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Abstract We discuss unique solvability of the equality-constraint quadratic program-
ming problem, establish a class of preconditioned alternating variable minimization
with multiplier (PAVMM) methods for iteratively computing its solution, and demon-
strate asymptotic convergence property of these PAVMM methods. We also discuss
an algebraic derivation of the PAVMM method by making use of matrix splitting,
which reveals that the PAVMM method is actually a modified block Gauss–Seidel
iteration method for solving the augmented Lagrangian linear system resulting from
the weighted Lagrangian function with respect to the equality-constraint quadratic
programming problem.
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1 Introduction

Let R be the domain of all real numbers, Rn be the n-dimensional real linear space
equipped with the Euclidean inner product, say 〈·, ·〉, and R

m×n be the m-by-n real
matrix space. Denote by (·)T and ‖ ·‖ the transpose and the Euclidean norm of either a
vector or amatrix of suitable dimension, respectively.We consider numerical solutions
of equality-constraint quadratic programming problems of the form

{
min φ(x) + ψ(y),
s.t. Ax + By = b,

(1.1)

where A ∈ R
p×n and B ∈ R

p×m are two matrices, b ∈ R
p is a known vector, and

φ : Rn → R and ψ : Rm → R are two quadratic functions defined by

{
φ(x) = 1

2 x
T Fx + xT f,

ψ(y) = 1
2 y

T Gy + yT g,
(1.2)

with F ∈ R
n×n,G ∈ R

m×m being symmetric positive semidefinite matrices and
f ∈ R

n, g ∈ R
m being given vectors. We assume that some standard assumptions are

imposed on the matrices F,G and A, B as well as on the vectors f, g and b such that
the solution set of the problem (1.1)–(1.2) is nonempty. This class of constraint pro-
gramming problems occurs in many areas of computational science and engineering
applications such as economics [1], electrical circuits and networks [7,13,40], elec-
tromagnetism [9,35], finance [30,31], image reconstruction [24], image registration
[22,33] and optimal control [8]. It also captures a number of important applications
arising in various areas such as the l1-norm regularized least-squares problems, the
total variation image restoration and the standard quadratic programming problems;
see, e.g., [25,28] for more details.

In fact, the constraint quadratic programming problem (1.1) is mathematically
equivalent to the unconstraint optimization problem

max
z

min
x,y

La(x, y, z), (1.3)

where La(x, y, z) is the augmented Lagrangian function defined by

La(x, y, z) = φ(x) + ψ(y) − 〈Ax + By − b, z〉 + β

2
‖Ax + By − b‖2, (1.4)

with z ∈ R
p being the Lagrange multiplier and β a penalty or a regularization parame-

ter. That is to say, a point (x∗, y∗) ∈ R
n ×R

m is a solution of the problem (1.1)–(1.2)
if and only if there exists a z∗ ∈ R

p such that the point (x∗, y∗, z∗) ∈ R
n ×R

m ×R
p

is a solution of the problem (1.3)–(1.4).
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One of the most popular and effective iterative methods for solving the equality-
constraint quadratic programming problem (1.1) is the so-called alternating direction
method with multipliers, or in short, the ADM method. At each iteration step, it first
alternatively minimizes the augmented Lagrangian functionLa(x, y, z) with respect
to the variables x, y, and then update theLagrangemultiplier z according to the steepest
ascent principle so that violation of the original constraint Ax + By = b is penalized.
More precisely, the ADMmethod for solving the problem (1.1) can be algorithmically
described as follows.

Method 1.1 (ADM method for the problem (1.1)) Given initial guesses y(0) ∈ R
m

and z(0) ∈ R
p, for k = 0, 1, 2, . . . until the iteration sequences {x (k)}∞k=0 ⊂

R
n, {y(k)}∞k=0 ⊂ R

m and {z(k)}∞k=0 ⊂ R
p are convergent, compute x (k+1), y(k+1)

and z(k+1) according to the following rule:

x (k+1) = arg min
x∈Rn

{
φ(x) − 〈Ax + By(k) − b, z(k)〉 + β

2
‖Ax + By(k) − b‖2

}
,

y(k+1) = arg min
y∈Rm

{
ψ(y) − 〈Ax (k+1) + By − b, z(k)〉 + β

2
‖Ax (k+1) + By − b‖2

}
,

z(k+1) = z(k) − β(Ax (k+1) + By(k+1) − b). (1.5)

Intuitively, Method 1.1 is an alternating variable minimization with multiplier
(AVMM) method. The AVMM method is intended to blend the decomposability of
dual ascent with the superior convergence properties of the method of multipliers
[11]. It computes a saddle point of the augmented Lagrangian functionLa(x, y, z) by
adopting the idea of block Gauss–Seidel iteration for solving block system of linear
or nonlinear equations [21,34,45], in which a single block Gauss–Seidel pass over
the variables x and y is used instead of the usual joint minimization. In [18] Gabay
illustrated this iteration scheme as an application of the Douglas-Rachford splitting
method [29] to the dual of the problem (1.1), and Eckstein and Bertsekas [15] showed
in turn that Douglas-Rachford splitting is a special case of the proximal point method.
Hence, AVMM is a special case of the proximal point method; see Eckstein and Fer-
ris [16] for more discussions explaining this approach. On the other hand, it is also
a natural generalization of the classical Uzawa method for solving the saddle-point
problems; see [1,10,14].

Many papers have analyzed the AVMM method from the perspective of maximal
monotone operators [15,36–39]. Its global convergence was proved under some mild
conditions such as the solution set of the problem (1.1) is nonempty; see [17–19].
Also, it has been known that this method converges linearly, but an accurate estimate
about the convergence rate is still in its infancy; see, e.g., [20,25,28,29,41].

In this paper, based on a weighted inner product and the corresponding weighted
norm, by adoptingmatrix preconditioning strategy andutilizingparameter accelerating
technique, we establish a class of preconditioned alternating variable minimiza-
tion with multiplier (PAVMM) methods for iteratively solving the equality-constraint
quadratic programming problem (1.1)–(1.2). This method includes the AVMM or the
ADM method as a special case. By making use of blockwise matrix transformation,

123



402 Z.-Z. Bai, M. Tao

from null space relationships of the involved sub-matrices we discuss solvability of
the problem (1.1)–(1.2) and give sufficient and necessary conditions for guaranteeing
existence and uniqueness of its solution. By exploring an explicit formula about eigen-
values of the iteration matrix, we demonstrate asymptotic convergence property and
analyze asymptotic convergence rate of the PAVMMmethod. Bymaking use of matrix
splitting, we also discuss an algebraic derivation of the PAVMMmethod, which shows
that this method is actually a modified block Gauss–Seidel iteration method for solv-
ing the augmented Lagrangian linear system resulting from the weighted Lagrangian
functionwith respect to the equality-constraint quadratic programming problem (1.1)–
(1.2).

2 The PAVMM methods

For a symmetric positive definite matrix H ∈ R
p×p, let 〈·, ·〉H be the weighted inner

product with the weighting matrix H , or the H -inner product, in R
p, and ‖ · ‖H

be the corresponding weighted matrix norm, or the H -norm, in R
p×p. Note that for

u, v ∈ R
p and X ∈ R

p×p, it holds that

〈u, v〉H = 〈Hu, v〉, ‖u‖H = ‖H 1
2 u‖ and ‖X‖H = ‖H 1

2 XH− 1
2 ‖.

We say that u, v ∈ R
p are H -orthogonal, denoted by u ⊥H v, if 〈u, v〉H = 0. If,

in particular, H = I (the identity matrix), then the vectors u and v are said to be
orthogonal, which is simply represented as u ⊥ v.

For a given symmetric positive definite matrix W ∈ R
p×p, we can prove that the

constraint quadratic programming problem (1.1) is mathematically equivalent to the
unconstraint optimization problem

max
z

min
x,y

Lwa(x, y, z), (2.1)

where Lwa(x, y, z) is the weighted augmented Lagrangian function defined by

Lwa(x, y, z) = φ(x) + ψ(y) − 〈Ax + By − b, z〉W−1 + β

2
‖Ax + By − b‖2W−1 ,

(2.2)

with W ∈ R
p×p being the weighting matrix, z ∈ R

p being the Lagrange multiplier,
and β a penalty or a regularization parameter. To be more precise, a point (x∗, y∗) ∈
R
n × R

m is a solution of the problem (1.1) if and only if there exists a z∗ ∈ R
p such

that the point (x∗, y∗, z∗) ∈ R
n × R

m × R
p is a solution of the problem (2.1)–(2.2).

Analogous to Method 1.1, we can establish the following PAVMM method for
iteratively solving the problem (1.1)–(1.2).

Method 2.1 (PAVMM method for the problem (1.1)–(1.2)) Let W ∈ R
p×p be a sym-

metric positive definite matrix, Q ∈ R
p×p be a nonsingular matrix, and α be a positive

constant. Given initial guesses y(0) ∈ R
m and z(0) ∈ R

p, for k = 0, 1, 2, . . . until
the iteration sequences {x (k)}∞k=0 ⊂ R

n, {y(k)}∞k=0 ⊂ R
m and {z(k)}∞k=0 ⊂ R

p are
convergent, compute x (k+1), y(k+1) and z(k+1) according to the following rule:
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x (k+1) = arg min
x∈Rn

{
φ(x) − 〈Ax + By(k) − b, z(k)〉W−1 + β

2
‖Ax + By(k) − b‖2W−1

}
,

y(k+1) = arg min
y∈Rm

{
ψ(y) − 〈Ax (k+1) + By − b, z(k)〉W−1 + β

2
‖Ax (k+1) + By − b‖2W−1

}
,

z(k+1) = z(k) − αQ−1W−1(Ax (k+1) + By(k+1) − b). (2.3)

Note that when α = β andW = Q = I the PAVMMmethod reduces to the AVMM
or the ADMmethod. The weighting matrixW can be used to balance the cost function
and the equality constraint such that the conditioning of the weighted augmented
Lagrangian functionLwa(x, y, z) is greatly improved, and the preconditioning matrix
Q and the relaxation parameter α can be chosen such that the convergence rate of the
PAVMM method is further accelerated.

By straightforward calculations, we can rewrite the iteration scheme (2.3) into an
explicit form as follows:

⎧⎨
⎩

φ′(x (k+1)) − ATW−1z(k) + βATW−1(Ax (k+1) + By(k) − b) = 0,
ψ ′(y(k+1)) − BTW−1z(k) + βBTW−1(Ax (k+1) + By(k+1) − b) = 0,
z(k+1) = z(k) − αQ−1W−1(Ax (k+1) + By(k+1) − b),

which can be equivalently reformulated as

⎧⎨
⎩

Fx (k+1) + f − ATW−1z(k) + βATW−1(Ax (k+1) + By(k) − b) = 0,
Gy(k+1) + g − BTW−1z(k) + βBTW−1(Ax (k+1) + By(k+1) − b) = 0,
z(k+1) = z(k) − αQ−1W−1(Ax (k+1) + By(k+1) − b)

due to the concrete expressions

φ′(x) = Fx + f and ψ ′(y) = Gy + g

of the derivatives of the quadratic functions φ(x) and ψ(y). After rearrangement we
obtain the matrix–vector form of the PAVMM method as follows:

⎧⎨
⎩

(F + βATW−1A)x (k+1) = ATW−1[β(b − By(k)) + z(k)] − f,
(G + βBTW−1B)y(k+1) = BTW−1[β(b − Ax (k+1)) + z(k)] − g,
z(k+1) = z(k) − αQ−1W−1(Ax (k+1) + By(k+1) − b).

(2.4)

The main costs of the iteration scheme (2.4) are solving two systems of linear
equations having the coefficient matrices F+βATW−1A andG+βBTW−1B, which
are of the sizes n × n and m × m, respectively. When

null(F) ∩ null(A) = {0} and null(G) ∩ null(B) = {0},

with null(·) indicating the null space of the corresponding matrix, the matrices
F + βATW−1A and G + βBTW−1B are symmetric positive definite, so that the
corresponding systems of linear equations can be solved effectively either by direct
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methods such as the Cholesky factorization or by iterative methods such as the precon-
ditioned conjugate gradient method; see [21]. Of course, the weighting matrix W and
the regularization parameter β should be chosen such that both augmented Lagrangian
matrices F + βATW−1A and G + βBTW−1B are much better conditioned than the
original matrices F and G, respectively.

3 Preliminaries

We first introduce some notations necessitating for the subsequent statements. We
use C to denote the domain of all complex numbers. For a ζ ∈ C, ζ̄ stands for its
conjugate complex. Cn represents the n-dimensional complex linear space equipped
with the Euclidean inner product, say, 〈·, ·〉, and Cm×n is the m-by-n complex matrix
space. For a given matrix, we use range(·) to indicate the range space spanned by all
of its columns. The symbol ⊕ is the direct sum of subspaces in C

n . Denote by (·)∗
and ‖ · ‖ the conjugate transpose and the Euclidean norm of either a vector in C

n or
a matrix in Cm×n , respectively. For two symmetric matrices X and Y , we say X � Y
(or X � Y ) if X − Y is positive definite (or semidefinite). Alternatively, X � Y (or
X � Y ) is also written as Y ≺ X (or Y � X ). We use λ(·) and ρ(·) to indicate
an eigenvalue and the spectral radius of a square matrix, and λmin(·) and λmax(·) the
smallest and the largest of its eigenvalues, respectively.

The following result presents necessary and sufficient conditions for the nonsin-
gularity of block two-by-two matrices of the saddle-point form; see [2,3,5] and the
references therein.

Lemma 3.1 Let H ∈ C
n×n be a Hermitian positive semidefinite matrix and E ∈

C
m×n. Then the saddle-point matrix

K =
(
H E∗
E 0

)

is nonsingular if and only if null(H) ∩ null(E) = {0} and E is of full row rank.

For the nonsingularity of block three-by-three matrices, we can demonstrate nec-
essary and sufficient conditions as follows.

Lemma 3.2 Let Ha ∈ C
n×n and Hb ∈ C

m×m be Hermitian positive semidefinite
matrices, and Ea ∈ C

p×n and Eb ∈ C
p×m. Then the block three-by-three matrix

K =
⎛
⎝ Ha 0 E∗

a
0 Hb E∗

b
Ea Eb 0

⎞
⎠

is nonsingular if and only if

(null(Ha) ⊕ null(Hb)) ∩ null((Ea Eb)) = {0} and null(E∗
a ) ∩ null(E∗

b ) = {0}.
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Proof Denote

H =
(
Ha 0
0 Hb

)
and E = (

Ea Eb
)
.

Then we can rewrite the block three-by-three matrix K as the block two-by-two one

K =
(
H E∗
E 0

)
.

From Lemma 3.1 we know that K is nonsingular if and only if null(H) ∩ null(E) =
{0} and E∗ is of full column rank. By straightforward operations we can obtain the
following statements:

(i) null(H) ∩ null(E) = {0} if and only if

(null(Ha) ⊕ null(Hb)) ∩ null((Ea Eb)) = {0};

(ii) E∗ is of full column rank if and only if null(E∗
a ) ∩ null(E∗

b ) = {0}.
��

As

(null(Ha) ⊕ null(Hb)) ∩ null((Ea Eb)) = {0}

implies

null(Ha) ∩ null(Ea) = {0} and null(Hb) ∩ null(Eb) = {0},

by Lemma 3.2 we can directly obtain a necessary condition for the nonsingularity of
the block three-by-three matrix K .

Lemma 3.3 Let Ha ∈ C
n×n and Hb ∈ C

m×m be Hermitian positive semidefinite
matrices, and Ea ∈ C

p×n and Eb ∈ C
p×m. If

K =
⎛
⎝ Ha 0 E∗

a
0 Hb E∗

b
Ea Eb 0

⎞
⎠

is nonsingular, then

null(Ha) ∩ null(Ea) = {0} and null(Hb) ∩ null(Eb) = {0}.

Below we demonstrate some characteristics of a saddle point of the weighted aug-
mented Lagrangian function Lwa(x, y, z) defined in (2.2).

Theorem 3.1 Let F ∈ R
n×n,G ∈ R

m×m be symmetric positive semidefinitematrices,
and A ∈ R

p×n, B ∈ R
p×m be two matrices. Let
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406 Z.-Z. Bai, M. Tao

A(β) =
⎛
⎝ F + βATW−1A βATW−1B −ATW−1

βBTW−1A G + βBTW−1B −BTW−1

W−1A W−1B 0

⎞
⎠ (3.1)

and

b(β) =
⎛
⎝βATW−1b − f

βBTW−1b − g
W−1b

⎞
⎠ , x =

⎛
⎝ x

y
z

⎞
⎠ . (3.2)

Then the following statements hold true:

(i) For x∗ ∈ R
n, y∗ ∈ R

m and z∗ ∈ R
p, (x∗, y∗, z∗) is a saddle point of the weighted

augmented Lagrangian function Lwa(x, y, z) defined in (2.2) if and only if x∗ =
(xT∗ , yT∗ , zT∗ )T ∈ R

n+m+p is a solution of the linear system A(β) x = b(β);
(ii) The matrix A(β) ∈ R

(n+m+p)×(n+m+p) is nonsingular if and only if
(a) (null(F) ⊕ null(G)) ∩ null((A B)) = {0}, and
(b) null(AT ) ∩ null(BT ) = {0}.

Proof We first demonstrate (i). By straightforward calculations we obtain the deriv-
atives of the weighted augmented Lagrangian function Lwa(x, y, z) with respect to
x, y and z as follows:

⎧⎪⎪⎨
⎪⎪⎩

∂Lwa(x,y,z)
∂x = (F + βATW−1A)x + βATW−1By − ATW−1z + f − βATW−1b,

∂Lwa(x,y,z)
∂y = βBTW−1Ax + (G + βBTW−1B)y − BTW−1z + g − βBTW−1b,

∂Lwa(x,y,z)
∂z = −W−1(Ax + By − b).

Note that (x∗, y∗, z∗) is a saddle point of Lwa(x, y, z) if and only if

∂Lwa(x∗, y∗, z∗)
∂x

= 0,
∂Lwa(x∗, y∗, z∗)

∂y
= 0 and

∂Lwa(x∗, y∗, z∗)
∂z

= 0,

which can be rewritten in matrix–vector form into A(β) x = b(β).
To verify the validity of (ii), we denote by

P(β) =
⎛
⎝ I 0 −βAT

0 I −βBT

0 0 I

⎞
⎠ ,

which is a three-by-three block unit upper-triangular matrix. Then it holds that

Ã(β) = P(β)A(β) =
⎛
⎝ F 0 −ATW−1

0 G −BTW−1

W−1A W−1B 0

⎞
⎠ ,
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which implies that A(β) is nonsingular if and only if Ã(β) is nonsingular. From
Lemma 3.2 we know that Ã(β) is nonsingular if and only if

(null(F) ⊕ null(G)) ∩ null((W−1A W−1B)) = {0}

and

null(ATW−1) ∩ null(BTW−1) = {0}.

The result what we were proving then follows straightforwardly from

null((W−1A W−1B)) = null((A B)),

and

null(ATW−1) ∩ null(BTW−1) = {0}

if and only if

null(AT ) ∩ null(BT ) = {0}.

��
In the sequel, for notational convenience we define matrices

Â = W−1/2A, B̂ = W−1/2B, Q̂ = W 1/2QW 1/2 (3.3)

and

F̂ = F + βATW−1A, Ĝ = G + βBTW−1B. (3.4)

The positive definiteness and the spectral radius of the symmetric matrix

Ĥ = ÂF̂−1 ÂT + B̂Ĝ−1 B̂T

are indispensable in discussion of the convergence property and the convergence rate
of the PAVMM method, which are precisely stated in the following lemma.

Lemma 3.4 Let F ∈ R
n×n,G ∈ R

m×m and W ∈ R
p×p be symmetric positive

definite matrices, and A ∈ R
p×n and B ∈ R

p×m be two arbitrary matrices. Define
matrices Â, B̂ and F̂, Ĝ as in (3.3) and (3.4), respectively. Then the following two
statements hold true:

(i) 0 � ÂF̂−1 ÂT ≺ 1
β
I, 0 � B̂Ĝ−1 B̂T ≺ 1

β
I and 0 � Ĥ ≺ 2

β
I ;

(ii) Ĥ � 0 if A and B further satisfy

null(AT ) ∩ null(BT ) = {0}.
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Proof By denoting

Ω̂β = β ÂT Â and Γ̂β = β B̂T B̂,

we have

F̂ = F + Ω̂β and Ĝ = G + Γ̂β .

So

λ(β ÂF̂−1 ÂT ) = λ(F̂−1/2Ω̂β F̂
−1/2) < 1

and

λ(β B̂Ĝ−1 B̂T ) = λ(Ĝ−1/2Γ̂β Ĝ
−1/2) < 1.

It follows that

0 � β ÂF̂−1 ÂT ≺ I and 0 � β B̂Ĝ−1 B̂T ≺ I,

or equivalently,

0 � ÂF̂−1 ÂT ≺ 1

β
I and 0 � B̂Ĝ−1 B̂T ≺ 1

β
I.

As a result, we straightforwardly have

0 � Ĥ ≺ 2

β
I.

So the statement (i) is valid.
In addition, we can assert Ĥ � 0. Otherwise, if there exists a nonzero vector ẑ ∈ R

p

such that ẑT Ĥ ẑ = 0, it must hold

ẑT ÂF̂−1 ÂT ẑ = 0 and ẑT B̂Ĝ−1 B̂T ẑ = 0

due to

ÂF̂−1 ÂT � 0 and B̂Ĝ−1 B̂T � 0.

Because F̂ � 0 and Ĝ � 0, we have

ÂT ẑ = 0 and B̂T ẑ = 0,

or in other words,

ẑ ∈ null( ÂT ) ∩ null(B̂T ).
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In addition, as

null( ÂT ) = null(ATW−1/2) and null(B̂T ) = null(BTW−1/2),

from

null(AT ) ∩ null(BT ) = {0}

we see that ẑ = 0, which is a contradiction. So Ĥ � 0 and the statement (ii) holds
true. ��

In addition, the following determinant criterion for locations of the two roots of
a complex quadratic polynomial equation is fundamental for us to demonstrate the
asymptotic convergence of the PAVMM method.

Lemma 3.5 Let η and ζ be two complex constants. Then both roots of the complex
quadratic polynomial equation

λ2 + ζλ + η = 0

have modulus less than one if and only if

|ζ − ζ̄ η| + |η|2 < 1; (3.5)

see [6,32]. In particular, if both η and ζ are real constants, then the condition (3.5)
reduces to

|η| < 1 and |ζ | < 1 + η;

see [6,45].

4 The asymptotic convergence

In this section, we demonstrate the asymptotic convergence and estimate the corre-
sponding asymptotic convergence rate for the PAVMM method.

To this end, we introduce block matrices

M(α, β) =
⎛
⎝ F + βATW−1A 0 0

βBTW−1A G + βBTW−1B 0
W−1A W−1B 1

α
Q

⎞
⎠

and

N(α, β) =
⎛
⎝ 0 −βATW−1B ATW−1

0 0 BTW−1

0 0 1
α
Q

⎞
⎠ ,
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which satisfy

A(β) = M(α, β) − N(α, β),

with A(β) being defined in (3.1). And we also introduce block vectors

x(k+1) =
⎛
⎝ x (k+1)

y(k+1)

z(k+1)

⎞
⎠ and x(k) =

⎛
⎝ x (k)

y(k)

z(k)

⎞
⎠ .

Then the iteration scheme (2.4) can be briefly rewritten into the standard stationary
iteration scheme

M(α, β) x(k+1) = N(α, β) x(k) + b(β), (4.1)

with b(β) being defined in (3.2). Using these notations we can alternatively translate
the PAVMM method as a stationary matrix splitting iteration method for solving the
block three-by-three system of linear equations

A(β) x = b(β),

which is induced by the splitting

A(β) = M(α, β) − N(α, β)

of the matrix A(β) ∈ R
(n+m+p)×(n+m+p). As a result, the PAVMM method is

convergent if and only if the spectral radius ρ(L(α, β)) of its iteration matrix
L(α, β) = M(α, β)−1N(α, β) is less than one, i.e., ρ(L(α, β)) < 1, and, in the
convergence situation, its asymptotic convergence factor is given by ρ(L(α, β)); see
[42].

Using the matrices

Pl(β) =
⎛
⎝ I 0 −βAT

0 I −βBT

0 0 W 1/2

⎞
⎠ and Pr (β) =

⎛
⎝ I 0 0
0 I 0
0 0 W 1/2

⎞
⎠ ,

we have

M̂(α, β) = Pl(β)M(α, β)Pr (β)

=
⎛
⎜⎝

F −βATW−1B −β
α
AT QW 1/2

0 G −β
α
BT QW 1/2

W−1/2A W−1/2B 1
α
W 1/2QW 1/2

⎞
⎟⎠

=
⎛
⎜⎝

F −β ÂT B̂ −β
α
ÂT Q̂

0 G −β
α
B̂T Q̂

Â B̂ 1
α
Q̂

⎞
⎟⎠
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and

N̂(α, β) = Pl(β)N(α, β)Pr (β)

=

⎛
⎜⎜⎝
0 −βATW−1B AT

(
W−1 − β

α
Q

)
W 1/2

0 0 BT
(
W−1 − β

α
Q

)
W 1/2

0 0 1
α
W 1/2QW 1/2

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝
0 −β ÂT B̂ ÂT

(
I − β

α
Q̂

)

0 0 B̂T
(
I − β

α
Q̂

)
0 0 1

α
Q̂

⎞
⎟⎟⎠ ,

where the matrices Â, B̂ and Q̂ are defined as in (3.3). Hence, it holds that

L̂(α, β) = M̂(α, β)−1N̂(α, β) = Pr (β)−1M(α, β)−1N(α, β)Pr (β)

= Pr (β)−1 L(α, β)Pr (β),

which implies thatL(α, β) and L̂(α, β) are similar matrices so that they have the same
eigenvalue set.

Based on this fact, below we describe analytic formulas for the eigenvalues of the
matrix L̂(α, β) when the matrices F and G are symmetric positive definite.

Theorem 4.1 Let F ∈ R
n×n,G ∈ R

m×m be symmetric positive definite matrices,
and A ∈ R

p×n, B ∈ R
p×m be two matrices such that

null(AT ) ∩ null(BT ) = {0}.

Denote

R̃ = ÂF̂−1 ÂT , S̃ = B̂Ĝ−1 B̂T and Q̃ = (I − β S̃)−1 Q̂(I − β S̃),

where Â, B̂, Q̂ and F̂, Ĝ are defined as in (3.3)–(3.4). Then the iteration sequence
{x(k)}∞k=0, generated by the PAVMM iteration scheme (2.4) or (4.1), is convergent to the
exact solution of the equality-constraint quadratic programming problem (1.1)–(1.2),
provided the modulus of any eigenvalue λ of the quadratic eigenvalue problem

[
λ2 Q̃ + λ

(
α(R̃ + S̃ − β R̃ S̃) − (I + β2 R̃ S̃)Q̃

)
− β R̃ S̃(α I − β Q̃)

]
w̃ = 0 (4.2)

is less than 1. Moreover, the convergence factor of the PAVMM iteration method is
given by max{|λ||λ is an eigenvalue of the problem (4.2)}.
Proof As L̂(α, β) and L(α, β) are similar matrices, we only need to analyze the
eigenvalues of the matrix L̂(α, β).
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Let λ be a nonzero eigenvalue of the matrix L̂(α, β) and u = (uT , vT , wT )T ∈
C
n+m+p, with u ∈ C

n, v ∈ C
m and w ∈ C

p, be the corresponding eigenvector, i.e.,
L̂(α, β)u = λu. Then it holds that

N̂(α, β)u = λ M̂(α, β)u,

or equivalently,⎧⎪⎪⎨
⎪⎪⎩

−β ÂT B̂v + ÂT
(
I − β

α
Q̂

)
w = λ

(
Fu − β ÂT B̂v − β

α
ÂT Q̂w

)
,

B̂T
(
I − β

α
Q̂

)
w = λ

(
Gv − β

α
B̂T Q̂w

)
,

1
α
Q̂ w = λ

(
Âu + B̂v + 1

α
Q̂w

)
.

After some manipulations, we can rewrite the above generalized eigenvalue problem
as ⎧⎪⎪⎨

⎪⎪⎩
λFu + (1 − λ)β ÂT B̂v = ÂT

(
I + (λ−1)β

α
Q̂

)
w,

λGv = B̂T
(
I + (λ−1)β

α
Q̂

)
w,

λ( Âu + B̂v) = 1−λ
α

Q̂w.

(4.3)

From the second equation of (4.3) we have

v = 1

λ
G−1 B̂T

(
I + (λ − 1)β

α
Q̂

)
w. (4.4)

By substituting this expression into the first equation of (4.3) we obtain

u = 1

λ
F−1 ÂT

(
I + (λ − 1)β

λ
B̂G−1 B̂T

)(
I + (λ − 1)β

α
Q̂

)
w. (4.5)

Substitutions of (4.4) and (4.5) into the third equation of (4.3) result in

[
ÂF−1 ÂT

(
I + (λ − 1)β

λ
B̂G−1 B̂T

)
+ B̂G−1 B̂T

]

·
(
I + (λ − 1)β

α
Q̂

)
w = 1 − λ

α
Q̂w. (4.6)

Recalling

F̂ = F + βATW−1A = F + β ÂT Â

and

Ĝ = G + βBTW−1B = G + β B̂T B̂,

we know that both F̂ and Ĝ are symmetric positive definite matrices. Also, it holds
that
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F = F̂ − β ÂT Â and G = Ĝ − β B̂T B̂.

From Lemma 3.4 (i) we know that

0 � β ÂF̂−1 ÂT ≺ I and 0 � β B̂Ĝ−1 B̂T ≺ I,

which straightforwardly imply that

I − β ÂF̂−1 ÂT and I − β B̂Ĝ−1 B̂T

are symmetric positive definite, or in other words, I − β R̃ and I − β S̃ are symmetric
positive definite. By making use of the Sherman-Morrison-Woodbury formula [21]
we obtain

F−1 = F̂−1 + β F̂−1 ÂT (I − β ÂF̂−1 ÂT )−1 ÂF̂−1

and

G−1 = Ĝ−1 + βĜ−1 B̂T (I − β B̂Ĝ−1 B̂T )−1 B̂Ĝ−1.

Therefore,

ÂF−1 ÂT = R̃ + β R̃(I − β R̃)−1 R̃ = R̃(I − β R̃)−1 (4.7)

and

B̂G−1 B̂T = S̃ + β S̃(I − β S̃)−1 S̃ = S̃(I − β S̃)−1. (4.8)

By substituting (4.7) and (4.8) into (4.6), after some manipulations we have

(I−β R̃)−1
(
R̃+ S̃ − (λ + 1)β

λ
R̃ S̃

)
(I − β S̃)−1

(
I + (λ − 1)β

α
Q̂

)
w= 1 − λ

α
Q̂w.

Further rearrangements straightforwardly lead to the equation

α[λ(R̃ + S̃) − (λ + 1)β R̃ S̃](I − β S̃)−1w = (1 − λ)(λI − β2 R̃ S̃)(I − β S̃)−1 Q̂w.

By noticing

Q̃ = (I − β S̃)−1 Q̂(I − β S̃)

and letting

w̃ = (I − β S̃)−1w,
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after combining terms of the same kind with respect to the power exponents of λ we
finally obtain

[λ2 Q̃ + λ(α(R̃ + S̃ − β R̃ S̃) − (I + β2 R̃ S̃)Q̃) − β R̃ S̃(α I − β Q̃)]w̃ = 0,

which is exactly the quadratic eigenvalue problem (4.2). Here we should assert that
w̃ �= 0, as, otherwise, if w̃ = 0 then w = 0 and, from (4.4) and (4.5), we see that
v = 0 and u = 0. This contradicts with the assumption that u = (uT , vT , wT )T is an
eigenvector. ��

We remark that the derivation of the quadratic eigenvalue problem (4.2) does not
require the condition null(AT ) ∩ null(BT ) = {0}. This condition is only imposed
to guarantee the unique solvability of the equality-constraint quadratic programming
problem (1.1)–(1.2).

Important and useful choices of the preconditioningmatrix Q ∈ R
p×p are symmet-

ric positive definite matrix and symmetric negative definite matrix. Correspondingly,
in the light of Theorem 4.1 and Lemma 3.5 we can obtain a deepgoing convergence
result for the PAVMM iteration method as follows.

Theorem 4.2 Let F ∈ R
n×n,G ∈ R

m×m be symmetric positive definite matrices,
and A ∈ R

p×n, B ∈ R
p×m be two matrices such that

null(AT ) ∩ null(BT ) = {0}.

Assume that Q ∈ R
p×p is either a symmetric positive definite matrix or a symmetric

negative definite matrix. Denote

R̃ = ÂF̂−1 ÂT , S̃ = B̂Ĝ−1 B̂T and R̂ = (I − β S̃)R̃(I − β S̃)−1,

where Â, B̂ and F̂, Ĝ are defined as in (3.3)–(3.4). And for any nonzero vectorw ∈ C
p,

define

ν = w∗ Q̂w

w∗w
, � = w∗(R̂ + S̃)w

w∗w
(4.9)

and

χ− = w∗ R̂ S̃(α I − β Q̂)w

w∗w
, χ = w∗ R̂ S̃w

w∗w
, (4.10)

where Q̂ is defined as in (3.3). Then the iteration sequence generated by the PAVMM
iteration scheme (2.4) or (4.1) is convergent to the exact solution of the equality-
constraint quadratic programming problem (1.1)–(1.2), provided the parameters α

and β satisfy the condition

|ν δ(α, β) + βχ− δ̄(α, β)| + β2|χ−|2 < ν2, (4.11)
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where

δ(α, β) = α� − ν − β(2αχ − χ−).

Moreover, the convergence factor of the PAVMM iteration method is given by

σ(α, β) = max{λ(max)
+ , λ

(max)
− }, (4.12)

where

λ
(max)
± = max

w∈Cp\{0}

{
| − δ(α, β) ± √[δ(α, β)]2 + 4βνχ−|

2ν

}
.

Proof With the variable replacement

w = (I − β S̃)w̃,

after straightforward operations we can equivalently rewrite the quadratic eigenvalue
problem (4.2) as

[λ2 Q̂ + λ(α(R̂ + S̃) − Q̂ − β R̂ S̃(α I + β Q̂)) − β R̂ S̃(α I − β Q̂)]w = 0. (4.13)

Hence, with the notations in (4.9) and (4.10) we know that λ is an eigenvalue of the
quadratic eigenvalue problem (4.13) if it is a root of the quadratic polynomial equation

νλ2 + (α� − ν − βχ+)λ − βχ− = 0, (4.14)

where

χ+ = w∗ R̂ S̃(α I + β Q̂)w

w∗w
.

Note that

χ− + χ+ = 2αχ.

As thematrix Q is either symmetric positive definite or symmetric negative definite,
so is Q̂. This shows that either ν > 0 or, correspondingly, ν < 0. In accordance with
Lemma 3.5, a necessary and sufficient condition for guaranteeing that both roots of
the quadratic polynomial equation (4.14) have modulus less than one is that

|ν(α� − ν − βχ+) + β(α�̄ − ν − βχ̄+)χ−| + β2|χ−|2 < ν2.

After simplifying this inequality, with appropriate arrangements we then obtain the
convergence condition (4.11) imposed on the parameters α and β.
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In addition, because the two roots of the quadratic polynomial equation (4.14) are

λ± = ν − α� + β(2αχ − χ−) ± √[ν − α� + β(2αχ − χ−)]2 + 4βνχ−
2ν

,

the convergence factor of the PAVMM iteration method is given by σ(α, β) in
(4.12). ��

Furthermore, in actual applications we can choose the preconditioning matrix Q ∈
R

p×p depending on the weighting matrix W ∈ R
p×p. For example, for a prescribed

constant θ �= 0 we can take Q = θW−1. It then follows that Q̂ = θ I ; see (3.3).
Correspondingly, we can obtain a convergence result for the PAVMM iterationmethod
as follows.

Theorem 4.3 Let F ∈ R
n×n,G ∈ R

m×m be symmetric positive definite matrices,
and A ∈ R

p×n, B ∈ R
p×m be two matrices such that

null(AT ) ∩ null(BT ) = {0}.

Assume that Q = θW−1, with θ �= 0 being a prescribed constant. Denote

R̃ = ÂF̂−1 ÂT and S̃ = B̂Ĝ−1 B̂T ,

where Â, B̂ and F̂, Ĝ are defined as in (3.3)–(3.4). And for any nonzero vector w̃ ∈ C
p,

define

� = w̃∗(R̃ + S̃)w̃

w̃∗w̃
and χ = w̃∗ R̃ S̃w̃

w̃∗w̃
. (4.15)

Then the iteration sequence generated by the PAVMM iteration scheme (2.4) or (4.1)
is convergent to the exact solution of the equality-constraint quadratic programming
problem (1.1)–(1.2), provided the parameters α and β satisfy the condition

|θ δ(α, β) + β(α − βθ)χ δ̄(α, β)| + β2(α − βθ)2|χ |2 < θ2, (4.16)

where

δ(α, β) = α� − θ − β(α + βθ)χ.

Moreover, the convergence factor of the PAVMM iteration method is given by

σ(α, β) = max{λ(max)
+ , λ

(max)
− }, (4.17)

where

λ
(max)
± = max

w̃∈Cp\{0}

{
| − δ(α, β) ± √[δ(α, β)]2 + 4β(α − βθ)θχ |

2θ

}
.
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Proof Recalling the definition of Q̂ given in (3.3), when Q = θW−1 we have Q̂ = θ I .
Hence, it holds that

Q̃ = (I − β S̃)−1 Q̂(I − β S̃) = θ I.

Accordingly, in Theorem 4.1 the quadratic eigenvalue problem (4.2) becomes

[θλ2 I + λ(α(R̃ + S̃ − β R̃ S̃) − θ(I + β2 R̃ S̃)) − β(α − βθ)R̃ S̃]w̃ = 0.

Hence, with the notations in (4.15) we know that λ is an eigenvalue of the quadratic
eigenvalue problem (4.2) if it is a root of the quadratic polynomial equation

θλ2 + [α� − θ − β(α + βθ)χ ]λ − β(α − βθ)χ = 0. (4.18)

Note that Lemma 3.4 (i) shows that 0 < � < 2
β
. Again, in accordance with

Lemma 3.5, based on the quadratic polynomial equation (4.18) we can obtain the
convergence condition (4.16) imposed on the parameters α and β, as well as the
convergence factor σ(α, β) in (4.17), for the PAVMMiterationmethod in an analogous
fashion to the demonstration of Theorem 4.2. ��

In particular, if α = β and Q = W−1, the result in Theorem 4.3 reduces to the
following one, which straightforwardly gives a convergence result for the AVMM
iteration method defined by the specific choice Q = W = I .

Corollary 4.1 Let F ∈ R
n×n,G ∈ R

m×m be symmetric positive definite matrices,
and A ∈ R

p×n, B ∈ R
p×m be two matrices such that

null(AT ) ∩ null(BT ) = {0}.

Assume that Q = W−1. Denote

R̃ = ÂF̂−1 ÂT and S̃ = B̂Ĝ−1 B̂T ,

where Â, B̂ and F̂, Ĝ are defined as in (3.3)–(3.4). And for any nonzero vector w̃ ∈ C
p,

define

� = w̃∗(R̃ + S̃)w̃

w̃∗w̃
and χ = w̃∗ R̃ S̃w̃

w̃∗w̃
. (4.19)

Then the iteration sequence generated by the AVMM iteration scheme (1.5) is conver-
gent to the exact solution of the equality-constraint quadratic programming problem
(1.1)–(1.2), provided the parameter β satisfies the condition

|2β2χ − β� + 1| < 1. (4.20)
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Moreover, the convergence factor of the AVMM iteration method is given by

σ(β) = max
w̃∈Cp\{0}

{|2β2χ − β� + 1|}. (4.21)

Proof Using the notation in Theorem 4.3, when Q = W−1 we have θ = 1. Moreover,
asα = β, from the proof of Theorem4.3we see that the quadratic polynomial equation
(4.18) reduces to

λ2 + (β� − 2β2χ − 1)λ = 0, (4.22)

where � and χ are defined as in (4.19). Again, note that Lemma 3.4 (i) shows that
0 < � < 2

β
.

The two roots of this quadratic polynomial equation are

λ− = 0 and λ+ = 2β2χ − β� + 1.

Hence, we can obtain the convergence condition (4.20) imposed on the regularization
parameter β, as well as the convergence factor σ(β) in (4.21), for the AVMM iteration
method. ��

In general, the matrices R̂, S̃ in Theorem 4.2, and R̃, S̃ in Theorem 4.3 and Corol-
lary 4.1may be symmetric positive semidefinite. It turns out that the constant terms and
the coefficients of the first-order terms of the quadratic polynomial equations in (4.14),
(4.18) and (4.22) are possibly complex. Hence, we are not capable to derive simpler
sufficient conditions than those given in Theorems 4.2, 4.3 and Corollary 4.1 for guar-
anteeing the asymptotic convergence of the PAVMM method. However, this could
become possible if more specific restrictions are imposed on the equality-constraint
quadratic programming problem (1.1)–(1.2), as well as on the weighting matrix W
and the preconditioning matrix Q. In fact, deriving easily checkable convergence con-
ditions for the PAVMM method is a theoretically meaningful and practically useful
topic that deserves further study.

5 An algebraic derivation of PAVMM

Given a symmetric positive definite matrix W ∈ R
p×p, the equality-constraint pro-

gramming problem (1.1) is mathematically equivalent to the unconstraint optimization
problem

max
z

min
x,y

Lw(x, y, z), (5.1)

where Lw(x, y, z) is the weighted Lagrangian function defined by

Lw(x, y, z) = φ(x) + ψ(y) − 〈Ax + By − b, z〉W−1 , (5.2)
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with z ∈ R
p being the Lagrange multiplier and W ∈ R

p×p being the weighting
matrix. This implies that a point (x∗, y∗) ∈ R

n ×R
m is a solution of the problem (1.1)

if and only if there exists a z∗ ∈ R
p such that the point (x∗, y∗, z∗) ∈ R

n ×R
m ×R

p is
a solution of the problem (5.1)–(5.2). It follows that the first-order necessary condition
corresponding to (5.1)–(5.2), with the functions φ(x) and ψ(y) being the quadratic
ones given in (1.2), reads as

⎧⎨
⎩

Fx − ATW−1z = − f,
Gy − BTW−1z = −g,
−W−1Ax − W−1By = −W−1b.

(5.3)

This condition is also sufficient as the functions φ(x) and ψ(y) defined in (1.2) are
convex.

After pre-multiplying −1 on both sides of the third equation, we can equivalently
write the linear system (5.3) as

⎧⎨
⎩

Fx − ATW−1z = − f,
Gy − BTW−1z = −g,
W−1Ax + W−1By = W−1b,

(5.4)

or in matrix–vector form as
⎛
⎝ F 0 −ATW−1

0 G −BTW−1

W−1A W−1B 0

⎞
⎠

⎛
⎝ x

y
z

⎞
⎠ =

⎛
⎝ − f

−g
W−1b

⎞
⎠ . (5.5)

With an additional regularization parameter β > 0, first multiplying both sides of the
third equation in (5.4) from left by, respectively, βAT and βBT and, then, adding the
resulting two equations successively to the first and the second equations in (5.4), we
can obtain the augmented Lagrangian linear system corresponding to (5.4) as follows:

⎧⎨
⎩

(F + βATW−1A)x + βATW−1By − ATW−1z = βATW−1b − f,
βBTW−1Ax + (G + βBTW−1B)y − BTW−1z = βBTW−1b − g,
W−1Ax + W−1By = W−1b.

Again, inmatrix–vector form it can bewritten as the block three-by-three linear system

A(β) x = b(β),

where the coefficient matrix A(β), the right-hand side vector b(β) and the unknown
vector x are defined as in (3.1) and (3.2), respectively.

Now the PAVMM method (see (2.4)) for solving the equality-constraint quadratic
programming problem (1.1)–(1.2) is exactly themodified blockGauss–Seidel iteration
method used to solve the augmented Lagrangian linear systemA(β) x = b(β) defined
in (3.1)–(3.2) corresponding to the matrix splitting

A(β) = D(α, β) − L(α, β) − U(α, β),
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with

D(α, β) =
⎛
⎝ F + βATW−1A 0 0

0 G + βBTW−1B 0
0 0 1

α
Q

⎞
⎠

being a block diagonal matrix,

L(α, β) =
⎛
⎝ 0 0 0

−βBTW−1A 0 0
−W−1A −W−1B 0

⎞
⎠

being a strictly block lower-triangular matrix, and

U(α, β) =
⎛
⎝0 −βATW−1B ATW−1

0 0 BTW−1

0 0 1
α
Q

⎞
⎠

being a block upper-triangular matrix. Here α is a nonzero constant and Q ∈ R
p×p is

a nonsingular matrix.
Admittedly, theHermitian and skew-Hermitian splitting iterationmethod [4] should

be an effective solver for the block three-by-three linear system (5.5),which straightfor-
wardly results in another class of iteration methods for solving the equality-constraint
quadratic programming problem (1.1)–(1.2), too; see, e.g., [12,23,44] formore details.

6 Concluding remarks

The so-called alternating direction method of multipliers is a practically effective
solver for separable programming problems with proper constraints. When the cost
function is quadratic and the constraints are linear, by generalizing and modifying
this method we have constructed a class of PAVMM methods. Using matrix analysis
we have established its asymptotic convergence theorem and derived its asymptotic
convergence rate. This particularly results in rigorous convergence theory for the
alternating direction method of multipliers.

For the convex quadratic programming problems with equality constraints, the
basic principle for constructing the PAVMM iteration method is deeply revealed,
which specifically shows that the two typical approaches: augment-then-optimize and
optimize-then-augment, lead to exactly the same iteration method. As a result, the
PAVMM method can be algorithmically formulated and theoretically analyzed from
viewpoints of both numerical optimization and matrix computation.

Moreover, the algebraic methodology advocated in this paper is applicable to devel-
oping iteration methods of this kind and analyzing their convergence properties for
more general separable programming problems with more complicated constraints;
see, e.g., [26,27,43].
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