to
verify the acceleration effectiveness of the accelerated Uzawa schemes and their
superiority over some existing methods.

1. Introduction

We consider the strongly convex minimization model with linear equality or
inequality constraints

(1.1)
min f(x)
s.t. Ax = (or ≤) b,

x ∈ X ,

where f : �n → � is a strongly convex but not necessarily smooth function, A ∈
�m×n, b ∈ �m and X ⊆ �n is a convex closed set. In our discussion, X is assumed
to be simple in the sense that the projection onto it under the Euclidean norm
is easy to compute. The objective function in (1.1) is assumed to be given by a
black-box oracle (see, e.g., [37] ); thus estimating the strong convexity modulus of
f(x) is not possible. The solution set of (1.1) is assumed to be nonempty.

To explain the rationale of assuming the strong convexity on f(x), a good ex-
ample is the application of the linearized Bregman scheme in [27] to some sparse
or low-rank optimization models which have wide applications in varying domains;
see, e.g., [14–16, 38]. For such an application whose original objective function is
convex (e.g., ‖x‖1 :=

∑n
i=1 |xi| in a vector space �n or ‖X‖∗ in a matrix space

�m×n where the nuclear norm ‖X‖∗ is defined as the sum of the absolute values of
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all singular values of X), sometimes a thresholding operation is required to trun-
cate the iterate in certain domains in order to produce a solution with the sparse
or low-rank feature. As delineated in [14, 44], this truncation procedure amounts
to adding a quadratic term to the original convex objective function; a strongly
convex objective function is thus yielded. For instance, the new objective function
is ‖x‖1 + 1

2τ ‖x‖2 if the original objective function is ‖x‖1, where τ is a threshold
value used in the implementation of the linearized Bregman scheme. Other ex-
amples include the total-variational image denoising model (e.g., [17, 42]), matrix
completion model in [14] and robust principal component analysis models in [45].
Also, we often encounter the model (1.1) as subproblems when implementing the
proximal point algorithm [32, 41] in various contexts and the smoothing approach
for nonsmooth optimization problems [36].

Let the Lagrangian function of (1.1) be

(1.2) L(x, λ) = f(x) + λ�(Ax− b),

with λ ∈ �m the Lagrange multiplier, and let

(1.3) G(λ) := min
x∈X

L(x, λ).

Note that the minimum in (1.3) is attained because of the strong convexity assump-
tion of f(x) and the assumption on X . Then, the dual problem of (1.1) is

(1.4)
max G(λ)
s.t. λ ∈ Λ,

where Λ = �m if Ax = b and Λ = �m
+ if Ax ≤ b in (1.1). A point (x∗, λ∗) ∈ X × Λ

satisfying

x∗ = argmin
x∈X

L(x, λ∗) and λ∗ = argmax
λ∈Λ

L(x∗, λ)

is called a saddle point of L(x, λ). We denote by X ∗×Λ∗ the set of all saddle points
of L(x, λ).

The Uzawa method appearing early in [1] is probably the most fundamental
method for finding a saddle point of L(x, λ). In fact, it has been playing a signifi-
cant theoretical and algorithmic role in a variety of scientific computing areas. In
particular, a number of celebrated algorithms are relevant to the Uzawa method,
such as the modified Arrow-Hurwicz method in [39], extra-gradient method in [30],
Douglas-Rachford operator splitting method in [31], alternating direction methods
of multipliers (ADMM) in [25] (see also [24]), and a class of primal-dual algorithms
in [18, 23, 28, 46, 47]. We refer to, e.g., [3, 11–13, 18, 22] for some applications of
the Uzawa method in partial differential equations, [12,26] for its convergence rate
analysis, [4] for the relationship between the Uzawa method, and [29, 40] for the
augmented Lagrangian method.

Applying the Uzawa method to (1.1), the iterative scheme reads as{
λk+1 = argmaxλ∈Λ{L(xk, λ)− 1

2β ‖λ− λk‖2},
xk+1 = argminx∈X {L(x, λk+1)},(1.5)

where β > 0 is regarded as a step size. To ensure the convergence, the step size β
in (1.5) should be chosen restrictively as 0 < β < 2/L(∇G), where ∇G denotes the
gradient of G and L(∇G) is the Lipschitz constant of ∇G. As we know (see Lemma
2.1 in Section 2), under the strong convexity assumption of f(x), G(λ) defined in
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(1.3) is continuously differentiable and ∇G is Lipschitz continuous. Note that the
λ-subproblem in (1.5) can be specified as

λk+1 = PΛ[λ
k + β(Axk − b)],

where PΛ denotes the projection onto Λ under the Euclidean norm. Recall the sim-
plicity of Λ (either �m or �m

+ ). Thus, the λ-subproblem in (1.5) is easy. Moreover,
with the simplicity assumption of X , the difficulty of the x-subproblem in (1.5)
depends essentially on the difficulty of f(x) itself.

Since the constant L(∇G) depends on the strong convexity modulus of f(x) (see
Lemma 2.1 in Section 2) while it is not possible to estimate this strong convexity
modulus when f(x) is given by a black-box oracle, we are interested in seeking a
strategy to determine the step size β for the Uzawa method in absence of L(∇G).
We will propose such a strategy and show that the Uzawa method with this step size
strategy (we call it an inexact Uzawa method) has a worst-case O(1/k) convergence
rate.1 The main purpose of this paper is to show that this inexact Uzawa method
can be accelerated by the acceleration schemes in [43]. Here, “acceleration” means
the worst-case convergence rate of these accelerated inexact Uzawa methods is
O(1/k2), which is considered as a faster convergence rate than O(1/k).

The rest of this paper is organized as follows. In Section 2, we summarize some
preliminary results which are useful for further analysis. Then, in Section 3, we
propose an inexact Uzawa method whose step size is determined in absence of the
strong convexity modulus of f(x) and establish its worst-case O(1/k) convergence
rate. In Sections 4 and 5, we apply the acceleration schemes in [43] to accelerate
the new inexact Uzawa method, and derive the worst-case O(1/k2) convergence
rates for these accelerated Uzawa methods. In Section 6, we report some numerical
results to verify the acceleration effectiveness of the accelerated Uzawa methods.
Finally, we make some conclusions and mention some future work in Section 7.

2. Preliminaries

In this section, we summarize some known results which will be used in later
analysis. We first summarize some properties of the function G(λ) defined in (1.3).

Lemma 2.1. Let f(x) in (1.1) be strongly convex with the modulus σ (but σ is
unknown because f(x) is assumed to be given by a black-box oracle), and let G(λ)
be defined in (1.3). Then we have:

1) G(λ) is concave and continuously differentiable at any λ ∈ Λ.
2) The gradient of G(λ) is given by

(2.1) ∇G(λ) = Ax(λ)− b,

where

(2.2) x(λ) := argmin
x∈X

L(x, λ).

3) ∇G(λ) is Lipschitz continuous with the Lipschitz constant

L(∇G) = ‖A�A‖/σ.
1We follow the work [34, 35] and many others to measure the worst-case convergence rate

in terms of the iteration complexity. That is, a worst-case O(1/k) convergence rate means the
accuracy to a solution point under certain criteria is of the order O(1/k) after k iterations of an
iterative scheme; or, equivalently, it requires at most O(1/ε) iterations to achieve an approximate
solution with an accuracy of ε.
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Proof. See, e.g., Theorem 1 in [36]. �

In the following lemmas, we summarize some well-known properties whose proofs
can be found easily in the literature.

Lemma 2.2. Let {ak} and {bk} be positive sequences of real numbers that satisfy

ak − ak+1 ≥ bk+1 − bk ∀k ≥ 1,with a1 + b1 ≤ c, c > 0.

Then we have ak ≤ c for every k ≥ 1.

Proof. See, e.g., [5]. �

Lemma 2.3. Let Ω be a closed convex subset in �n and PΩ denote the projection
onto Ω under the Euclidean norm. Then we have

(2.3) (y − PΩ(y))
�(PΩ(y)− x) ≥ 0, ∀x ∈ Ω, y ∈ Rn.

Proof. See, e.g., [8]. �

3. An inexact Uzawa method with a worst-case O(1/k)
convergence rate

In this section, we propose the following inexact Uzawa method for finding a
saddle point of L(x, λ) when the strong convexity modulus σ of f(x) is unknown.

Algorithm 1: An inexact Uzawa method for (1.1)
Initialization. Take λ0 ∈ Λ, set x0 = argminx∈X L(x, λ0) and choose β0 > 0.
Step k. Find (λk, xk, βk) such that

(3.1a) λk = PΛ[λ
k−1 + βk(Axk−1 − b)],

(3.1b) xk = argmin
x∈X

L(x, λk),

and the following requirement is satisfied:

(3.1c) βk|(λk−1 − λk)�A(xk−1 − xk)| ≤ 1

2
‖λk−1 − λk‖2.

We make some remarks on Algorithm 1.

Remark 3.1. Recall the equation (2.1). We easily see that Algorithm 1 can be
written as

λk = PΛ[λ
k−1 + βk∇G(λk−1)],

where the step size βk is subject to the criterion (3.1c). Therefore, it differs from
the application of the projected gradient method to (1.1)’s dual problem (1.4) in
that the step size β is chosen in absence of the Lipschitz constant of ∇G(λ). Note
that the step size β in the original Uzawa method (1.5) is determined by knowing
the Lipschitz constant of ∇G(λ). Algorithm 1 is thus an inexact version of the
original Uzawa scheme (1.5).

Remark 3.2. Recall the Lipschitz continuity of ∇G and the concavity of G shown
in Lemma 2.1. Then it is easy to see that the criterion (3.1c) can be fulfilled by
reducing the value of βk finitely many times. In fact, whenever βk < σ/(2‖A�A‖),
the criterion (3.1c) is satisfied. Therefore, the sequence {βk} generated by Algo-
rithm 1 has a uniform lower bound βmin > 0. That is, βk ≥ βmin > 0 for any integer
k. This shares the same feature as some classical Armijo-like line-search rules for
unconstrained optimization models such as those in [7]. On the other hand, since
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the criterion (3.1c) is satisfied by reducing the value of βk, obviously we can assume
there exists a uniform upper bound βmax > 0 such that βk ≤ βmax for any integer
k. Thus, the sequence {βk} generated by Algorithm 1 can be regarded as bounded:
βmax ≥ βk ≥ βmin > 0 for any k. We will provide a specific strategy for choosing
βk in Section 6.1.

Remark 3.3. The criterion (3.1c) can be easily implemented; there is no need to
evaluate any function value or to estimate ‖A�A‖ and the strong convexity modulus
of f . As will be shown by numerical experiments, the criterion (3.1c) has some
numerical advantages such that it is robust to the initial choice of β0. These features
make it different from existing backtracking strategies of finding step sizes for some
projected gradient type methods in, e.g., [5, 37].

In the following, we show that for the sequence {L(xk, λk)}, where (xk, λk) is
generated by Algorithm 1, we have

L(x∗, λ∗)− L(xk, λk) ≤ ε,

where ε = O(1/k) and (x∗, λ∗) is a saddle point of L(x, λ). In other words, the
sequence {L(xk, λk)} converges to L(x∗, λ∗) on a worst-case convergence rate of
O(1/k) where the rate is measured by the iteration complexity. Note that our
analysis in this section is different from some existing results in the literature such
as that in [18] where a general saddle point problem is considered. We first prove a
lemma which is useful for establishing the worst-case O(1/k) convergence rate for
Algorithm 1.

Lemma 3.1. Let {(xk, λk)} be generated by Algorithm 1 and let x(λ) be given by
(2.2) for λ ∈ Λ. Then we have

(3.2) 2βk(L(xk, λk)− L(x(λ), λ)) ≥ ‖λk − λ‖2 − ‖λk−1 − λ‖2, ∀λ ∈ Λ.

Proof. First, for (xk−1, λk−1) generated by Algorithm 1, it follows from (3.1b) that
there exists f̄(xk−1) ∈ ∂f(xk−1) such that

(xk − xk−1)�(f̄(xk−1) +A�λk−1) ≥ 0.

Together with this inequality, the convexity of f(x) and the inequality in (3.1c)
enable us to derive

L(xk−1, λk−1)− L(xk, λk)

= f(xk−1)− f(xk) + (λk−1)�(Axk−1 − b)− (λk)�(Axk − b)

≤ (xk−1 − xk)�f̄(xk−1) + (λk−1)�(Axk−1 − b)− (λk)�(Axk − b)

≤ (xk − xk−1)�A�λk−1 + (λk−1)�(Axk−1 − b)− (λk)�(Axk − b)

≤ 1

2βk
‖λk−1 − λk‖2 − (λk)�A(xk−1 − xk) + (λk−1)�(Axk−1 − b)

− (λk)�(Axk − b)

=
1

2βk
‖λk−1 − λk‖2 + (λk−1 − λk)�(Axk−1 − b).

(3.3)
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Similarly, for λ ∈ Λ, it follows from (3.1b) that there exists f̄(x(λ)) ∈ ∂f(x(λ))
such that

(xk−1 − x(λ))�(f̄(x(λ)) +A�λ) ≥ 0.

We thus have

L(xk−1, λk−1)− L(x(λ), λ)
= f(xk−1)− f(x(λ)) + (λk−1)�(Axk−1 − b)− λ�(Ax(λ)− b)

≥ (xk−1 − x(λ))�f̄(x(λ)) + (λk−1)�(Axk−1 − b)− λ�(Ax(λ)− b)

≥ −(xk−1 − x(λ))�A�λ+ (λk−1)�(Axk−1 − b)− λ�(Ax(λ)− b)

= (λk−1 − λ)�(Axk−1 − b), ∀λ ∈ Λ.

(3.4)

Subtracting (3.4) by (3.3), we get

(3.5) L(xk, λk)−L(x(λ), λ) ≥ − 1

2βk
‖λk−1−λk‖2+(λk−λ)�(Axk−1−b), ∀λ ∈ Λ.

Rearranging the first-order optimality condition of (3.1a), we have

(λk − λ)�(Axk−1 − b) ≥ 1

βk
(λk − λ)�(λk − λk−1), ∀λ ∈ Λ.

Substituting the above inequality into (3.5), we derive

L(xk, λk)− L(x(λ), λ) ≥ 1

2βk
(‖λk − λ‖2 − ‖λk−1 − λ‖2), ∀λ ∈ Λ.

This implies the assertion (3.2) immediately. The proof is complete. �

Remark 3.4. In (3.2), if we take (x(λ), λ) = (xk−1, λk−1) generated by Algorithm
1, then it follows that

L(xk, λk)− L(xk−1, λk−1) ≥ 1

2βk
‖λk − λk−1‖2.(3.6)

Thus, the sequence {L(xk, λk)} is monotonically nondecreasing.

Now, we are ready to prove that the sequence {L(xk, λk)} converges to L(x∗, λ∗),
where (x∗, λ∗) is a saddle point of L(x, λ), on an O(1/k) worst-case convergence
rate. Hence, a sublinear convergence rate of Algorithm 1 in the worst case is proved
in terms of the objective residual of the Lagrangian function L(x, λ). Recall the
sequence {βk} generated by Algorithm 1 is bounded: βmax ≥ βk ≥ βmin > 0 for
any k.

Theorem 3.1. Let {(xk, λk)} be the sequence generated by Algorithm 1. Then we
have

(3.7) 0 ≤ L(x∗, λ∗)− L(xk, λk) ≤ ‖λ0 − λ∗‖2
2βmink

,

where (x∗, λ∗) is a saddle point of L(x, λ).
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Proof. The first inequality is trivial based on the definition of a saddle point. Now,
we prove the second inequality. Taking k = n in inequality (3.6) and using the fact
that the sequence {βk} is bounded, we have

2βmax

(
(L(xn, λn)− L(x∗, λ∗))− (L(x(n−1), λ(n−1))− L(x∗, λ∗))

)
≥ ‖λn−λn−1‖2,

which implies the monotonicity of the sequence {(L(xn, λn)− L(x∗, λ∗))}:

L(xn, λn)− L(x∗, λ∗) ≥ L(xn−1, λn−1)− L(x∗, λ∗)

≥ · · · ≥ L(x0, λ0)− L(x∗, λ∗).
(3.8)

Invoking Lemma 3.1 with x(λ) = x∗, λ = λ∗, and k = n, we obtain

2βmin(L(xn, λn)− L(x∗, λ∗)) ≥ ‖λn − λ∗‖2 − ‖λn−1 − λ∗‖2.

Summarizing the inequality over n = 1, . . . , k, we get

(3.9) 2βmin

k∑
n=1

(L(xn, λn)− L(x∗, λ∗)) ≥ ‖λk − λ∗‖2 − ‖λ0 − λ∗‖2.

Then, combining the fact (3.8) and inequality (3.9), we have

2βmink(L(xk, λk)− L(x∗, λ∗)) ≥ ‖λk − λ∗‖2 − ‖λ0 − λ∗‖2.

This implies the assertion (3.7) immediately. �

4. Accelerated inexact Uzawa methods with worst-case O(1/k2)
convergence rates

In this section, we show that the proposed Algorithm 1 can be accelerated by the
acceleration schemes in [43]. As a result, some accelerated inexact Uzawa methods
with worst-case O(1/k2) convergence rates are proposed. For the convenience of

presenting these accelerated inexact Uzawa methods, from now on we use (x̃k, λ̃k),
rather than (xk, λk), to denote the iterate generated by Algorithm 1.

As in [43], let {θk} be a scalar sequence satisfying

(4.1)
1− θk
θ2k

≤ 1

θ2k−1

and θk ∈ (0, 1]. The choice (4.1) is a unified framework of the coefficients in some
existing acceleration schemes, e.g., [2, 5, 35, 37].

4.1. An algorithmic framework of accelerated inexact Uzawa methods.
Let us first present an algorithmic framework of accelerated inexact Uzawa methods
based on the combination of Algorithm 1 with the general acceleration scheme in
[43].
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Algorithm 2: An algorithmic framework of accelerated inexact Uzawa
methods
Step 0. Take λ0 = λ̃0 ∈ Λ, set x0 = argminx∈X L(x, λ0) and choose β0 > 0. Let
{θk} be a sequence satisfying (4.1).
Step k. Generate the new iterate (λk, xk) by the following steps.

• Find (λ̃k, x̃k, βk) such that

(4.2a) λ̃k = PΛ[λ
k−1 + βk(Axk−1 − b)],

(4.2b) x̃k = argmin
x∈X

L(x, λ̃k),

and the following requirement is satisfied:

(4.2c) βk|(λk−1 − λ̃k)�A(xk−1 − x̃k)| ≤ 1

2
‖λk−1 − λ̃k‖2.

• Set

(4.3) vk = λ̃k−1 +
1

θk
(λ̃k − λ̃k−1).

• Set

(4.4) λk = (1− θk+1)λ̃
k + θk+1v

k.

(4.5) xk = argmin
x∈X

L(x, λk).

The following lemma can be easily proved by an analysis similar to that in
Lemma 3.1.

Lemma 4.1. Let {(x̃k, λ̃k)} be generated by Algorithm 2 and let x(λ) be given by
(2.2) for λ ∈ Λ. Then we have
(4.6)

L(x̃k, λ̃k)− L(x(λ), λ) ≥ − 1

2βk
‖λ̃k − λk−1‖2 + 1

βk
(λ̃k − λ)�(λ̃k − λk−1), ∀λ ∈ Λ.

Proof. The proof is similar to Lemma 3.1, and is thus omitted. �

Now, we analyze how fast the sequence {L(x̃k, λ̃k)} converges to L(x∗, λ∗) where

the sequence {(x̃k, λ̃k)} is generated by Algorithm 2. We first prove two lemmas.

Lemma 4.2. Let {(x̃k, λ̃k)} be generated by Algorithm 2. Then we have

(1− θk)(L(x∗, λ∗)− L(x̃k−1, λ̃k−1))− (L(x∗, λ∗)− L(x̃k, λ̃k))

≥ θ2k
2βk

{‖vk − λ∗‖2 − ‖vk−1 − λ∗‖2}.
(4.7)

Proof. Using Lemma 4.1 for k, setting (x(λ), λ) = (x̃k−1, λ̃k−1) and (x(λ), λ) =
(x∗, λ∗), we get

(4.8) L(x̃k, λ̃k)−L(x̃k−1, λ̃k−1) ≥ − 1

2βk
‖λ̃k−λk−1‖2+ 1

βk
(λ̃k−λ̃k−1)�(λ̃k−λk−1)

and

(4.9) L(x̃k, λ̃k)− L(x∗, λ∗) ≥ − 1

2βk
‖λ̃k − λk−1‖2 + 1

βk
(λ̃k − λ∗)�(λ̃k − λk−1),
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respectively. Multiplying (4.8) by (1− θk) and (4.9) by θk and by a simple manip-
ulation, we obtain

(1− θk)(L(x∗, λ∗)− L(x̃k−1, λ̃k−1))− (L(x∗, λ∗)− L(x̃k, λ̃k))

= (1− θk)(L(x̃k, λ̃k)− L(x̃k−1, λ̃k−1)) + θk(L(x̃k, λ̃k)− L(x∗, λ∗))

≥ − 1

2βk
‖λ̃k − λk−1‖2 + 1

βk
(λ̃k − λk−1)�[(1− θk)(λ̃

k − λ̃k−1) + θk(λ̃
k − λ∗)]

=
1

2βk
{‖λ̃k − (1− θk)λ̃

k−1 − θkλ
∗‖2 − ‖λk−1 − (1− θk)λ̃

k−1 − θkλ
∗‖2}.

(4.10)

It follows from (4.3) that

θkv
k = λ̃k − (1− θk)λ̃

k−1.

Then, rewriting (4.4) as

θkv
k−1 = λk−1 − (1− θk)λ̃

k−1

and substituting the above two equalities into (4.10), we prove the assertion (4.7).
�

For the convenience of further analysis, we use the notation

(4.11) ξk := L(x∗, λ∗)− L(x̃k, λ̃k).

Lemma 4.3. Let {(x̃k, λ̃k)} be generated by Algorithm 2. Then we have

(4.12) 2(
βk−1

θ2k−1

ξk−1 −
βk

θ2k
ξk) ≥ ‖vk − λ∗‖2 − ‖vk−1 − λ∗‖2,

where ξk is defined in (4.11).

Proof. First, dividing inequality (4.7) by θ2k and using (4.1), we have

1

θ2k−1

(L(x∗, λ∗)− L(x̃k−1, λ̃k−1))− 1

θ2k
(L(x∗, λ∗)− L(x̃k, λ̃k))

≥ 1

2βk
{‖vk − v∗‖2 − ‖vk−1 − v∗‖2}.

Note that {βk} is a nonincreasing sequence. Then, using the notation ξk in (4.11),
we prove the assertion (4.12). �

Now, we are able to find a bound for L(x∗, λ∗)−L(x̃k, λ̃k), and this bound only
depends on a constant and θk. This result enables us to choose specific θk and thus
to establish a worst-case O(1/k2) convergence rate for Algorithm 2.

Theorem 4.1. Let {(x̃k, λ̃k)} be generated by Algorithm 2. Then we have

(4.13) 0 ≤ L(x∗, λ∗)− L(x̃k, λ̃k) ≤ θ2k‖λ0 − λ∗‖2
2βmin

,

where (x∗, λ∗) is a saddle point of L(x, λ).
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1830 MIN TAO AND XIAOMING YUAN

Proof. The first inequality is trivial. Now, we prove the second inequality. We first
define

ak :=
2βkξk
θ2k

and bk := ‖vk − λ∗‖2.

Applying Lemma 4.1 to the case where (x(λ), λ) = (x∗, λ∗) with k = 1, we get

2β1(L(x̃1, λ̃1)− L(x∗, λ∗)) ≥ ‖λ̃1 − λ∗‖2 − ‖λ0 − λ∗‖2.

Recall θ1 = 1, a1 = 2β1ξ1, b1 = ‖v1 − λ∗‖2 and v1 = λ̃1. Thus, it follows from the
above inequality that

a1 + b1 ≤ ‖λ0 − λ∗‖2.

It follows from Lemma 2.2 with c := ‖λ0 − λ∗‖2 and Lemma 4.3 that

2βkξk
θ2k

≤ ‖λ0 − λ∗‖2.

Using the definition of ξk in (4.11) and βk ≥ βmin, the assertion (4.13) is proved. �

4.2. Specification of θk. According to Theorem 4.1, a worst-case O(1/k2) conver-
gence rate of the proposed Algorithm 2 can be ensured as long as θk ∼ O(1/k). In
this subsection, we specify some choices of the sequence {θk} for Algorithm 2. Some
concrete accelerated inexact Uzawa methods with worst-case O(1/k2) convergence
rates are thus derived for (1.1). As in [43], we can choose θk as follows.

1) Let {tk} be a sequence with positive real numbers defined as

(4.14) tk+1 =
1 +

√
1 + 4t2k
2

with t0 = 1,

and choose

(4.15) θk =
1

tk
.

This acceleration scheme was originally proposed in [35] and then was used
by many others (e.g., [6]).

2) Let M ≥ 2 be a constant. Then we can choose θk as

(4.16) θk = M/(k +M − 1).

For both the choices (4.14)–(4.15) and (4.16), we have the following assertion by
using mathematical induction and elementary calculations. We thus omit its proof.

Lemma 4.4. The sequence {θk} defined in (4.14)–(4.15) or (4.16) satisfies

θk ≤ 2

k + 1
, ∀ k ≥ 1.(4.17)
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ACCELERATED UZAWA METHODS FOR CONVEX OPTIMIZATION 1831

With the specific choices (4.14)–(4.15) and (4.16), Algorithm 2 can be specified
as two concrete algorithms for solving (1.1). In the following subsections, we list
the details of Algorithm 2 with the choices (4.14)–(4.15) and (4.16); and specify
their convergence rate results in Theorems 4.2 and 4.3, respectively.

4.3. Algorithm 2 with (4.14)–(4.15). With the choice (4.14)–(4.15), substitut-
ing (4.3) into (4.4) in Algorithm 2, we derive that

λk = (1− θk+1)λ̃
k + θk+1v

k

= (1− θk+1 +
θk+1

θk
)λ̃k + (θk+1 −

θk+1

θk
)λ̃k−1

= λ̃k + (
θk+1

θk
− θk+1)(λ̃

k − λ̃k−1)

= λ̃k +
tk − 1

tk+1
(λ̃k − λ̃k−1),

where the last equality is because θk = 1
tk

as defined in (4.15). Thus, Algorithm 2

with (4.15) can be summarized in Algorithm 2A.

Algorithm 2A: An accelerated inexact Uzawa method with (4.14)–
(4.15)

Step 0. Take λ0 = λ̃0 ∈ Λ, set x0 = argminx∈X L(x, λ0) and choose β0 > 0. Let
θk be chosen as in (4.14)–(4.15).
Step k. Generate the new iterate (λk, xk) by the following steps.

• Find (λ̃k, x̃k, βk) such that

λ̃k = PΛ[λ
k−1 + βk(Axk−1 − b)],

x̃k = argmin
x∈X

L(x, λ̃k),

and the following requirement is satisfied:

βk|(λk−1 − λ̃k)�A(xk−1 − x̃k)| ≤ 1

2
‖λk−1 − λ̃k‖2.

• Set tk+1 =
1+

√
1+4t2k
2 .

• Compute

λk = λ̃k +
( tk − 1

tk+1

)
(λ̃k − λ̃k−1),

xk = argmin
x∈X

L(x, λk).

Combining Theorem 4.1 and Lemma 4.4, we immediately show a worst-case
O(1/k2) convergence rate of Algorithm 2A in the following theorem and the proof
is omitted.

Theorem 4.2. Let {(x̃k, λ̃k)} be generated by Algorithm 2A. Then we have

(4.18) 0 ≤ L(x∗, λ∗)− L(x̃k, λ̃k) ≤ 2‖λ0 − λ∗‖2
βmin(k + 1)2

,

where (x∗, λ∗) is a saddle point of L(x, λ).
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4.4. Algorithm 2 with (4.16). Similarly, if θk takes the value in (4.16), Algo-
rithm 2 can be specified in Algorithm 2B.

Algorithm 2B: An accelerated inexact Uzawa method with (4.16)

Step 0. Take λ0 ∈ Λ, set λ̃0 = λ0 and x0 ∈ argminx∈X L(x, λ0), and choose
M ≥ 2 and β0 > 0. Let θk be chosen as in (4.16).
Step k. Generate the new iterate (λk, xk) by the following steps.

• Find (λ̃k, x̃k, βk) such that

λ̃k = PΛ[λ
k−1 + βk(Axk−1 − b)],

x̃k = argmin
x∈X

L(x, λ̃k),

and the following requirement is satisfied:

βk|(λk−1 − λ̃k)�A(xk−1 − x̃k)| ≤ 1

2
‖λk−1 − λ̃k‖2.

• Set vk = λ̃k−1 + k+M−1
M (λ̃k − λ̃k−1).

• Compute

λk =
k

k +M
λ̃k +

M

k +M
vk,

xk = argmin
x∈X

L(x, λk).

Using Theorem 4.1 and the definition of θk in (4.16), we can show a worst-case
O(1/k2) convergence rate of Algorithm 2B easily. The proof is thus omitted.

Theorem 4.3. Let {(x̃k, λ̃k)} be generated by Algorithm 2B. Then we have

0 ≤ L(x∗, λ∗)− L(x̃k, λ̃k) ≤ M2‖λ0 − λ∗‖2
2βmin(k +M − 1)2

,

where (x∗, λ∗) is a saddle point of L(x, λ).

5. Another algorithmic framework of accelerated

inexact Uzawa methods

In this section, we show that Algorithm 1 can be accelerated by another scheme
in [43] and thus some other specific accelerated inexact Uzawa methods can be
easily obtained. The algorithmic framework can be summarized in the following
Algorithm 3.

As for Algorithm 2, we can specify Algorithm 3 by choosing the parameter
θk according to (4.14)–(4.15) or (4.16). Some specific accelerated inexact Uzawa
methods can be derived based on Algorithm 3. Parallel to Section 4.1, we can easily
prove some similar worst-case O(1/k2) convergence rate results for the resulting
accelerated inexact Uzawa methods based on Algorithm 3. For succinctness, we
skip the details.
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ACCELERATED UZAWA METHODS FOR CONVEX OPTIMIZATION 1833

Algorithm 3: Another algorithmic framework of accelerated inexact
Uzawa methods
Step 0. Take λ0 ∈ Λ, choose z0 = λ̃0 = λ0, set x0 = argminx∈X L(x, λ0), and
choose β0 > 0. Let {θk} be a sequence satisfying (4.1).
Step k. Generate the new iterate (λk, xk) via:

• Find (λ̃k, zk, xk) and βk such that

(5.1a) λ̃k = PΛ[λ̃
k−1 +

βk

θk
(Axk−1 − b)],

(5.1b) zk = (1− θk)z
k−1 + θkλ̃

k,

(5.1c) x̃k = argmin
x∈X

L(x, zk),

and the following requirement is satisfied:

(5.1d) βk|(zk − λk−1)�A(x̃k − xk−1)| ≤ 1

2
‖zk − λk−1‖2.

• Set

(5.2) λk = (1− θk+1)z
k + θk+1λ̃

k,

(5.3) xk = argmin
x∈X

L(x, λk).

6. Numerical results

In this section, we report some numerical results to show the efficiency of the
proposed algorithms. We will verify: 1) the efficiency of Algorithm 1; 2) the ac-
celeration effectiveness of the proposed accelerated Uzawa algorithms; and 3) the
proposed accelerated Uzawa methods are competitive with some efficient solvers in
the literature. For succinctness, we only report the numerical results of the acceler-
ated Uzawa methods based on Algorithm 2 and omit those based on Algorithm 3.

The proposed algorithms were coded by MATLAB v7.4 (R2007a) and all our
experiments were performed on a desktop with Windows XP system and a Pentium
(R) 4 CPU processor (2.80GH) with a 2GB memory.

6.1. Implementation details. We first specify how to choose the step size βk for
the proposed algorithms. For succinctness, we only elaborate on the implementation
of Algorithm 1, and the details of implementing Algorithms 2A and 2B are similar.

Remark 6.1. With the implementation detail of Algorithm 1 given below, we see
that

βk > βmin :=
1

2L(G)
∗min{1, 1

2β0L(G)
} ∗ 0.45.

Recall that the criterion (3.1c) is guaranteed to be satisfied when βk is reduced
finitely many times. In the implementation, we can choose a constant value for
βk after the iteration counter k is sufficiently large. In our numerical experiments,
we found that the “While-Do” inner loop is usually terminated after one step for
the tested scenarios. Note that our adjustment rule for choosing the step size
βk also guarantees that βk is not too small. Thus, the sequence {βk} generated
by Algorithm 1 with the implementation detail above is both lower and upper
bounded. In addition, the computational load of determining appropriate step
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1834 MIN TAO AND XIAOMING YUAN

Implementation of Algorithm 1.
Initialization. Take λ0 ∈ Λ. Set x0 = argminx∈X L(x, λ0) and β0 > 0.
Step k. Compute:

λ̃k = PΛ[λ
k−1 + βk(Axk−1 − b)],

x̃k = argmin
x∈X

L(x, λ̃k),

rk :=
βk|(λk−1 − λ̃k)�A(xk−1 − x̃k)|

‖λk−1 − λ̃k‖2
,

β
(0)
k = βk, i = 0.

While “rk > 1/2” Do:
i := i+ 1,

β
(i)
k = β

(i−1)
k ∗ 0.45 ∗min{1, 1

rk
},

λ̃k = PΛ[λ
k−1 + β

(i)
k ∗ (Axk−1 − b)],

x̃k = argmin
x∈X

L(x, λ̃k),

rk :=
β
(i)
k |(λk−1 − λ̃k)�A(xk−1 − x̃k)|

‖λk−1 − λ̃k‖2
,

if rk < 0.3, β = β ∗ 1.5.
End Do
Set βk = β

(i)
k , xk = x̃k and λk = λ̃k.

sizes for Algorithm 1 in the absence of σ and ‖A�A‖ is not too much. In Section
6.2.1, we will compare this strategy with some classical Armijo-like rules in the
literature.

6.2. An image deblurring model with a box constraint. In this subsection,
we apply the proposed algorithms to solve the following constrained linear least-
squares problem:

min
l≤x≤u

{1
2
‖Kx− c‖2 + μ

2
‖Dx‖2

}
,(6.1)

where K,D ∈ �n×n, c ∈ �n, l, u ∈ �n, μ > 0, and ‖ · ‖ denotes the 2-norm.
The box constraint l ≤ x ≤ u is interpreted entry-wise, i.e., li ≤ xi ≤ ui for
any i ∈ {1, 2, . . . , n}. This model captures the application of an image deblurring
problem with box constraints, where x is the vector representation of a digital image
to be restored, K is a blurring operator (integral operator), D is a regularization
operator (differential operator), c is the vector representation of a blurred image,
and l and u are respectively the lower and upper bounds of pixel values. As in the
literature, we assume that N (K) ∩ N (D) = {0}, where N (K) and N (D) are the
null spaces of K and D, respectively. With this assumption, the objective function
in (6.1) is strongly convex; see, e.g., [9]. We refer to [20] for the effectiveness of
considering the box constraint l ≤ x ≤ u on pixel values for debluring a blurred
image.
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ACCELERATED UZAWA METHODS FOR CONVEX OPTIMIZATION 1835

It is easy to see that (6.1) can be reformulated as

min
1

2
‖Kx− c‖2 + μ

2
‖Dx‖2,

s.t.

(
−I
I

)
x+

(
l

−u

)
≤ 0,(6.2)

which is a special case of the model (1.1). Let the Lagrangian function of (6.2) be

L(x, λ1, λ2) =
1

2
‖Kx− c‖2 + μ

2
‖Dx‖2 + λ�

1 (−x+ l) + λ�
2 (x− u),

with λ1 and λ2 the Lagrange multipliers associated with the first and second in-
equality constraint in (6.2), respectively.

Now, let us elucidate the subproblems when the proposed algorithms are im-
plemented to solve (6.2). For succinctness, we only analyze the Uzawa step at
each iteration of the proposed algorithms and ignore the acceleration steps. More
specifically, to implement Algorithm 2 for (6.2), the main step (4.2a)–(4.2b) of each
iteration reduces to⎧⎪⎨

⎪⎩
λ̃k
1 = PRn

+
(λk−1

1 + βk(−xk−1 + l)),

λ̃k
2 = PRn

+
(λk−1

2 + βk(x
k−1 − u)),

(K�K + μD�D)x̃k = K�c+ λ̃k
1 − λ̃k

2 .

(6.3)

Thus, the resulting subproblems at each iteration are easy to solve.
Now, we specify the stopping criterion to implement the proposed algorithms.

Let (x∗, λ∗
1, λ

∗
2) be a saddle point of L(x, λ1, λ2). Then, solving (6.2) is equivalent

to ⎧⎨
⎩

K�(Kx∗ − c) + μD�Dx∗ − λ∗
1 + λ∗

2 = 0,
0 ≤ λ∗

1 ⊥ x∗ − l ≥ 0,
0 ≤ λ∗

2 ⊥ u− x∗ ≥ 0.
(6.4)

In other words, we can measure the accuracy of an iterate (xk, λk
1 , λ

k
2) to a saddle

point of L(x, λ1, λ2) by the violation of the conditions in (6.4). Because of (6.3)
and (6.4), the accuracy of an iterate (xk, λk

1 , λ
k
2) to a saddle point of L(x, λ1, λ2)

can be measured by the quantity of infeasibility defined as:

(6.5) infeasibility = max{|(λk
1)

�(−xk + l)|, |(λk
2)

�(xk − u)|}.

We thus use

(6.6) infeasibility ≤ 10−2

as the stopping criterion when implementing the proposed algorithms for (6.2).
We test two 256 × 256 images: satellite.pgm and chart.tiff, as shown in Fig-

ure 1. Accordingly, n = 65, 536 in the model (6.1) for these images. As in
[21, 33], the blurring matrix K is chosen to be the out-of-focus blur and the ma-
trix D is taken to be the gradient matrix. Under the periodic boundary con-
dition for x, both D�D and K�K are block circulant matrices with circulant
blocks. Thus they are diagonalizable by the 2D discrete Fourier transforms (see,
e.g., [19]), and hence the third subproblem in (6.3) can be solved with an order of
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1836 MIN TAO AND XIAOMING YUAN

O(n logn) operations. The observed image c is expressed as c = Kx̄ + ηr, where
x̄ is the true image, r is a random vector with entries distributed in the stan-
dard normal, and η is the level of Gaussian noise. The box constraint is set as
li = 0 and ui = 255 for all i = 1, . . . , n. We employ the MATLAB scripts: K

= fspecial(’average’,alpha) and C = imfilter(X,K,’circular’,’conv’) +

η*randn(m,n) to produce the blurred images corrupted by the average kernel of
different sizes. Here, alpha is the kernel size of the blurring operator, X denotes the
original image, and C represents the observed image. The quality of a restored im-
age (denoted by x) is measured by the peak signal-to-noise ratio (PSNR) in decible
(dB):

(6.7) PSNR(x) = 20 log10
xmax√
Var(x, x̄)

with Var(x, x̄) =

∑n2

j=1[x̄(j)− x(j)]2

n2
.

Here, x̄ is the true image and x̄max is the maximum possible pixel value of the
image. On the other hand, we measure the accuracy of the recovered quality by
the relative error defined as

relerr := ‖xk − x̄‖F /‖x̄‖F .(6.8)

In all the experiments, we set μ = 0.01 in model (6.1) as suggested by the numerical
results in [21, 33].

Figure 1. Original images: satellite.pgm (left) and chart.tiff (right)

6.2.1. Verifying the efficiency of Algorithm 1. For Algorithm 1, we can also use
some standard Armijo-like line-search rules in the literature to choose the step size
in (3.1a). In this subsection, we verify the efficiency of Algorithm 1 by comparing it
with its variant which uses an Armijo-like line-search rule, rather than the criterion
(3.1c), to determine the step size βk in (3.1a). Particularly, we compare the one
proposed in [7]:{

βk = κmkβ0,
−G(λk) ≤ −G(λk−1)− μ(λk − λk−1)�∇G(λk−1),

(6.9)

where κ and μ in (0, 1) are given, β0 is the initial step size and mk is the smallest
nonnegative integer such that the second inequality is satisfied. In the following,
we will show the difference when (3.1c) and (6.9) are used in (3.1) for Algorithm 1,
respectively.
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ACCELERATED UZAWA METHODS FOR CONVEX OPTIMIZATION 1837

Table 1. Numerical comparison

satellite, η = 3
alpha Algorithm Iter. PSNR (dB) infeasiblity Time (s) relerr Total adj
11 Algo1 98 25.89 9.97e-003 3.62 2.44e-001 25

DPJ Armijo 133 25.89 9.92e-003 6.79 2.44e-001 26
15 Algo1 115 24.76 9.99e-003 4.85 2.78e-001 36

DPJ Armijo 152 24.76 1.00e-002 9.03 2.78e-001 32
19 Algo1 75 24.06 9.93e-003 3.31 3.01e-001 16

DPJ Armijo 89 24.06 9.89e-003 5.65 3.01e-001 32
23 Algo1 110 23.65 9.97e-003 4.12 3.15e-001 28

DPJ Armijo 142 23.65 9.98e-003 6.47 3.15e-001 39
chart, η = 3

11 Algo1 112 19.74 9.98e-003 5.37 1.10e-001 26
DPJ Armijo 145 19.74 9.87e-003 6.32 1.10e-001 26

15 Algo1 136 18.37 9.95e-003 6.01 1.29e-001 32
DPJ Armijo 173 18.37 9.95e-003 10.16 1.29e-001 32

19 Algo1 90 17.65 9.92e-003 3.28 1.40e-001 25
DPJ Armijo 105 17.65 9.99e-003 7.41 1.40e-001 32

23 Algo1 154 16.78 9.98e-003 5.49 1.55e-001 42
DPJ Armijo 200 16.78 9.99e-003 10.61 1.55e-001 39

The initial values are set as β0 = 0.1 and λ0 = 0 for the comparison in this
subsection. For the Armijo rule (6.9), we choose κ = 0.9 and μ = 1/2 (some other
choices of these two parameters lead to similar performance; we thus only report
the results with this choice for succinctness). We test different cases of (6.2) where
the kernel size alpha is 11, 15, 19 and 23, respectively. The Gaussian noise level is
fixed as η = 3. As mentioned in Remark 3.1, if the criterion (3.1c) is replaced by
an Armijo rule, we can regard the resulting scheme as an application of the project
gradient method to the dual of (1.1). We thus denote by “DPJ Armijo” the result-
ing scheme by combining the Uzawa step (3.1) with the Armijo-like line-search rule
(6.9). Algorithm 1 is further abbreviated as “Algo1” in the following. In Table 1,
we report the numerical results when they are implemented to solve these different
cases of (6.2). In this table, the iteration number (“Iter.”), computing time in sec-
onds (“Time (s)”), PSNR values of the recovered images (“PSNR (dB)”), quantity
of infeasibility defined in (6.5), relerr defined in (6.8) and total numbers of
adjusting the step size βk (“Total adj”) are reported when the stopping criterion
(6.6) is satisfied. Data in this table clearly show the efficiency of the proposed
criterion (3.1c).

To verify Remark 6.1, we focus on the case where the kernel size is alpha = 11
and the Gaussian noise level is η = 3 for the images in Figure 1; and plot the
respective numbers of adjustment of β required by the practical version of Algorithm
1 and the dual projected gradient method at each iteration in Figure 2. We observe
that at each iteration of Algorithm 1, the number of adjusting the step size βk is
at most one; while for the rule (6.9), it adjusts many more times at the beginning
of the iteration although it becomes stable later.

6.2.2. Verifying the acceleration effectiveness of Algorithm 2. We then verify the
acceleration effectiveness of the proposed Algorithms 2A and 2B over Algorithm
1. The initial values are set as β0 = 0.1 and λ0

1,2 = 0 for all the algorithms to be
tested. For Algorithm 2B, we take M = 2.

We test different cases of (6.2) where the kernel size alpha is 11, 15, 19, 23, re-
spectively; and the Gaussian noise level is fixed as η = 3. In Table 2, we report
the numerical results when all these algorithms are implemented to solve these
different cases of (6.2). As before, we report “Iter.”, “Time (s)”, “PSNR (dB)”,
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Figure 2. Numbers of adjustment of β: satellite.pgm (left) and
chart.jpg (right)

Table 2. Numerical comparison

satellite, η = 3
alpha Algorithm Iter. PSNR (dB) infeasiblity Time (s) relerr

11 Algo1 98 25.89 9.97e-003 4.60 2.44e-001
Algo2A 33 25.91 9.49e-003 2.37 2.43e-001
Algo2B 29 25.89 9.51e-003 1.65 2.44e-001

15 Algo1 115 24.76 9.99e-003 4.46 2.78e-001
Algo2A 33 24.77 9.69e-003 1.58 2.77e-001
Algo2B 33 24.76 9.82e-003 1.79 2.77e-001

19 Algo1 75 24.06 9.93e-003 3.65 3.01e-001
Algo2A 22 24.07 9.93e-003 2.22 3.01e-001
Algo2B 25 24.06 9.62e-003 2.53 3.01e-001

23 Algo1 110 23.65 9.97e-003 4.17 3.15e-001
Algo2A 28 23.65 9.97e-003 1.95 3.15e-001
Algo2B 30 23.65 9.98e-003 1.51 3.15e-001

chart, η = 3
11 Algo1 112 19.74 9.98e-003 4.49 1.10e-001

Algo2A 47 19.74 9.33e-003 3.45 1.10e-001
Algo2B 34 19.74 9.65e-003 2.50 1.10e-001

15 Algo1 136 18.37 9.95e-003 5.04 1.29e-001
Algo2A 32 18.38 9.86e-003 1.54 1.29e-001
Algo2B 36 18.37 9.99e-003 2.01 1.29e-001

19 Algo1 90 17.65 9.92e-003 3.23 1.40e-001
Algo2A 28 17.66 9.40e-003 1.51 1.40e-001
Algo2B 28 17.65 9.47e-003 1.67 1.40e-001

23 Algo1 154 16.78 9.98e-003 5.12 1.55e-001
Algo2A 38 16.78 9.82e-003 2.00 1.55e-001
Algo2B 36 16.78 9.66e-003 1.67 1.55e-001

infeasibility defined in (6.5) and relerr defined in (6.8) when the stopping
criterion (6.6) is satisfied. Data in this table show that the proposed accelerated
Uzawa methods are much faster than Algorithm 1 to achieve the same level of
restoration quality (i.e., optimality).

To further demonstrate the comparison of different algorithms, we focus on the
satellite.pgm image and the case where the kernel size is alpha = 19 and the
Gaussian noise level is η = 3. In Figure 3, we plot the evolution of the PSNR
value with respect to the iteration number and computing time, respectively; and
the evolution of the quantity of infeasibility and relerr with respect to the
iteration number. The recovered images are displayed in Figure 4.
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Figure 3. Top row: PSNR w.r.t. iteration number (left) and
CPU time (right); Bottom row: quantity of infeasibility (left)
and relerr (right) w.r.t. iteration number for satellite.pgm with
average blur, alpha = 19, η = 3.

Figure 4. Recovered images of satellite.pgm with average blur,
alpha = 19, η = 3. Blurred image (left); recovered image by Al-
gorithm 1 (middle left); recovered image by Algorithm 2A (middle
right); recovered image by Algorithm 2B (right).

6.2.3. Comparison with other existing methods. In the literature, there are some ef-
ficient methods applicable to the model (6.1), including the reduced Newton method
in [33] (denoted by RN), affine scaling method with a BB step in [21] (denoted by
AS-BB), and ADMM in [24]. In this subsection, we compare the proposed ac-
celerated Uzawa methods with these existing algorithms and further show their
efficiency.
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Table 3. Numerical comparison between the proposed algorithms
and some existing ones

satellite, η = 3

alpha Time (s) PSNR (dB)
RN AS-BB ADMM Algo2A Algo2B RN AS-BB ADMM Algo2A Algo2B

15 30.37 15.85 5.05 4.14 4.70 24.74 24.53 24.76 24.77 24.77
19 19.16 15.53 5.83 3.13 3.39 24.09 24.00 24.10 24.10 24.10
23 31.72 17.60 9.23 3.53 3.80 23.67 23.55 23.65 23.65 23.65

chart, η = 3
RN AS-BB ADMM Algo2A Algo2B RN AS-BB ADMM Algo2A Algo2B

15 42.74 16.17 4.00 3.97 4.42 18.39 18.26 18.37 18.40 18.40
19 34.25 16.21 4.06 2.94 3.70 17.65 17.54 17.62 17.65 17.65
23 36.55 17.53 4.75 4.06 4.94 16.78 16.58 16.76 16.80 16.80

To apply ADMM, we need to reformulate (6.1) as

(6.10)
min

{
1
2‖Kx− c‖2 + μ

2 ‖Dx‖2
}
,

s.t. x− y = 0,
x ∈ �n, y ∈ Ω := [l, u],

where y ∈ �n is an auxiliary variable. Let the augmented Lagrangian function of
(6.10) be

L�(x, y, p) =
1

2
‖Kx− c‖2 + μ

2
‖Dx‖2 + p�(x− y) +

�

2
‖x− y‖2,

with p ∈ �n the Lagrange multiplier and � > 0 a penalty parameter. Then, the
iterative scheme of ADMM reads as⎧⎨

⎩
xk+1 = argminL�(x, y

k, pk),
yk+1 = argminL�(x

k+1, y, pk),
pk+1 = pk + �(xk+1 − yk+1).

Obviously, the subproblems at each iteration of ADMM for (6.10) all have closed-
form solutions: ⎧⎨

⎩
(K�K + μD�D)xk+1 = K�c− pk + �yk,

yk+1 = PΩ[x
k+1 + pk

� ],

pk+1 = pk + �(xk+1 − yk+1).

To implement ADMM, the penalty parameter � is set as 0.1, the initial iterate
y0 is taken as the blurry image and p0 = 0.

As in Section 6.2, we test the images satellite.pgm (256 × 256) and chart.tiff
(256× 256) shown in Figure 1. We test the case where the kernel size of the blur is
alpha = 15, 19, 23 and the Gaussian noise level is fixed as η = 3. In Table 3, we list
the numerical comparison of these algorithms in terms of “Time (s)” and “PSNR
(dB)”. Data in this table show that Algorithms 2A and 2B are both faster than
the other methods to achieve the same level of restoration. In Figure 5, we plot
the evolution of the PSNR value with respect to the computing time in seconds for
some scenarios of the tested images.

6.2.4. Robustness to the initial step size. In the previous subsections, we have
shown the efficiency of the proposed accelerated Uzawa methods. In particular,
the numerical results reported in Section 6.2.3 show that Algorithms 2A and 2B
are competitive with the ADMM. In this subsection, we will show that the proposed
Uzawa methods are very robust to the initial choice of the step size β0. This rep-
resents another advantage of the proposed algorithms over some existing methods
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Figure 5. First row: satellite.pgm with average blur, alpha = 19,
η = 3; PSNR w.r.t. computing time (left) and zoom-in for the
first 5 seconds (right). Second row: chart.tiff with average blur,
alpha = 23, η = 3; PSNR w.r.t. computing time (left) and zoom-
in for the first 5 seconds (right).

such as the ADMM whose numerical performance is well known to be sensitive to
the initial choice of its penalty parameter �.

We focus on the satellite.pgm image with an average blur of kernel size alpha =
13 and the Gaussian noise level is η = 3. To see the sensitivity of the proposed
algorithms to β0, we test two sets of values for β0: β0 increasing from 0.1 to 1
with an equal distance of 0.1 and from 1 to 15 with an equal distance of 1. For
each choice of β0, we implement the proposed algorithms and record their recovered
PSNR values and computing time in seconds when the stopping criterion

‖xk+1 − xk‖
‖xk‖ < 1e− 3

is satisfied. In Figure 6, we plot the PSNR values of recovered images and the
computing time in seconds with respect to different choices of β0. These plots
clearly show that the proposed algorithms are all robust to different choices of the
initial value of β0. This is an important convenience for implementing the proposed
algorithms.
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Figure 6. Robustness of the proposed algorithms on initial value
of β0. First row: β0 = {0.1, 0.2, . . . , 1}. Second row: β0 =
{1, 2, . . . , 15}.

7. Conclusions and future work

We focus on a linearly constrained strongly convex minimization model, whose
objective function is given by a black-box oracle and thus its strong convexity mod-
ulus is unknown. Our goal is to discuss a customized and more effective application
of the classical Uzawa method to finding a saddle point of the Lagrangian func-
tion of the model under consideration. We mainly show that an inexact version of
the Uzawa method without knowing the strong convexity modulus of the objective
function can be accelerated by some existing acceleration schemes in the literature
— the convergence rate measured by the iteration complexity can be improved to
O(1/k2) from O(1/k) where k denotes the iteration counter and the accuracy of an
iterate is measured by the residual of the Lagrangian function. This work can be
regarded as the combination of a rather new technique (the acceleration scheme in
[43]) and the old Uzawa method, and it easily yields a number of implementable
accelerated inexact Uzawa methods with O(1/k2) worst-case convergence rates. We
show the efficiency of the accelerated Uzawa methods by an image deblurring prob-
lem. Our numerical experiments demonstrate that the proposed accelerated Uzawa
methods outperform some popular solvers for the tested examples and thus they
have potential applications in some areas where the original Uzawa method is used.
Moreover, the proposed accelerated Uzawa methods are robust to the initial choice
of the step size; this represents a superiority to some existing methods. For future
work, it is interesting to extend our analysis to the generic saddle point problem
and obtain accelerated Uzawa schemes with a worst-case O(1/k2) convergence rate
in more general settings.
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[30] G. M. Korpelevič, An extragradient method for finding saddle points and for other problems
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