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We propose a splitting method for solving a separable convex minimization problem with linear con-
straints, where the objective function is expressed as the sum of m individual functions without coupled
variables. Treating the functions in the objective separately, the new method belongs to the category of
operator splitting methods. We show the global convergence and estimate a worst-case convergence rate
for the new method, and then illustrate its numerical efficiency by some applications.
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1. Introduction

We consider a separable convex minimization problem with linear constraints and its objective function
is expressed as the sum of m individual functions without coupled variables:

min

{
m∑

i=1

θi(xi)

∣∣∣∣∣
m∑

i=1

Aixi = b; xi ∈Xi, i = 1, 2, . . . , m

}
, (1.1)

where θi : �ni → � (i = 1, 2, . . . , m) are closed proper convex functions (not necessarily smooth);
Ai ∈ �l×ni (i = 1, 2, . . . , m); Xi ⊆ �ni (i = 1, 2, . . . , m) are nonempty closed convex sets; b ∈ �l and∑m

i=1 ni = n. Throughout, the solution set of (1.1) is assumed to be nonempty and Ai’s (i = 1, . . . , m)

are assumed to be full column-rank.
In the literature, operator splitting methods for the special case of (1.1) with m = 2 have been

well studied, and the most popular method perhaps is the alternating direction method of multipliers
(ADMM) proposed originally in Glowinski & Marrocco (1975) (see also Gabay & Mercier, 1976).
More specifically, for solving the special case of (1.1) with m = 2

min{θ1(x1) + θ2(x2) | A1x1 + A2x2 = b, x1 ∈X1, x2 ∈X2}, (1.2)

c© The authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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A SPLITTING METHOD FOR SEPARABLE CONVEX PROGRAMMING 395

the iterative scheme of ADMM is

⎧⎪⎪⎨
⎪⎪⎩

xk+1
1 = Argmin{θ1(x1) − (λk)T(A1x1) + 1

2‖A1x1 + A2xk
2 − b‖2

H | x ∈X1};
xk+1

2 = Argmin{θ2(x2) − (λk)T(A2x2) + 1
2‖A1xk+1

1 + A2x2 − b‖2
H | x2 ∈X2};

λk+1 = λk − H(A1xk+1
1 + A2xk+1

2 − b),

(1.3)

where λk is the Lagrange multiplier and H ∈ �l×l is a positive definite matrix playing the role of a
penalty parameter. In practice, we can simply take H to be a diagonal matrix. We refer the reader
to Boyd et al. (2010) and references therein for the history of ADMM and its impressive applications
exploited recently. The scheme (1.3) shows that the idea of ADMM is to split the augmented Lagrangian
function of (1.2) in the Gauss–Seidel fashion, and thus to minimize the variables x1 and x2 separately
in alternating order. This splitting strategy makes it possible to exploit θi’s properties individually, and
the resulting subproblems of ADMM are often simple enough to have closed-form solutions or can be
solved efficiently up to high precisions for many applications.

In addition to the special case with m = 2, we are interested in the general case of (1.1) with m � 3
(see Kiwiel et al., 1999; Tibshirani et al., 2005; Setzer et al., 2010; Tao & Yuan, 2011 for some applica-
tions), i.e., the objective of (1.1) consists of more than two individual functions, and we want to develop
a splitting method analogous to ADMM such that these functions can be treated separately. An imme-
diate idea for this purpose is to extend the scheme (1.3) directly, resulting in an ADMM-like scheme

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xk+1
i = Argmin{θi(xi) − (λk)Tpi(xi) + 1

2‖pi(xi)‖2
H | xi ∈Xi}, i = 1, 2, . . . , m;

λk+1 = λk − H

⎛
⎝ m∑

j=1

Ajx
k+1
j − b

⎞
⎠ ,

(1.4)

where

pi(xi) =
i−1∑
j=1

Ajx
k+1
j + Aixi +

m∑
j=i+1

Ajx
k
j − b, i = 1, . . . , m.

The convergence of this direct extension (1.4), however, is not clear yet, even though its numerical
efficiency has been verified empirically by some recent applications (see, e.g., Peng et al.; Tao
& Yuan, 2011). This lack of convergence has recently inspired some ADMM-based efforts in the
prediction-correction fashion, whose main idea is to generate a new iterate by correcting the output
of (1.4) with some correction steps; see, e.g., Han et al. and He et al. Our purpose in this paper is to
develop a splitting method for (1.1) with proved convergence while without any correction step; and
meanwhile, its decomposed subproblems are no more difficult to solve than those in (1.4).

The rest of the paper is organized as follows. In Section 2, we provide some preliminary results
which are useful for further discussion. In Section 3, we present the new method followed by some
remarks. Some theoretical properties useful for further analysis are proved in Section 4. We then analyse
the convergence of the new method in Section 5 and further discuss it under weaker assumptions in
Section 6. After that, we analyse the convergence rate for the new method in Section 7. In Section 8, we
report some numerical results to verify the efficiency of the new method. Finally, some conclusions are
made in Section 9.

 at N
anjing U

niversity on Septem
ber 21, 2015

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from
 

http://imajna.oxfordjournals.org/


396 B. HE ET AL.

2. Preliminaries

In this section, we summarize some basic definitions and related properties that will be used in later
analysis.

2.1 Variational characterization

Let W :=X1 × X2 × · · · × Xm × �l. By deriving its optimality condition, it is easy to see that (1.1) is
equivalent to finding w∗ = (x∗

1, x∗
2, . . . , x∗

m, λ∗) ∈W such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1(x1) − θ1(x∗
1) + (x1 − x∗

1)
T(−AT

1 λ∗) � 0,

θ2(x2) − θ2(x∗
2) + (x2 − x∗

2)
T(−AT

2 λ∗) � 0,
...

θm(xm) − θm(x∗
m) + (xm − x∗

m)T(−AT
mλ∗) � 0,

m∑
i=1

Aix
∗
i − b = 0,

∀w = (x1, x2, . . . , xm, λ) ∈W , (2.1)

or, in a more compact form

VI(W , F, θ) θ(x) − θ(x∗) + (w − w∗)TF(w∗) � 0 ∀w ∈W , (2.2a)

where

x =

⎛
⎜⎜⎜⎝

x1

x2
...

xm

⎞
⎟⎟⎟⎠ , θ(x) =

m∑
i=1

θi(xi), w =

⎛
⎜⎜⎜⎜⎜⎝

x1

x2
...

xm

λ

⎞
⎟⎟⎟⎟⎟⎠ and F(w) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−AT
1 λ

−AT
2 λ

...

−AT
mλ

m∑
i=1

Aixi − b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.2b)

Note that x collects all the primal variables in (1.1) and it is a subvector of w. Obviously, we have the
following lemma regarding F(w) defined above. We omit its proof since it is trivial.

Lemma 2.1 The mapping F(w) defined in (2.2b) satisfies

(w′ − w)T(F(w′) − F(w)) = 0 ∀w′, w ∈ �n+l. (2.3)

Under the nonempty assumption on the solution set of (1.1), the solution set of VI(W , F, θ), which
is denoted by W∗ from now on, is also nonempty and convex (see Facchinei & Pang, 2003, Theorem
2.3.5). Moreover, the following theorem provides a characterization on W∗, and it is inspired by
Facchinei & Pang (2003, Theorem 2.3.5). Since its proof is almost the same as that of He & Yuan
(2012, Theorem 2.1), we omit it.

Theorem 2.2 The solution set of VI(W , F, θ) is convex and it can be characterized as

W∗ =
⋂

w∈W
{w̃ ∈W : θ(x) − θ(x̃) + (w − w̃)TF(w) � 0}. (2.4)
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A SPLITTING METHOD FOR SEPARABLE CONVEX PROGRAMMING 397

The identities summarized in the following lemma are useful in our analysis. We omit their proofs
which are very elementary.

Lemma 2.3 Let U ∈ �n×n be symmetric and positive definite. Then we have

(a − b)TU(c − d) = 1
2 (‖a − d‖2

U − ‖a − c‖2
U ) + 1

2 (‖c − b‖2
U − ‖d − b‖2

U ) ∀a, b, c, d ∈ �n; (2.5)

and
‖a‖2

U − ‖b‖2
U = 2aTU(a − b) − ‖a − b‖2

U ∀a, b ∈ �n. (2.6)

2.2 Some notations

Then, we define some matrices which will simplify our notations significantly in later analysis. For
m � 3, let a block diagonal matrix be defined as

G = diag{μAT
2 HA2, μAT

3 HA3, . . . , μAT
mHAm, H−1} (2.7)

and two more matrices be defined as

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

μ 0 · · · 0 1

0 μ
. . .

...
...

...
. . .

. . . 0 1
0 · · · 0 μ 1
1 · · · 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

m×m

and N =

⎛
⎜⎜⎜⎝

I · · · 0 0
...

. . .
...

...
0 · · · I 0

−HA2 · · · −HAm I

⎞
⎟⎟⎟⎠

(
∑m

i=2 ni+l)×(
∑m

i=2 ni+l)

,

(2.8)

where μ > 0 is a positive constant and H ∈ �l×l is a positive definite matrix. Note that the matrix G
defined in (2.7) is positive definite under the assumptions that Ai’s (i = 2, . . . , m) are of full column-
rank and H is positive definite.

Moreover, we introduce some useful notations for the convenience of further analysis. Revisiting the
iterative schemes of ADMM (1.3), it is easy to observe that (xk+1

2 , λk+1) is a function of (xk
2, λk), and the

variable xk
1 is not a part of the iteration. Thus, x1 is called an intermediate variable in Boyd et al. (2010).

For our new method to be proposed, x1 is again such an intermediate variable. We thus introduce the
notations v = (x2, . . . , xm, λ) and V =X2 × · · · × Xm × �l to differentiate the variables which are truly
involved in the iteration from the intermediate variable. Accordingly, vk := (xk

2, . . . , xk
m, λk) and

V∗ = {(x∗
2, . . . , x∗

m, λ∗) | (x∗
1, x∗

2, . . . , x∗
m, λ∗) ∈W∗}.

Finally, we summarize some facts regarding the matrices defined in (2.7) and (2.8) in a lemma.

Lemma 2.4 Let the matrices G and N be defined in (2.7) and (2.8), respectively. We have

vTGNv = 1
2 vT(GN + NTG)v ∀v ∈ V; (2.9)

and the matrix defined as
GN + NTG − NTGN

is positive semidefinte if μ � m − 1.
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398 B. HE ET AL.

Proof. The assertion (2.9) is trivial. We thus omit the proof. For the second assertion, we note that

GN + NTG − NTGN = G − (I − NT)G(I − N)

= diag{μAT
2 HA2, μAT

3 HA3, . . . , μAT
mHAm, H−1}

−

⎛
⎜⎜⎜⎝

AT
2
...

AT
m

0

⎞
⎟⎟⎟⎠H(A2, . . . , Am, 0).

Thus, its positive semidefiniteness is an immediate conclusion if μ � m − 1. �

3. The new method

In this section, we present a new splitting method for solving (1.1) with m � 3 and give some remarks.
Let H ∈ �l×l be a positive definite matrix and μ > m − 1 be a constant. In particular, we can simply

take H = diag{β1, . . . , βl}, where βi’s are positive constants.

Algorithm: A new splitting method for solving (1.1)

Step 0. Choose an initial iterate v0:= (x0
2, . . . , x0

m, λ0) ∈X2 × · · ·Xm × �l arbitrarily and generate
the new iterate via the following scheme.
Step 1. Find xk+1

1 such that

xk+1
1 = Argmin

⎧⎨
⎩θ1(x1) − (λk)TA1x1 + 1

2

∥∥∥∥∥A1x1 +
m∑

i=2

Aix
k
i − b

∥∥∥∥∥
2

H

| x1 ∈X1

⎫⎬
⎭ . (3.1)

Step 2. Update the Lagrange multiplier with xk+1
1 :

λ̃k = λk − H

(
A1xk+1

1 +
m∑

i=2

Aix
k
i − b

)
. (3.2)

Step 3. Find xk+1
i (i = 2, . . . , m) (if possible, simultaneously) such that

xk+1
i = Argmin{θi(xi) − (λ̃k)TAixi + μ

2
‖Ai(xi − xk

i )‖2
H | xi ∈Xi}. (3.3)

Step 4. Update the Lagrange multiplier with xk+1
i (i = 1, 2, . . . , m):

λk+1 = λk − H

(
m∑

i=1

Aix
k+1
i − b

)
. (3.4)

Below we give some remarks relevant to the proposed method.

Remark 3.1 The proposed method is related to some pre-existing methods. For example, for the case
m = 1, the proposed method with H = β · Il, where Il denotes the identity matrix in �l×l is exactly the
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A SPLITTING METHOD FOR SEPARABLE CONVEX PROGRAMMING 399

classical augmented Lagrangian method (Hestenes, 1969; Powell, 1969). Moreover, for the case m = 2,
it is easy to verify that the proposed method approaches the ADMM (1.3) as μ → 1. To see why, first
note that (3.1) is the same as the x1-subproblem in (1.3). Then, for this special case, since (3.2) and (3.3)
are specified as

λ̃k = λk − H(A1xk+1
1 + A2xk

2 − b)

and
xk+1

2 = Argmin{θ2(x2) − (λ̃k)T(A2x2) + 1
2‖A2(x2 − xk

2)‖2
H | x2 ∈X2},

respectively, by combining these two facts we have

xk+1
2 = Argmin{θ2(x2) − (λk)T(A2x2) + 1

2‖A1xk+1
1 + A2x2 − b‖2

H | x2 ∈X2},

which is exactly the x2-subproblem in (1.3). In addition, the so-named variant alternating splitting aug-
mented Lagrangian method (VASALM) in Tao & Yuan (2011) is also a special case of the proposed
method with matrix variables when m = 3.

Remark 3.2 We require μ > m − 1 in the proposed method, and it is essentially for the purpose of
ensuring

‖vk − vk+1‖2
G + 2(λk − λk+1)T

(
m∑

i=2

Ai(x
k
i − xk+1

i )

)
� c0‖vk − vk+1‖2

G , (3.5)

where c0 is a certain positive constant and G is defined in (2.7); see Lemma 5.2 in Section 5.

4. Some properties

In this section, we prove some theoretical properties for the sequence generated by the proposed method,
which are useful for later analysis of establishing the convergence and estimating a convergence rate.

The following lemma follows directly from the first-order optimality conditions of the subproblems
in the proposed method.

Lemma 4.1 Let {wk} be generated by the proposed method. Then, we have xk+1
1 ∈X1 such that

θ1(x1) − θ1(x
k+1
1 ) + (x1 − xk+1

1 )T(−AT
1 λ̃k) � 0 ∀x1 ∈X1; (4.1)

and xk+1
i ∈Xi (i = 2, . . . , m) such that

θi(xi) − θi(x
k+1
i ) + (xi − xk+1

i )T{−AT
i λ̃k + μAT

i HAi(x
k+1
i − xk

i )} � 0 ∀xi ∈Xi. (4.2)

Proof. According to the optimality condition of the x1-subproblem (3.1), we have xk+1
1 ∈X1 such that

θ1(x1) − θ1(x
k+1
1 ) + (x1 − xk+1

1 )T

{
−AT

1

(
λk − H

(
A1xk+1

1 +
m∑

i=2

Aix
k
i − b

))}
� 0 ∀x1 ∈X1.

Substituting (3.2) into the last inequality, we obtain the assertion (4.1). The second assertion (4.2) fol-
lows from the optimality condition of the xi-subproblem (3.3) directly. �

Proof of the following lemma is trivial, and we omit it.
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400 B. HE ET AL.

Lemma 4.2 For the iterate generated by the proposed method, we have

λk+1 − λ̃k = H

(
m∑

i=2

Ai(x
k
i − xk+1

i )

)
(4.3)

and
m∑

i=1

Aix
k+1
i − b = H−1(λk − λk+1). (4.4)

For convenience of further analysis, we use the sequence {wk} generated by the proposed method to
construct an auxiliary sequence as

w̃k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x̃k
1

x̃k
2

...

x̃k
m

λ̃k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xk+1
1

xk+1
2

...

xk+1
m

λk − H

(
A1xk+1

1 +
m∑

i=2

Aix
k
i − b

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.5)

Consequently, the notation ṽk = (x̃k
2, . . . , x̃k

m, λ̃k) is clear. The notations w̃k and ṽk are only used in our
theoretical analysis. First, we can establish a useful identity by using the notation of ṽk .

Lemma 4.3 Let {wk} be generated by the proposed method and {w̃k} be given in (4.5). Then we have

‖ṽk − vk‖2
G − ‖ṽk − vk+1‖2

G = μ

m∑
i=2

‖Ai(x
k
i − x̃k

i )‖2
H + ‖λk − λ̃k‖2

H−1 −
∥∥∥∥∥

m∑
i=2

Ai(x
k
i − x̃k

i )

∥∥∥∥∥
2

H

, (4.6)

where G is defined in (2.7).

Proof. First, recall x̃k
i = xk+1

i (i = 2, . . . , m). We thus have

‖ṽk − vk+1‖G = ‖λ̃k − λk+1‖2
H−1

(4.3)=
∥∥∥∥∥H

m∑
i=2

Ai(x
k
i − x̃k

i )

∥∥∥∥∥
2

H−1

=
∥∥∥∥∥

m∑
i=2

Ai(x
k
i − x̃k

i )

∥∥∥∥∥
2

H

and

‖ṽk − vk‖2
G = μ

m∑
i=2

‖Ai(x
k
i − x̃k

i )‖2
H + ‖λk − λ̃k‖2

H−1 .

From the above two equations, the assertion (4.6) follows directly. �

Recall the characterization of W∗ in (2.4). The following lemma reflects the discrepancy of w̃k from
a solution point in W∗.
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A SPLITTING METHOD FOR SEPARABLE CONVEX PROGRAMMING 401

Lemma 4.4 Let {wk} be generated by the proposed method and {w̃k} be given in (4.5). We have

w̃k ∈W , θ(x) − θ(x̃k) + (w − w̃k)TF(w̃k) + (v − ṽk)TGN(ṽk − vk) � 0 ∀w ∈W , (4.7)

where G and N are defined in (2.7) and (2.8), respectively.

Proof. First, it follows from (3.2) and xk+1
1 = x̃k

1 that

(λ − λ̃k)T

{
(A1x̃k

1 + · · · + Amx̃k
m − b) −

m∑
i=2

Ai(x̃
k
i − xk

i ) + H−1(λ̃k − λk)

}
� 0 ∀λ ∈ �l.

Rewriting the inequalities (4.1–4.2) together and substituting xk+1
i with x̃k

i (i = 1, . . . , m), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1(x1) − θ(x̃1) + (x1 − x̃k
1)

T{−AT
1 λ̃k} � 0,

θ2(x2) − θ2(x̃2) + (x2 − x̃k
2)

T{−AT
2 λ̃k + μAT

2 HA2(x̃k
2 − xk

2)} � 0,

· · · · · ·
θ(xm) − θ(x̃m) + (xm − x̃k

m)T{−AT
mλ̃k + μAT

mHAm(x̃k
m − xk

m)} � 0,

(λ − λ̃k)T

{
(A1x̃k

1 + · · · + Amx̃k
m − b) −

m∑
i=2

Ai(x̃
k
i − xk

i ) + H−1(λ̃k − λk)

}
� 0,

∀w ∈W .

(4.8)

Adding all these inequalities together and using the definitions of F (2.2b), G (2.7) and N (2.8), the
assertion (4.7) follows immediately. �

Based on (2.4), Lemma 4.4 thus indicates that the proximity of w̃k to a solution point in W∗ is
measured by the term (v − ṽk)TGN(vk − ṽk). Hence, we are interested in estimating this term more
precisely. In particular, we express this cross term by the difference of some quadratic terms in the
following lemma. Preceding the proof, we notice the relationship

vk+1 = vk − N(vk − ṽk), (4.9)

which is obvious based on the definitions of N in (2.8) and w̃k in (4.5).

Lemma 4.5 Let {wk} be generated by the proposed method and {w̃k} be given in (4.5). Then we have

(v − ṽk)TGN(vk − ṽk) + 1
2 (‖v − vk‖2

G − ‖v − vk+1‖2
G)

= 1
2 (‖ṽk − vk‖2

G − ‖ṽk − vk+1‖2
G) ∀v ∈ V , (4.10)

where G is defined in (2.7).

Proof. By using the relationship in (4.9), it follows that

(v − ṽk)TGN(vk − ṽk) = (v − ṽk)TG(vk − vk+1).

Because of Lemma 2.3, we have the identity

(v − ṽk)TG(vk − vk+1) = 1
2 (‖v − vk+1‖2

G − ‖v − vk‖2
G) + 1

2 (‖ṽk − vk‖2
G − ‖ṽk − vk+1‖2

G).
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Adding the above two equations and rearranging them, we obtain the assertion (4.10) and the proof is
complete. �

Lemmas 4.4 and 4.5 enable us to derive some very useful conclusions for establishing both the
convergence and a convergence rate for the proposed method.

Theorem 4.6 Let {wk} be generated by the proposed method and {w̃k} be given in (4.5). Then, we have

θ(x) − θ(x̃k) + (w − w̃k)TF(w̃k) + 1
2 (‖v − vk‖2

G − ‖v − vk+1‖2
G) � 0 ∀w ∈W (4.11)

and

θ(x) − θ(x̃k) + (w − w̃k)TF(w) + 1
2 (‖v − vk‖2

G − ‖v − vk+1‖2
G) � 0 ∀w ∈W . (4.12)

Proof. First, it follows from (4.7) that

θ(x) − θ(x̃k) + (w − w̃k)TF(w̃k) � (v − ṽk)TGN(vk − ṽk) ∀w ∈W . (4.13)

On the other hand, by using the Cauchy–Schwarz inequality and μ > m − 1, we have

μ

m∑
i=2

‖Ai(x
k
i − x̃k

i )‖2
H � (m − 1) ·

m∑
i=2

‖Ai(x
k
i − x̃k

i )‖2
H �

∥∥∥∥∥
m∑

i=2

Ai(x
k
i − x̃k

i )

∥∥∥∥∥
2

H

.

Substituting into the right-hand side of (4.6), we obtain

‖ṽk − vk‖2
G − ‖ṽk − vk+1‖2

G � ‖λk − λ̃k‖2
H−1 ,

and consequently it follows from (4.10) that

(v − ṽk)TGN(vk − ṽk) + 1
2 (‖v − vk‖2

G − ‖v − vk+1‖2
G) � 0 ∀v ∈ V . (4.14)

Adding (4.13) and (4.14), the assertion (4.11) is proved. For the second assertion, because of (2.3) in
Lemma 2.1, we have

(w − w̃k)TF(w) = (w − w̃k)TF(w̃k) ∀w ∈W .

Adding (4.11) and the above inequality, the assertion (4.12) follows immediately and the theorem is
proved. �

5. Convergence

In this section, we establish the convergence for the proposed method. First of all, we have to prove that
the condition μ > m − 1 suffices to guarantee (3.5). For this purpose, we first prove a lemma.
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Lemma 5.1 For m � 2, let the m × m symmetric matrix M be defined in (2.8). Then, it has (m − 2)

multiple eigenvalues equivalent to μ, i.e.,

ν1 = ν2 = · · · = νm−2 = μ,

and the other two eigenvalues are given by

νm−1 = (μ + 1) +
√

(μ + 1)2 + 4((m − 1) − μ)

2

and

νm = (μ + 1) −
√

(μ + 1)2 + 4((m − 1) − μ)

2
.

Proof. Let e ∈ �m−1 be the vector whose all elements are 1. Thus, we can rewrite M (2.8) into

M =
(

μIm−1 e
eT 1

)
.

Without loss of generality, we assume that the eigenvectors of M have the forms

z =
(

y
0

)
or z =

(
y
1

)
,

where y ∈ �m−1. For the first case, we have {
μy = νy,

eTy = 0.
(5.1)

It is clear that the following vectors in �m−1:

y1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
...
0

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, y2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
...
0

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

· · · ym−2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
1

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

are linearly independent and they satisfy (5.1) with ν = μ. Thus,

zi =
(

yi

0

)
, i = 1, . . . , m − 2,

are eigenvectors of M and the related eigenvalues are

ν1 = ν2 = · · · = νm−2 = μ.
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For the second case, zT = (yT, 1), we have

{
μy + e = νy,

eTy + 1 = ν.
(5.2)

It follows from (5.2) that

(ν − μ)(ν − 1) − (m − 1) = 0,

and thus the assertion is proved. �

Lemma 5.2 The condition (3.5) is ensured if μ > m − 1.

Proof. First, we notice the following equations:

‖vk − vk+1‖2
G + 2(λk − λk+1)T

(
m∑

i=2

Ai(x
k
i − xk+1

i )

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H1/2A2(xk
2 − xk+1

2 )

H1/2A3(xk
3 − xk+1

3 )

...

H1/2Am(xk
m − xk+1

m )

H−1/2(λk − λk+1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

T⎛
⎜⎜⎜⎜⎜⎜⎝

μIl 0 · · · 0 Il

0 μIl
. . .

...
...

...
. . .

. . . 0 Il

0 · · · 0 μIl Il

Il · · · Il Il Il

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H1/2A2(xk
2 − xk+1

2 )

H1/2A3(xk
3 − xk+1

3 )

...

H1/2Am(xk
m − xk+1

m )

H−1/2(λk − λk+1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

‖vk − vk+1‖2
G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H1/2A2(xk
2 − xk+1

2 )

H1/2A3(xk
3 − xk+1

3 )

...

H1/2Am(xk
m − xk+1

m )

H−1/2(λk − λk+1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

T

· diag{μIl, . . . , μIl, Il} ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H1/2A2(xk
2 − xk+1

2 )

H1/2A3(xk
3 − xk+1

3 )

...

H1/2Am(xk
m − xk+1

m )

H−1/2(λk − λk+1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, the requirement (3.5) is satisfied when the ml × ml matrix

M̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

μIl 0 · · · 0 Il

0 μIl
. . .

...
...

...
. . .

. . . 0 Il

0 · · · 0 μIl Il

Il · · · Il Il Il

⎞
⎟⎟⎟⎟⎟⎟⎠

ml×ml

(5.3)

is positive definite.
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Note that the matrix M̃ has the same largest (respectively, smallest) eigenvalues as the m × m sym-
metric matrix M defined in (2.8). For m � 2, it is easy to verify that

νm = (μ + 1) −
√

(μ + 1)2 + 4((m − 1) − μ)

2
(5.4)

is the smallest eigenvalue of M . In addition, νm > 0 if and only if μ > (m − 1). Therefore, μ > m − 1 is
sufficient to guarantee the requirement (3.5) with the constant c0:= νm/ρ(G) > 0, where ρ(G) denotes
the spectrum radius of G. �

Now, we start to prove the convergence of the proposed method. The proof follows the standard
framework of contraction-type methods in Blum & Oettli (1975). With Lemmas 4.4 and 4.5, we can
show that the sequence {vk} generated by the proposed methods is contractive with respect to V∗ under
the G-norm.

Theorem 5.3 Let wk+1 be generated by the proposed method and c0 be the constant satisfying (3.5).
Then we have

‖vk+1 − v∗‖2
G � ‖vk − v∗‖2

G − c0‖vk − vk+1‖2
G ∀v∗ ∈ V∗, (5.5)

where G, vk = (xk
2, . . . , xk

m, λk) and V∗ are defined in Section 2.2.

Proof. Note (4.10) is true for any v ∈ V . Let w∗ ∈W∗. Setting v = v∗, we obtain

‖vk − v∗‖2
G − ‖vk+1 − v∗‖2

G = ‖ṽk − vk‖2
G − ‖ṽk − vk+1‖2

G + 2(ṽk − v∗)TGN(vk − ṽk). (5.6)

On the other hand, setting w = w∗ in (4.7), we obtain

(ṽk − v∗)TGN(vk − ṽk) � θ(x̃k) − θ(x∗) + (w̃k − w∗)TF(w̃k). (5.7)

Since w∗ ∈W∗, according to (2.2a), we have

θ(x̃k) − θ(x∗) + (w̃k − w∗)TF(w∗) � 0.

Recall (2.3) in Lemma 2.1. We thus conclude that the right-hand side of (5.7) is non-negative. Therefore,
(5.6) and (5.7) imply that

‖vk − v∗‖2
G − ‖vk+1 − v∗‖2

G � ‖ṽk − vk‖2
G − ‖ṽk − vk+1‖2

G . (5.8)

Note that x̃k
i = xk+1

i (i = 2, . . . , m) and by using (4.6), we obtain

‖ṽk − vk‖2
G − ‖ṽk − vk+1‖2

G

= μ

m∑
i=2

‖Ai(x
k
i − x̃k

i )‖2
H + ‖λk − λ̃k‖2

H−1 −
∥∥∥∥∥

m∑
i=2

Ai(x
k
i − x̃k

i )

∥∥∥∥∥
2

H
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=
(

μ

m∑
i=2

‖Ai(x
k
i − xk+1

i )‖2
H + ‖λk − λk+1‖2

H−1

)

+
⎛
⎝‖λk − λ̃k‖2

H−1 − ‖λk − λk+1‖2
H−1 −

∥∥∥∥∥
m∑

i=2

Ai(x
k
i − x̃k

i )

∥∥∥∥∥
2

H

⎞
⎠

= ‖vk − vk+1‖2
G +

⎛
⎝‖λk − λ̃k‖2

H−1 − ‖λk − λk+1‖2
H−1 −

∥∥∥∥∥
m∑

i=2

Ai(x
k
i − x̃k

i )

∥∥∥∥∥
2

H

⎞
⎠ . (5.9)

By using (4.3), we have

λk − λ̃k = (λk − λk+1) + H

(
m∑

i=2

Ai(x
k
i − xk+1

i )

)
.

Substituting in (5.9), we obtain

‖ṽk − vk‖2
G − ‖ṽk − vk+1‖2

G = ‖vk − vk+1‖2
G + 2(λk − λk+1)T

(
m∑

i=2

Ai(x
k
i − xk+1

i )

)
.

Consequently with (5.8), we obtain

‖vk − v∗‖2
G − ‖vk+1 − v∗‖2

G � ‖vk − vk+1‖2
G + 2(λk − λk+1)T

(
m∑

i=2

Ai(x
k
i − xk+1

i )

)
. (5.10)

Because μ > m − 1, the condition (3.5) holds (see Lemma 5.2). The assertion (5.5) follows immediately
from (5.10) and (3.5). �

Now, we are at the stage to prove the convergence of the proposed method.

Theorem 5.4 The sequence {wk} generated by the proposed method converges to a point in W∗.

Proof. The proof consists of the following three claims:

(1) The sequence {wk} is bounded, thus it has at least one cluster point.

(2) Any cluster point of {wk} is a solution point of VI(W , F, θ).

(3) The sequence {wk} has only one cluster point.

We first complete the first claim. The boundedness of {vk} is obvious based on (5.5) and the full column-
rank assumption on Ai’s (i = 2, 3, . . . , m). Thus, the rest is to prove the boundedness of {xk

1}. It follows
from (5.5) that

c0 ·
∞∑

k=0

‖vk − vk+1‖2
G � ‖v0 − v∗‖2

G ∀v∗ ∈ V∗,

which implies that
lim

k→∞
‖vk − vk+1‖G = 0.
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Recall the definition of G in (2.7). Since H is positive definite, we have that

lim
k→∞

‖Ai(x
k
i − xk+1

i )‖ = 0, i = 2, . . . , m; and lim
k→∞

‖λk − λk+1‖ = 0. (5.11)

That is, we have shown that the sequence {λk − λk+1} is also bounded. On the other hand, it follows
from (4.4) that

A1xk+1
1 = H−1(λk − λk+1) + b −

m∑
i=2

Aix
k+1
i .

Since A1 is assumed to be full column-rank, we have

xk+1
1 = (AT

1 A1)
−1AT

1

{
H−1(λk − λk+1) + b −

m∑
i=2

Aix
k+1
i

}
, (5.12)

from which we have

‖xk+1
1 ‖ � ‖(AT

1 A1)
−1‖ · ‖AT

1 ‖ ·
{

‖H−1‖ · ‖λk − λk+1‖ + ‖b‖ +
m∑

i=2

‖Ai‖ · ‖xk+1
i ‖

}
.

Recall the boundedness of {λk − λk+1} and {vk}. Hence, the boundedness of {xk
1} is ensured by the

boundedness of {λk − λk+1} and {vk}. We thus have that the sequence {wk} has at least one cluster point,
and the first claim is proved.

Let w∞ = (x∞
1 , v∞) be a cluster point of the sequence {wk} and {wkj} be the subsequence converging

to w∞. It follows from Theorem 4.6 (by using (4.11)) that

θ(x) − θ(x̃k) + (w − w̃k)TF(w̃k) + 1
2 (‖v − vk‖2

G − ‖v − vk+1‖2
G) � 0 ∀w ∈W , (5.13)

where F(·) is given in (2.2b). Recall (4.3). We conclude that λk+1 − λ̃k → 0. According to the definition
of x and w̃k in (2.2b), (4.5), we have

x̃k = xk+1 and w̃k − wk+1 → 0, xk − xk+1 → 0, wk − wk+1 → 0.

Then, it follows from (5.13) that

θ(x) − θ(xkj) + (w − wkj)TF(wkj) + 1
2 (‖v − vkj‖2

G − ‖v − vkj+1‖2
G) � 0 ∀w ∈W . (5.14)

Taking the limit over j in (5.14), considering the continuity of a convex function in its domain, and
combining limk→∞ ‖vk − vk+1‖ = 0, we conclude that

θ(x) − θ(x∞) + (w − w∞)TF(w∞) � 0 ∀w ∈W .

According to Theorem 2.2, w∞ is a solution point of VI(W , F, θ). Thus, the second claim is proved.
Finally, we prove the third claim. In fact, (5.5) implies that the sequence {vk} has the only cluster

point {v∞}. In other words, xi → x∞
i (i = 2, . . . , m). Recall that λk − λk+1 → 0 (see (5.6)). Thus, it

follows from (5.12) that xk
1 → x∞

1 := (AT
1 A1)

−1AT
1 [b −∑m

i=2 Aix∞
i ]. Overall, we have shown that the

sequence {wk} converges to w∞, which is a point in W∗. The proof is completed. �
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6. Further discussion of convergence

In Section 5, we establish the convergence for the proposed method under the assumption that
Ai(i = 1, . . . , m) are all full column-rank. As we have shown in Theorem 5.3, this assumption is to
ensure the boundedness of the sequence {wk}. If we remove this assumption, the boundedness of {wk}
cannot be ensured. But some weaker convergence analogous to that in Zhang et al. (2010a,b) can be
established for the proposed method, without the full column rank assumption on Ai’s. More specifically,
the conclusion (5.5) can be written as

m∑
i=2

μ‖Aix
k
i − Aix

∗
i ‖2

H + ‖λk − λ∗‖2
H−1 �

m∑
i=2

μ‖Aix
k
i − Aix

∗
i ‖2

H + ‖λk − λ∗‖2
H−1

− c0‖vk − vk+1‖2
G ∀v∗ ∈ V∗,

from which we can obtain the boundedness of {Aixk
i } (i = 2, . . . , m) and {λk}. Thus, the following weaker

convergence is immediately derived.

(1) There exists a subsequence {wkj} such that

lim
j→∞

Aix
kj

i = Aix
∗
i , i = 2, . . . , m and lim

j→∞
λkj = λ∗,

where (x∗
2, . . . , x∗

m, λ∗) is a certain point in V∗.

(2) Any limit point of {wk} is a point in W∗.

Taking a closer look at the iterative scheme of the proposed method, we can easily find that imple-
mentation of the proposed algorithm only requires the tuple {(A2xk

2, . . . , Amxk
m, λk)}. Hence, it is still

useful to investigate the convergence for {(A2xk
2, . . . , Amxk

m, λk)} as in Zhang et al. (2010b).

7. Convergence rate

In this section, we analyse the worst-case convergence rate for the proposed method. More specifically,
we show in both an ergodic and a nonergodic sense that after t iterations at most, the proposed method
can find an approximate solution of VI(W , F, θ) whose accuracy is O(1/t).

We first show a worst-case O(1/t) convergence rate in an ergodic sense. The proof follows the
analytic framework in He (2011) for a class of projection and contraction methods and in He & Yuan
(2012) for the ADMM (1.3).

Theorem 7.1 Let {wk} be the sequence generated by the proposed method and {w̃k} be given by (4.5).
For any integer number t > 0, let

w̃t := 1

t + 1

t∑
k=0

w̃k . (7.1)

Then, we have w̃t ∈W and

θ(x̃t) − θ(x) + (w̃t − w)TF(w) � 1

2(t + 1)
‖v − v0‖2

G ∀w ∈W , (7.2)

i.e., w̃t is an approximate solution point of VI(W , F, θ) with the accuracy of O(1/t).
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Proof. First, because x̃k = xk+1, it holds that w̃k ∈W for all k � 0. Thus, together with convexity of Xi

(i = 1, . . . , m), the definition in (7.1) implies that w̃t ∈W . Secondly, adding the inequality (4.12) over
k = 0, 1, . . . , t, we obtain

(t + 1)θ(x) −
t∑

k=0

θ(x̃k) +
(

(t + 1)w −
t∑

k=0

w̃k

)T

F(w) + 1

2
‖v − v0‖2

G � 0 ∀w ∈W .

Combining the notation of w̃t, it can be written as

1

t + 1

t∑
k=0

θ(x̃k) − θ(x) + (w̃t − w)TF(w) � 1

2(t + 1)
‖v − v0‖2

G ∀w ∈W . (7.3)

Since θ(x) is convex and

x̃t = 1

t + 1

t∑
k=0

x̃k ,

we have θ(x̃t) � (1/(t + 1))
∑t

k=0 θ(x̃k). Substituting it in inequality (7.3), the assertion of this theorem
follows directly. �

Therefore, for any given compact set D ⊂ Ω , let d̃ := sup{‖v − v0‖2
G | w ∈D}. Then, after t iterations

of the proposed method, the point w̃t defined in (7.1) satisfies

sup
w∈D

{θ(x̃t) − θ(x) + (w̃t − w)TF(w)} � d̃

2(t + 1)
,

which means that w̃t is an approximate solution of VI(W , F, θ) with the accuracy O(1/t). That is, a
worst-case O(1/t) convergence rate is established in an ergodic sense for the proposed method.

Now, we provide another approach to establish the same convergence rate, but in a nonergodic
sense. For this purpose, recall we have emphasized in Lemma 4.4 that the term (v − ṽk)TGN(vk − ṽk)

measures the accuracy of current iterate to a solution point in W∗. Since we have N(ṽk − vk) = vk+1 − vk

(see (4.9)), the assertion (4.7) in Lemma 4.4 can be rewritten as

w̃k ∈W , θ(x) − θ(x̃k) + (w − w̃k)TF(w̃k) + (v − ṽk)TG(vk+1 − vk) � 0 ∀w ∈W ,

which means that wk+1 is a solution point in W∗ if ‖vk − vk+1‖2
G = 0 (according to Theorem 2.2).

Thus, we can view ‖vk − vk+1‖2
G as a residual or an error bound to measure the accuracy of wk+1, with

the interest in estimating the convergence rate of the proposed method in terms of the reduction of
‖vk − vk+1‖2

G. More specifically, we show that after t iterations, the iterate generated by the proposed
method ensures that ‖vk − vk+1‖2

G � ε, where ε = O(1/t), i.e., a worst-case O(1/t) convergence rate is
established in a nonergodic sense.

To establish the nonergodic worst-case O(1/t) convergence rate for the proposed method, we first
show a lemma.

Lemma 7.2 The sequence {‖vk − vk+1‖G} generated by the proposed method is monotonically non-
increasing, i.e.,

‖vk+1 − vk+2‖2
G � ‖vk − vk+1‖2

G ∀k � 1. (7.4)
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Proof. Since (4.9), we just need to prove the following statement equivalent to (7.4):

‖N(vk − ṽk)‖2
G − ‖N(vk+1 − ṽk+1)‖2

G � 0. (7.5)

First, applying the assertion (4.7) to the (k + 1)th iteration, we have

θ(x) − θ(x̃k+1) + (w − w̃k+1)TF(w̃k+1) + (v − ṽk+1)TGN(ṽk+1 − vk+1) � 0 ∀w ∈W . (7.6)

Then, setting w = w̃k+1 in (4.7) and w = w̃k in (7.6), respectively, adding the resulting inequalities and
using (2.1) in Lemma 2.1, we derive the assertion

(ṽk − ṽk+1)TGN{(vk − ṽk) − (vk+1 − ṽk+1)} � 0. (7.7)

Recall the assertion (2.9) in Lemma 2.4. Thus, adding the term

{(vk − ṽk) − (vk+1 − ṽk+1)}TGN{(vk − ṽk) − (vk+1 − ṽk+1)}

to both sides of (7.7) and using the identity (2.9), we obtain

(vk − vk+1)TGN{(vk − ṽk) − (vk+1 − ṽk+1)}

� {(vk − ṽk) − (vk+1 − ṽk+1)}T (GN + NTG)

2
{(vk − ṽk) − (vk+1 − ṽk+1)}.

Substituting (4.9) into the last inequality, we obtain

(vk − ṽk)TNTGN{(vk − ṽk) − (vk+1 − ṽk+1)} � 1
2‖(vk − ṽk) − (vk+1 − ṽk+1)‖2

(GN+NTG). (7.8)

Moreover, setting a = N(vk − ṽk) and b = N(vk+1 − ṽk+1) in the identity (2.6) and using the inequality
(7.8), we obtain

‖N(vk − ṽk)‖2
G − ‖N(vk+1 − ṽk+1)‖2

G � ‖(vk − ṽk) − (vk+1 − ṽk+1)‖2
(GN+NTG)

− ‖N(vk − ṽk) − N(vk+1 − ṽk+1)‖2
G

= ‖(vk − ṽk) − (vk+1 − ṽk+1)‖2
(GN+NTG−NTGN). (7.9)

Since the matrix GN + NTG − NTGN is positive semidefinite (see Lemma 2.4), the right-hand side of
(7.9) is non-negative. The inequality (7.5) thus holds and the lemma is proved. �

Now, we are ready to establish a nonergodic worst-case O(1/t) convergence rate for the proposed
method, mainly based on conclusions proved in Theorem 5.3 and Lemma 7.2.

Theorem 7.3 Let {vt} be the sequence generated by the proposed method. Then, we have

‖vt − vt+1‖2
G � 1

(t + 1)c0
‖v0 − v∗‖2

G ∀v∗ ∈ V∗, (7.10)

where G is defined in (2.7) and c0 is the constant specified in Lemma 5.2.
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Proof. First, it follows from (5.5) that

c0

∞∑
p=0

‖vk − vk+1‖2
G � ‖v0 − v∗‖2

G ∀k ∈N , ∀v∗ ∈ V∗. (7.11)

Since Lemma 7.2 shows that the sequence {‖vk − vk+1‖2
G} is monotonically nonincreasing, we have

(t + 1)‖vt − vt+1‖2
G �

t∑
k=0

‖vk − vk+1‖2
G , (7.12)

which implies the assertion (5.5) immediately. �

Recall W∗ is convex and closed under our assumptions (see Facchinei & Pang, 2003, Theorem
2.3.5). Let

d := inf{‖v0 − v∗‖2
G | v∗ ∈ V∗}.

For any given ε > 0, Theorem 7.3 indicates that the proposed method requires at most d/c0ε� iterations
to ensure that ‖vk − vk+1‖2

G � ε. A nonergodic worst-case O(1/t) convergence rate is thus established
for the proposed method.

8. Numerical results

In this section, we illustrate the efficiency of the proposed algorithm by some numerical experiments.
Since we released a preprint of this paper on Optimization Online in June 2010, the algorithm proposed
in this paper has been used by other authors to solve some applications such as some non-negative
matrix factorization and dimensionality reduction problems in Esser et al. (2012), and gene regulatory
network identification problems in Liang et al. (2012).1 Here, we further illustrate the efficiency of
the proposed algorithm by applying it to solve the robust principal component analysis (RPCA) model
and the image inpainting problem. We coded the proposed algorithm by MATLAB 7.12 (R2011a). All
experiments were implemented on a ThinkPad notebook with an Intel Core i5-2140M CPU at 2.3 GHz
and 4 GB of memory.

8.1 The RPCA model

In Candés et al. (2011), the RPCA model was proposed

min
A,E

‖A‖∗ + τ‖E‖1

s.t. A + E = C,
(8.1)

where C ∈ �l×n is a given matrix (data); ‖ · ‖∗ is the nuclear norm which is defined as the sum of all
singular values, and it is to induce the low-rank feature in the component A; ‖ · ‖1 denotes the sum of
absolute values of all entries (an extension of the l1 norm for vectors), and it is to induce sparsity in the
component E; and τ > 0 is a constant balancing the low-rank and sparsity. To handle the case where

1 The old title of this paper is ‘A splitting method for separate convex programming with linking linear constraints’.
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only incomplete entries of C are observable and there is Gaussian noise in observation, the RPCA model
with incomplete and noisy observations was then proposed in Tao & Yuan (2011):

min
A,E

‖A‖∗ + τ‖E‖1

s.t. ‖PΩ(C − A − E)‖F � δ,
(8.2)

where Ω is a subset of the index set of entries {1, 2, . . . , l} × {1, 2, . . . , n} which denotes the observable
entries {Cij, (i, j) ∈ Ω}; the operator PΩ : Rl×n →Rl×n summarizes the incomplete observation infor-
mation, and it is the orthogonal projection onto the span of matrices vanishing outside of Ω so that the
ijth entry of PΩ(X ) is Xij if (i, j) ∈ Ω and zero otherwise; ‖ · ‖F is the standard Frobenius norm; and
δ > 0 is the magnitude of Gaussian noise corrupting the observed data. We refer the reader to Tao &
Yuan (2011) for more details of the model (8.2).

To see how the model (1.1) under our consideration captures (8.2), let B:={Z ∈ �l×n|
‖PΩ(Z)‖F � δ}. Then, (8.2) can be reformulated as

min
A,E,Z

‖A‖∗ + τ‖E‖1

s.t. A + E + Z = PΩ(C),

Z ∈ B,

(8.3)

which is a concrete application of (1.1) with m = 3, except that the vector variables and coefficients in
(1.1) are replaced by matrix variables and linear operators in matrix spaces, respectively. Although we
focus on the case of (1.1) with vector variables in our previous theoretical analysis, the proposed method
and theoretical analysis can be trivially extended to the case with matrix variables. More specifically,
(8.3) can be explained as a special case of (1.1) with the specification

(x1, x2, x3) = (A, E, Z) ∈ �l×n × �l×n × B;

θ1(A) = ‖A‖∗, θ2(E) = τ‖E‖1, θ3(Z) = 0;

all linear operators in the linear constraints are identity operators and b = PΩ(C).
In this section, we apply the proposed algorithm to solve (8.2) in two different scenarios: synthetic

simulation and the background extraction problem from surveillance video with missing and noisy
data. As we have mentioned, the motivation of proposing the new method is to retain the advantage of
the extended ADMM scheme (1.4), which can yield simple subproblems because of the possibility of
exploiting θi’s properties separately; and meantime, to avoid any correction step to ensure convergence.
To illustrate the efficiency of the proposed algorithm (HTY for short), we thus compare it with the
extended ADMM scheme (1.4) (ADMM for short), and the parallel splitting augmented Lagrangian
method in He (2009) (PSALM for short) which requires a correction step at each iteration. We refer the
reader to Tao & Yuan (2011) for elaboration on the resulting subproblems of HTY and ADMM. Note
that the resulting subproblems of these two methods are of equal difficulty. In addition, the resulting
subproblems at the prediction step of PSALM are similar to those of ADMM. We thus omit them.

8.1.1 Synthetic simulations. Let us first test the model (8.2) with synthetic dataset, where the solution
is known. As in Tao & Yuan (2011), the low-rank component A∗ is generated by A∗ = LRT, where L and
R are independent l × r and n × r matrices, respectively. Entries of L and R are independently and
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identically distributed (i.i.d.) Gaussian random variables with zero means and unit variance. Hence, the
rank of A∗ is r. The index of observed entries, i.e., Ω , is determined at random. The support Γ ⊂ Ω

of the impulsive noise E∗ (sparse but large) is chosen uniformly at random, and the nonzero entries of
E∗ are i.i.d. uniformly in the interval [−500, 500]. Then, the matrix C is given by C = A∗ + E∗. Let
sr, spr and rr represent the ratios of sample (observed) entries (i.e., |Ω|/mn), the number of nonzero
entries of E (i.e., ‖E‖0/mn) and the rank of A∗ (i.e., r/m), respectively. The parameter τ in (8.2) is fixed
as τ = 1/

√
l, and the parameter δ = 0.

For all the implemented methods and all the tested scenarios, we set H = βI, and the value of β is
determined simply by

β =

⎧⎪⎪⎨
⎪⎪⎩

0.08
|Ω|

‖PΩ(C)‖1
if spr= 0.05;

0.15
|Ω|

‖PΩ(C)‖1
if spr= 0.1,

(8.4)

and the initial iterate is (A0, E0, Z0) = (0, 0, 0). Since (8.2) is a special case of (1.1) with m = 3, μ > 2
is required to ensure the convergence of HTY. We thus set μ = 2.01 when implementing HTY. For the
parameter γ required by the correction step of PSALM, we set it as γ = 0.8.

As in Tao & Yuan (2011), we use the stopping criterion in terms of the relative errors of the recovered
low-rank and sparse components

RelChg := ‖(Ak+1, Ek+1) − (Ak , Ek)‖F

‖(Ak , Ek)‖F + 1
� Tol (8.5)

to terminate all tested methods, where Tol > 0 is a tolerance. We set Tol = 1e − 5 in our experiments.
Moreover, in our experiments, we executed the singular value decomposition (SVD) by implement-

ing the package of PROPACK in Larsen (1998) to compute those singular values that are larger than
a particular threshold and their corresponding singular vectors in A-subproblems (see details in Tao &
Yuan, 2011). We denote by (Â, Ê) the iterate when the stopping criterion (8.5) is achieved.

We tested the cases where sr= 0.8, l = n = 500, 1000, and some different choices of rr and spr
as given in Table 1. For the tested methods, HTY, ADMM and PSALM, we report the relative error
of the recovered sparse component (ErrsSP := ‖Ê − E∗‖F/‖E∗‖F), the relative error of the recovered
low-rank component (ErrsLR := ‖Â − A∗‖F/‖A∗‖F), the computing time in seconds (‘Time(s)’) and the
number of SVD required by A-subproblems (‘#SVD’). We observed that when the stopping criterion
(8.5) is satisfied, the tested methods achieve the same objective function value for each tested scenario.
The objective function values (‘obj’) are also reported in Table 1. According to the data in Table 1,
we see that to achieve the same level of recovery, ADMM is the fastest; but HTY (with proved con-
vergence) is numerically competitive to ADMM (without proved convergence). We believe the reason
why PSALM is slower than ADMM and HTY is because its correction step at each iteration ruin the
low-rank characteristic.

To see the comparison clearly, for the particular case where l = n = 500, spr= 0.05, rr= 0.05
and sr= 0.8, we visualize in Fig. 1 the respective evolutions of the recovered rank, the relative error
ErrsLR and ErrsSP with respect to iterations.

8.1.2 Background extraction from surveillance video with missing and noise data. We then investi-
gate an application of (8.2): extracting background from surveillance video with missing and noisy data.
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Fig. 1. Evolution of recovered rank (left), ErrsLR (middle) and ErrSP for HTY, ADMM and PSALM.

To understand this concrete application, we first provide some preliminary background of this appli-
cation and refer the reader to, e.g., Candés et al. (2011), for more details. More specifically, video
consists of a sequence of frames, and mathematically it is a natural candidate for low-rank modelling
due to high correlation between frames. Each frame consists of foreground and background. Since the
background of video needs to be flexible enough to accommodate changes in the scene, it is natural to
model it as approximately low rank. Foreground objects, such as cars or pedestrians, occupy a relatively
small fraction of the image pixels, and hence can be treated as sparse errors. One basic imaging task
in video surveillance is to separate the background from foreground. However, in real application, the
video may include missing and noise pixels. Thus, only a fraction of noised entries can be obtained.
A natural question is: can we extract the background, i.e., the low-rank part, from the foreground even
with missing and noise observations? To see how this problem can be reflected by the model (8.2),
C is the matrix representation of a sequence of video frames where each column represents a frame;
the index set Ω (assumed known) indicates the locations of observed pixels, i.e., pixels outside Ω are
missing; E represents the foreground while A denotes the background; and δ denotes the magnitude of
Gaussian noise of corrupted pixels.

In our experiments, we test two sequences of video downloadable at the website.2 One is a sequence
of 150 greyscale frames of size 128 × 160 taken in a lobby, and the other is a sequence of 200 greyscale
frames of size 144 × 176 taken in an airport. The data matrix C is formed by stacking each frame into a
column. Thus, C ∈ �20480×150 for the first video and C ∈ �25344×200 for the second one. The first video
has 20% missing pixels and the second has 30% missing pixels. The index of observed entries, i.e., Ω , is
determined randomly by the MATLAB built-in function randperm. The Gaussian noise is generated
with a zero mean and a standard deviation of σ = 10−3.

As in Tao & Yuan (2011), let

RelChg := ‖(Ak+1, Ek+1) − (Ak , Ek)‖F

‖(Ak , Ek)‖F + 1
(8.6)

measure the relative change of the recovered low-rank and sparse components. Our stopping criterion
to implement the mentioned methods is

RelChg � 10−3. (8.7)

2 http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html.
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Table 2 Recovery results for Background extraction

Lobby Video, 128 × 160 × 150, 20% missing data

It. Time (s) Rank #SVD ‖Â‖∗ (e + 5) ‖Ê‖1 (e + 6) obj (e + 5)

ADMM 44 58.1 8 44 3.86 20 5.26
HTY 47 59.1 6 47 3.85 20 5.26
PSALM 49 67.2 11 49 3.88 20 5.28

Airport Video, 144 × 176 × 200, 30% missing data

It. Time (s) Rank #SVD

ADMM 41 114.9 23 41 1.66 4.39 1.94
HTY 43 115.8 18 43 1.63 4.39 1.91
PSALM 49 143.2 33 49 1.70 4.39 1.98

All methods start their iterations with the initial iterate (A0, E0, Z0) = (0, 0, 0). Again, we denote by
(Â, Ê) the iterate when the stopping criterion (8.7) is achieved.

In (8.2), we take τ = 1/
√

l and δ =
√

l + √
8lσ . Recall l = 20480 for the first video and 25344

for the second. To implemented HTY with H = β · Il, throughout we choose β = 0.01(|Ω|/‖PΩ(C)‖1)

where |Ω| denotes the cardinality of Ω . For the parameter μ, recall it suffices to choose μ > 2. We take
μ = 2.01. The choice of H for ADMM and PSALM is the same as HTY. Moreover, for PSALM the
additional parameter γ in its correction step is set as 0.8.

In Table 2, we report the numerical performance of these three tested methods, including the number
of iterations (‘It.’), the computing time in seconds (‘Time (s)’), the rank of the recovered low-rank
component (‘Rank’), ‖Â‖∗, ‖Ê‖1 and the objective function (‘obj’) when the stopping criterion (8.7) is
achieved. Since the computation at each iteration of all the tested methods is dominated by a singular
value decomposition (SVD), we also report the numbers of SVD (‘#SVD’).

Data in Table 2 show that HTY performs very competitively with the extended ADMM scheme
(1.4), whose convergence is still unclear, and it outperforms PSALM, which is as effective as exploiting
properties of individual functions, while it requires an additional correction step to correct the output of
(1.4). This verifies empirically our theoretical motivation of the proposed algorithm.

Due to the space limitation, we reported the extracted background and foreground only for HTY,
the results of the other two compared methods are similar. More specifically, in Figs 2 and 3 we show
the 10th, 40th and 80th frames of the tested video and their extracted background and foreground by
implementing HTY.

8.2 Image inpainting problem

Then, we focus on image inpainting problems. Some background of image inpainting is provided and
more details can be found in the literature, see, e.g., Chan & Shen (2005). More specifically, image
inpainting refers to filling in missing or damaged regions in images, either in the pixel domain or in
a transformed domain. Because of its pivotal role in many image processing tasks, the topic of image
inpainting has been studied extensively in the literature. Let x̄ be an unknown image. Without loss
of generality, we assume that x̄ is an n-by-n square image. Following the conventional treatment, we
vectorize a two-dimensional image into a one-dimensional vector, e.g., in lexicographic order. There-
fore, throughout this paper we treat n-by-n images as vectors in �n2

, i.e., x̄ ∈ �n2
. The model of image
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Fig. 2. Lobby video. Left column: corrupted frames; Middle column: extracted background; Right column: extracted foreground.

inpainting we consider here is

f = S · (Kx̄ + ω), (8.8)

where K ∈ �n2×n2
is a blurring (or convolution) operator, S ∈ �n2×n2

is a mask operator, i.e., a diagonal
matrix whose zero entries denote missing pixels and identity entries indicate observed pixels, ω ∈ �n2

contains additive noise introduced in the observation process, ‘·’ denotes componentwise multiplication,
and f ∈ �n2

denotes the observed image.
It is well known that the system of equations (8.8) is ill-conditioned. Therefore, instead of recovering

x̄ from f by solving (8.8) directly, we need to utilize some prior information such as adding a regularizer
to ensure f = SKx̄, i.e., the data fidelity. As in Chan & Shen (2002) and Chan et al. (2006), when the total
variation (TV) regularization proposed in Rudin et al. (1992) is utilized, the model of image inpainting
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Fig. 3. Airport video. Left column: corrupted frames; Middle column: extracted background; Right column: extracted foreground.

with TV regularization turns out to be

min
x

‖|∇x|‖1 + τ

2
‖SKx − f ‖2. (8.9)

In (8.9), ∇ := (∂1, ∂2), where ∂1 : �n2 → �n2
and ∂2 : �n2 → �n2

denotes the discretized derivatives in
the horizontal and vertical directions, respectively; the constant τ > 0 measures the trade-off between
the fidelity to f and the amount of regularization; ‖x‖1 :=∑n2

i=1 |xi| for x ∈ �n2
; and for y := (y1, y2) ∈

�n2 × �n2
, |y| denotes a vector in �n2

whose entries are given by

|y|i =
√

(y1)
2
i + (y2)

2
i , i = 1, 2, . . . , n2.

Note that our analysis below is also applicable for the case of the anisotropic discretization (i.e., the
2-norm is used in the TV-regularizer).
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In the rest, we show that the model (8.9) can be easily reformulated as a special case of (1.1), and
thus the proposed method is applicable for the TV image inpainting problem. In fact, by introducing
two auxiliary variables y and z, (8.9) can be rewritten as

min ‖|y|‖1 + τ

2
‖Sz − f ‖2

s.t. y = ∇x,

Kx = z.

(8.10)

Then, (8.10) is a special case of (1.1) with the specification

x = (x1, x2, x3) = (y, x, z) ∈ �2n2 × �n2 × Rn2
;

θ1(y) = ‖|y|‖1, θ2(x) = 0, θ3(z) = τ

2
‖Sz − f ‖2

and

A = (A1, A2, A3) =
(

I −∇ 0
0 −K I

)
and b =

(
0
0

)
.

Now, we analyse the resulting subproblems when the proposed method is applied to solve the refor-
mulation (8.10), and show that they are all simple enough to have closed-form solutions. In addition to
the trivial tasks of updating the Lagrange multiplier (3.2) and (3.4), there are three main subproblems
at each iteration of the proposed method, and we discuss them one by one. Throughout, we choose
H = diag{β1 · I2n2 , β2 · In2} with β1 > 0 and β2 > 0 in the implementation of the proposed method.

• The y-related subproblem (3.1) amounts to solving

argmin y

{
‖|y|‖1 + β1

2

∥∥∥∥y − ∇xk − 1

β1
λk

1

∥∥∥∥
2
}

,

whose closed-form solution is given by

yk+1 = S1/β1

(
∇xk + 1

β1
λk

1

)
.

Here, the shrinkage operator S is defined by

Sβ(y) = y − min(β, |y|) · y

|y| , (8.11)

where 0 · (0/0) = 0 is assumed.

• The x-related subproblem in (3.3) amounts to solving

argmin x

{
(λ̃k

1)
T∇x + (λ̃k

2)
T(Kx) + β1μ

2
‖ − ∇(x − xk)‖2 + β2μ

2
‖ − K(x − xk)‖2

}
,

whose closed-form solution can be obtained via solving the system of linear equations

μ(β1∇T∇ + β2KTK)(xk+1 − xk) = −∇Tλ̃k
1 − KTλ̃k

2. (8.12)
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When the blurring K is spatially invariant and periodic boundary conditions are used for the discrete
differential operator, it is well known (see, e.g., Hansen et al., 2006) that the matrices KTK and
∇T∇ can be diagonalized by the discrete Fourier transform (DFT), and faster solvers for (8.12) are
available.

• The z-related subproblem in (3.3) is

argmin z

{
τ

2
‖Sz − f ‖2 + (−λ̃k

2)
Tz + β2μ

2
‖z − zk‖2

}
,

whose closed-form solution is given by

zk+1 =
(

I + τ

β2μ
STS

)−1(
τ

β2μ
STf + zk + 1

β2μ
λ̃k

2

)
.

Note that, for the mask operator S, STS is a diagonal matrix whose entries are either 0 or 1. Thus, it
is trivial to compute (I + (τ/β2μ)STS)−1.

In addition that (8.9) can be reformulated as (8.10) and thus the proposed method is implementable,
the model (8.9) is reducible to (1.2) and thus the original ADMM (1.3) becomes applicable. In fact, by
grouping (y, z) as one variable, we obtain

(x1, x2) = ((y, z), x) ∈ (�2n2 × �n2
) × Rn2

;

θ1(y, z) = ‖|y|‖1 + τ

2
‖Sz − f ‖2, θ2(x) = 0;

A = (A1, A2) =
((

I 0
0 I

)
,

(−∇
−K

))
and b =

(
0
0

)
.

Therefore, (8.9) is also a special case of (1.2). In the following, we elaborate on the detail of applying the
original ADMM (1.3) directly to (8.9). Taking H = diag{β1 · I2n2 , β2 · In2} in (1.3), it is easy to specify
the resulting subproblems as the follows.

• The (y, z)-related subproblem amounts to solving two independent problems. That is, the
y-subproblem is

argmin y

{
‖|y|‖1 + β1

2

∥∥∥∥y − ∇xk − 1

β1
λk

1

∥∥∥∥
2
}

,

whose solution is given by the closed form

yk+1 = S 1
β1

(
∇xk + 1

β1
λk

1

)
,

where S is given in (8.11); and the z-related subproblem is

argmin z

{
τ

2
‖Sz − f ‖2 + β2

2

∥∥∥∥z − Kxk − λk
2

β2

∥∥∥∥
2
}

,
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whose closed-form solution is given by

zk+1 =
(

I + τ

β2
STS

)−1(
τ

β2
STf + Kxk + 1

β2
λk

2

)
.

• The x-related subproblem amounts to solving

xk+1 ∈ argmin x

{
〈λk

1, ∇x〉 + 〈λk
2, Kx〉 + β1

2
‖∇x − yk+1‖2 + β2

2
‖Kx − zk+1‖2

}
,

whose closed-form solution can be obtained via solving the system of linear equations(
∇T∇ + β2

β1
KTK

)
xk+1 = ∇Tyk+1 + β2

β1
KTzk+1 − 1

β1
(∇Tλk

1 + KTλk
2).

Note that (λ1, λ2) is the Lagrange multiplier, and it is updated by

λk+1
1 = λk

1 + β1(∇xk+1 − yk+1)

and
λk+1

2 = λk
2 + β2(Kxk+1 − zk+1).

We are thus interested in the comparison between the implementation of the new method on the refor-
mulation (8.10) with m = 3, and the implementation of the original ADMM (1.3) directly on (8.9)
with m = 2.

Note that both HTY and ADMM are primal-dual based methods. Therefore, we can measure the
accuracy of the solution in terms of the primal-infeasibility and dual-infeasibility. That is,

max{β1‖∇(xk+1 − xk)‖, β2‖xk+1 − xk‖} < ε, (8.13)

and

max

{
1

β1
‖λk+1

1 − λk
1‖,

1

β2
‖λk+1

2 − λk
2‖
}

< ε. (8.14)

See, e.g., Boyd et al. (2010) and Yuan (2012), and the explanation before Lemma 7.2 for more details.
In our numerical experiments, we take ε = 10−2 in (8.13) and (8.14).

We also compare the new method numerically with TwIST (Bioucas-Dias & Figueiredo, 2007) and
FISTA (Beck & Teboulle, 2009), both of which handle the model (8.9) directly and are benchmarks in
the imaging literature. For them, we terminate the iterations with the stopping criterion

‖f k+1 − f k‖
max{‖f k‖, 1} < ε, (8.15)

where ε > 0 is a given tolerance, and f k represents the kth objective function value. We set ε = 1 × 10−4

for (8.15) in our experiments.
We test the images ‘peppers.png’ (256 × 256) and ‘lena.png’ (256 × 256). The blurring operator

K in (8.9) is generated with the gaussian kernel (hsize= 5 and sigma= 14). For ‘peppers’, the
operator S in (8.9) is the characters mask; and for ‘lena’, S is the mask where 60% (randomly generated
subject to the Gaussian distribution) of its pixels are missed. For both the images, ω is the additive
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Fig. 4. original ‘pepper’, corrupted ‘pepper’ with 28.70% relative error, original ‘lena’, and corrupted ‘lena’ with 77.77% relative
error.

zero-mean white noise with the standard deviation 10−3. The relative error of an image with missing
pixels is defined as

RelErr := ‖f − x̄‖2

‖x̄‖2
, (8.16)

where f is the observed image and x̄ is the true image. For the initial image of ‘peppers’, its relative
error is 28.70%; and for ‘lena’, it is 77.72%. In Figure 4, we display the original and corrupted images
of ‘pepper’ and ‘lena’.

To measure the quality of restored images, in the literature the signal-to-noise ratio (SNR) in
decibel (dB)

SNR(x) � 10 ∗ log10
‖x̄ − x̃‖2

‖x̄ − x‖2
(8.17)

is used, where x̄ is the original image and x̃ is the mean intensity value of x̄. In our experiments, the
SNR values of the corrupted images ‘peppers’ and ‘lena’ are 2.81 and −5.99 dB, respectively.

In our experiments, we set τ = 104 in the model (8.9). For the choice of the penalty matrix H , we
choose H = diag{β1 · I2n2 , β2 · In2} for HTY and ADMM. Throughout, we choose (β1 = 10, β2 = 100)

for HTY and (β1 = 10, β2 = 200) for ADMM. Note that we tune the values of βi for different methods,
and these individual choices seem good enough to result in their own best numerical performance,
according to our experiments. Other parameters of these methods are chosen as follows. For the
parameter μ of HTY, since m = 3 for this application, it suffices to choose μ > 2 and we again take
μ = 2.01. For TwIST and FISTA, we downloaded the Matlab codes from the authors’ homepages, and
thus values of all parameters are unchanged. Since a denoising subproblem is required to be solved at
each iteration for both TwIST and FISTA, we employ the algorithm in Chambolle (2004) and allow for a
maximal iterative number of 10 for this denoising subproblem. All the tested methods take the corrupted
images as the initial iterate. The detailed results are also listed in Table 3 in terms of iteration numbers
(‘It’), relative error (‘RelErr’ defined in (8.16)), recovered SNR (‘SNR’, computing time in seconds
(‘Time (s)’), and the objective function value (‘obj.’). Moreover, we report the primal-infeasibility (‘Pr-
infea’) (defined in (8.13)) and dual-infeasibility (‘Du-infea’) (defined in (8.14)) of HTY and ADMM in
Table 3.

In Fig. 5, we report the restored images by different methods. Relative errors of restored images
(‘RE’), SNR values (‘SNR’) and the computing time in seconds, when the stopping criterion (8.15) is
achieved, are also reported. Furthermore, in Figs 6 and 7, we plot the evolutions of SNR values with
respect to computing time for different methods.
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Table 3 Recovery results for image inpainting

It. RelErr (%) SNR Time (s) obj. Pr-infea (×10−3) Du-infea (×10−3)

‘pepper’ with 28.70% relative error
HTY 85 3.20 21.86 7.92 2852.99 3.038 5.358
ADMM 59 3.24 21.75 6.38 2853.61 1.999 4.929
TwIST 153 3.00 22.37 22.32 2894.97 — —
FISTA 196 3.03 22.32 33.96 2935.88 — —

‘Lena’ with 77.77% relative error
HTY 109 5.16 17.57 7.45 2294.23 1.918 2.697
ADMM 79 5.17 17.55 7.38 2294.41 2.208 2.851
TwIST 161 4.96 17.89 20.89 2337.87 — —
FISTA 372 4.94 17.94 43.93 2378.68 — —

Fig. 5. Restored images by ADMM, HTY, TwIST and FISTA, respectively. The first row: ‘peppers’; the second row: ‘lena’.

These numerical results show that FISTA achieves the best SNR values, while ADMM and HTY
are able to achieve comparable SNR values with significantly less time. Moreover, although HTY is
slightly slower in the restoration speed than ADMM, we see that HTY applied to the reformulation
(8.10) with m = 3 is as effective as the original ADMM (1.3) directly applied on (8.9) with m = 2, in
restoring images with almost the same quality. This fact indicates that even for a particular problem
in the form of (1.1) with m � 3, but reducible to the case with m = 2, the proposed method is still very
competitive with the ADMM (1.3). Therefore, together with the tested experiments for irreducible cases
of (1.1) with m � 3, efficiency of the proposed method is further illustrated.
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Fig. 6. Evolution of SNR and objective function value w.r.t. computing times for ‘peppers’.
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Fig. 7. Evolution of SNR and objective function value w.r.t. computing times for ‘lena’.

9. Conclusions

In this paper, we propose a splitting method for solving a separable convex minimization problem with
linear constraints, where the objective function is expressed as the sum of many individual functions
without coupled variables. The new method is suitable for exploiting properties of these individual
functions separably, resulting in subproblems which could easily enough have closed-form solutions
if each individual function is simple. Moreover, an improvement of the new method over some pre-
existing splitting methods is that no correction step is required. We verify these advantages numerically
by some particular applications in image processing.
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