
Comput Optim Appl (2012) 52:439–461
DOI 10.1007/s10589-011-9417-z

An inexact parallel splitting augmented Lagrangian
method for monotone variational inequalities with
separable structures

Min Tao · Xiaoming Yuan

Received: 23 July 2009 / Published online: 3 June 2011
© Springer Science+Business Media, LLC 2011

Abstract Splitting methods have been extensively studied in the context of convex
programming and variational inequalities with separable structures. Recently, a par-
allel splitting method based on the augmented Lagrangian method (abbreviated as
PSALM) was proposed in He (Comput. Optim. Appl. 42:195–212, 2009) for solving
variational inequalities with separable structures. In this paper, we propose the inexact
version of the PSALM approach, which solves the resulting subproblems of PSALM
approximately by an inexact proximal point method. For the inexact PSALM, the
resulting proximal subproblems have closed-form solutions when the proximal pa-
rameters and inexact terms are chosen appropriately. We show the efficiency of the
inexact PSALM numerically by some preliminary numerical experiments.

Keywords Variational inequalities · Splitting method · Parallel method · Proximal
point method · Augmented Lagrangian method · Prediction-correction method

1 Introduction

Let Ω ⊂ Rn be a nonempty closed convex set and F be a continuous mapping from
Rn into itself. The variational inequality (VI) problem, denoted by VI(Ω,F ), is to
find u ∈ Ω such that

(u′ − u)T F (u) ≥ 0, ∀ u′ ∈ Ω, (1.1)

M. Tao (�)
School of Science, Nanjing University of Posts and Telecommunications, #9 Culture Gardens Road,
Nanjing 210046, Jiangsu, China
e-mail: taom@njupt.edu.cn

X. Yuan
Department of Mathematics, Hong Kong Baptist University, Hong Kong, China
e-mail: xmyuan@hkbu.edu.hk

mailto:taom@njupt.edu.cn
mailto:xmyuan@hkbu.edu.hk


440 M. Tao, X. Yuan

where “T ” denotes the standard inner product. In this paper, we consider the
VI(Ω,F ) with the following separable structure:

u =
(

x

y

)
, F (u) =

(
f (x)

g(y)

)
, (1.2)

and

Ω := {(x, y) | Ax + By = b, x ∈ X , y ∈ Y }, (1.3)

where X ⊂ Rn1 and Y ⊂ Rn2 are nonempty closed and convex sets; A ∈ Rm×n1 and
B ∈ Rm×n2 are given matrices; f : X → Rn1 and g : Y → Rn2 are given mono-
tone mappings; b ∈ Rm is a given vector and n1 + n2 = n. For wide applications of
VI(Ω,F ) with the separable structure (1.2)–(1.3), see e.g. [2, 11, 19].

The favorable separable structure of (1.2)–(1.3) has inspired many splitting type
methods, with the main purpose of exploiting the properties of f and g individually
and separably. Such a splitting method is the alternating direction method (ADM)
which was proposed in [8] and studied intensively in the literature, see e.g. [4, 5, 7,
9–11, 13]. Recently, the so-called parallel splitting augmented Lagrangian method
(PSALM for abbreviation) was proposed in [16] for solving the VI (1.1)–(1.3). With
the given iterate wk = (xk, yk, λk), at each iteration PSALM requires to solve the
following sub-VIs:

x ∈ X , (x′ − x)T
{
f (x) − AT [λk − H(Ax + Byk − b)]} ≥ 0, ∀ x′ ∈ X , (1.4a)

y ∈ Y , (y′ − y)T
{
g(y) − BT [λk − H(Axk + By − b)]} ≥ 0, ∀ y′ ∈ Y , (1.4b)

where λk is the Lagrange multiplier associated with the linear constraint in (1.3) and
H ∈ Rm×m is a positive definite matrix which plays the role of the penalty param-
eter for the violation of the linear constraint in (1.3). After (1.4), PSALM generates
the new iterate wk+1 = (xk+1, yk+1, λk+1) via updating the Lagrange multiplier with
the output of (1.4) and then implementing an additional correction step. Therefore,
PSALM is in the nature of a prediction-correction type method. Retaining the capa-
bility of exploiting properties of f and g individually and separably, PSALM differs
significantly from other splitting methods like ADM in that the resulting subproblems
(1.4a) and (1.4b) can be computed in parallel. This parallel advantage is particularly
interesting when the dimensionality of data is tremendously large. We refer to, e.g.
[1, 17] and reference cited therein, for some recent development on parallel splitting
methods.

The convergence of PSALM was established in [16] under the assumption that the
sub-VIs in (1.4) should be solved exactly. However, unless f and g have very partic-
ular structures, the sub-VIs in (1.4) could be too difficult to be solved exactly. Thus,
iterative subroutines are required to obtain approximate solutions of these sub-VIs.
This difficulty excludes the direct application of PSALM for some cases where the
subproblems in (1.4) have no closed-form solutions, and it urges research on inexact
versions of the PSALM approach which solve (1.4) approximately subject to certain
inexact criterion. This is the main motivation of the paper. On the other hand, recall
that the subproblems in (1.4) actually dominate the computation of PSALM at each



An inexact parallel splitting augmented Lagrangian method 441

iteration. Thus, we are interested in finding a way to solve (1.4) approximately and
efficiently. In particular, we apply the classical proximal point algorithm (PPA) [18,
20] to regularize the resulting sub-VIs in (1.4), and then we solve the proximally
regularized sub-VIs approximately. We will show that the regularized sub-VIs have
closed-form solutions provided that the proximal parameters and inexact criteria are
chosen appropriately. Through this strategy, the difficulty of solving (1.4) exactly can
be alleviated substantially, and the resulting inexact PSALM can be easily imple-
mentable.

We concentrate our discussion on the case where the mapping f (x) and g(y) are
“black-box” mappings in the sense that only mapping values of f and g can be evalu-
ated, while derivative information of these mappings are unavailable. A good example
to illustrate this scenario is that for some concrete applications of the VI (1.1)–(1.3)
arising in economics and transportation [19], the mappings f (x) and g(y) are in the
equilibrium nature which essentially implies that the decision-makers can only know
mapping values of f and g via experimental observations, without knowing their
mathematical expressions.

The rest of this paper is organized as follows. In Sect. 2, we review some prelimi-
naries which are useful for further analysis. In Sect. 3, we first analyze the motivation
of the inexact PSALM and elucidate the strategy of solving the resulting subprob-
lems. Then, we present the algorithm of the inexact PSALM and give some remarks.
Last, we discuss briefly the relationship between the inexact PSALM and some ex-
isting methods. In Sect. 4, we establish the convergence of the inexact PSALM. In
Sect. 5, we delineate the implementation of the inexact PSALM and report some nu-
merical results when it is applied to solve some traffic equilibrium problems. Finally,
we make some conclusions in Sect. 6.

Throughout, we make the following assumptions:
A.1 The sets X and Y are simple in the sense that it is easy to compute the pro-

jection onto them under the Euclidean norm. Such simple sets include the positive
orthant, balls or boxes.

A.2 The mappings f (x) and g(y) are Lipschitz continuous on X and Y , respec-
tively; while the Lipschitz constants are not necessarily known.

A.3 The solution set of the VI (1.1)–(1.3) is nonempty.

2 Preliminaries

In this section, we summarize some basic properties and related definitions which
will be used in the following discussions.

The Euclidean norm of v ∈ Rn is defined by ‖v‖ = √
vT v. For the nonempty

closed convex subset Ω ⊂ Rn, we denote by PΩ(·) the projection onto Ω under the
Euclidean norm:

PΩ(v) = arg min{‖v − u‖|u ∈ Ω}.
Then, some important inequalities regarding the projection operator are summarized
in the following lemma, whose proof can be found in [2].



442 M. Tao, X. Yuan

Lemma 2.1 Let Ω ⊂ Rn be nonempty, closed and convex. Let PΩ(·) be the projec-
tion operator onto Ω under the Euclidean norm. Then, we have

(v − PΩ(v))T (PΩ(v) − u) ≥ 0, ∀ v ∈ Rn, ∀ u ∈ Ω; (2.1)

‖PΩ(v) − PΩ(w)‖ ≤ ‖v − w‖, ∀ v, w ∈ Rn; (2.2)

‖PΩ(v) − u‖2 ≤ ‖v − u‖2 − ‖v − PΩ(v)‖2, ∀ v ∈ Rn, ∀ u ∈ Ω. (2.3)

We recall the definitions of monotone and strongly monotone mappings.

Definition 2.1 A mapping F : Rn → Rn is said to be

(a) monotone on Ω if

(x − y)T (F (x) − F(y)) ≥ 0, ∀ x, y ∈ Ω;
(b) strongly monotone with the modulus μ > 0 on Ω if

(x − y)T (F (x) − F(y)) ≥ μ‖x − y‖2, ∀ x, y ∈ Ω.

The following lemma states an important result which characterizes a VI by a
projection equation, and its proof can be found in [2, pp. 267].

Lemma 2.2 Let Ω ⊂ Rn be nonempty, closed and convex. Let PΩ(·) be the projec-
tion operator onto Ω under the Euclidean norm. Then, u∗ is a solution of VI(Ω,F )

if and only if it satisfies:

u∗ = PΩ [u∗ − βF(u∗)], ∀ β > 0. (2.4)

As shown in [16], we can reformulate the VI (1.1)–(1.3) into a compact VI. More
specifically, by attaching the Lagrange multiplier λ ∈ Rm to the linear constraints
Ax + By = b, the VI (1.1)–(1.3) amounts to finding (x, y,λ) ∈ X × Y × Rm such
that ⎧⎨

⎩
(x′ − x)T {f (x) − AT λ} ≥ 0,

(y′ − y)T {g(y) − BT λ} ≥ 0,

Ax + By − b = 0,

∀ (x′, y′) ∈ X × Y . (2.5)

Equivalently, (2.5) is the following VI denoted by VI(Q, W ):

(w′ − w)T Q(u) ≥ 0, ∀ w′ ∈ W , (2.6)

where

W := X × Y × Rm and Q(w) :=
⎛
⎝ f (x) − AT λ

g(y) − BT λ

Ax + By − b

⎞
⎠ . (2.7)

Note that the mapping Q is monotone whenever f and g are monotone. In addition,
under the assumption A.3, the solution set of VI(Q, W ), denoted by W ∗, is also



An inexact parallel splitting augmented Lagrangian method 443

nonempty. In fact, according to [6], W ∗ is closed and convex since the mappings
f (x) and g(y) are monotone, and the sets X and Y are closed and convex.

Based on the fact that VI (1.1)–(1.3) is equivalent to VI(Q, W ), the following
lemma is an immediate conclusion of Lemma 2.2.

Lemma 2.3 Solving the VI (1.1)–(1.3) amounts to seeking a zero point of the map-
ping

E[W , Q](w) :=
⎛
⎝x − PX {x − [f (x) − AT λ]}

y − PY {y − [g(y) − BT λ]}
Ax + By − b

⎞
⎠ = w − PW [w − Q(w)]. (2.8)

3 Inexact parallel splitting augmented Lagrangian methods for VI (1.1)–(1.3)

In this section, we propose the inexact PSALM for VI(1.1)–(1.3), and analyze its
relationship with some existing methods. First of all, we explain the motivation of
the inexact PSALM.

3.1 Motivation

With the aforementioned preliminaries in Sect. 2, let us revisit the resulting subprob-
lems in (1.4). Then, our idea of developing implementable inexact PSALM will be
clear. In particular, by applying Lemma 2.2, we know that the solutions of the sub-
problems (1.4a) and (1.4b) are characterized respectively by

x = PX
[
x − β[f (x) − AT [λk − H(Ax + Byk − b)]]] (3.1)

and

y = PY
[
y − β[g(y) − BT [λk − H(Axk + By − b)]]], (3.2)

with any β > 0. The equation (3.1) (Resp. (3.2)), however, is implicit in the sense that
the variable x (Resp. y) appears on both sides of (3.1) (Resp. (3.2)). Thus, in general
x and y cannot be solved directly via (3.1) and (3.2). The easiest way to remove this
difficulty is probably to replace x (Resp. y) in the right-hand-side of (3.1) (Resp.
(3.2)) by xk (Resp. yk), yielding the following iterative scheme:

xk+1 = PX
[
xk − β[f (xk) − AT [λk − H(Axk + Byk − b)]]], (3.3)

and

yk+1 = PY
[
yk − β[g(yk) − BT [λk − H(Axk + Byk − b)]]]. (3.4)

Despite the obvious simplicity, this idea raises immediately the question: How can
we ensure the convergence of the sequence generated by (3.3) and (3.4) to a solution
of VI (1.1)–(1.3)?

To answer this question, we first show that the formula (3.3) (Resp. (3.4)) is es-
sentially the application of an inexact proximal point algorithm to (3.1) (Resp. (3.2))



444 M. Tao, X. Yuan

with appropriate choices of the proximal parameter and inexact criterion. We only
illustrate this fact for (3.3). When the PPA is applied to solve the subproblem (1.4a),
we have the following proximally regularized subproblem:

x ∈ X , (x′ − x)T
{
f (x) − AT [λk − H(Ax + Byk − b)] + Rk(x − xk)

} ≥ 0,

∀ x′ ∈ X , (3.5)

where Rk ∈ Rn1×n1 is positive definite. For simplification, we may assume that Rk ≡
1
β

· I where β > 0 and I is the identity matrix in Rn1×n1 . Then, with this choice of
R, the proximally regularized subproblem (3.5) can be rewritten into:

x ∈ X , (x′ − x)T
{
β(f (x) − AT [λk − H(Ax + Byk − b)]) + (x − xk)

} ≥ 0,

∀ x′ ∈ X . (3.6)

Note that the proximally regularized subproblem (3.6) is still hard to solve, and the
practical way of implementing PPA is to consider the inexact version:

x ∈ X , (x′ − x)T
{
β(f (x) − AT [λk − H(Ax + Byk − b)]) + (x − xk) + ξk

x

} ≥ 0,

∀ x′ ∈ X , (3.7)

where ξk
x ∈ Rn1 is an inexact term. We refer to, e.g. [13, 20], for the analysis and

choices on the inexact term ξk
x . In particular, to alleviate the difficulty of solving the

subproblem (3.6), we propose to choose

ξk
x = β(f (xk) − f (x) + AT HA(xk − x)).

Then, with this particular ξk
x , the subproblem (3.7) reduces to

x ∈ X , (x′ − x)T
{
β(f (xk) − AT [λk − H(Axk + Byk − b)]) + (x − xk)

} ≥ 0,

∀ x′ ∈ X . (3.8)

By Lemma 2.2, we can easily show that the closed-form solution of (3.8) is given by
(3.3).

Similarly, if we apply the inexact PPA to solve (1.4b) and choose the inexact term
as

ξk
y = β(g(yk) − g(y) + BT HB(yk − y)),

then we can obtain an approximate solution of (1.4b) easily via the explicit formula
(3.4).

Thus, we have illustrated that we can obtain approximate solutions of the sub-VIs
in (1.4) easily by implementing inexact proximal point algorithms with appropriate
proximal parameters and inexact criteria. In the following, we shall investigate the
conditions on ξk

x and ξk
y in order to ensure the convergence of the inexact PSALM

when the approximate solutions (3.3) and (3.4) are adopted.



An inexact parallel splitting augmented Lagrangian method 445

3.2 Algorithm

Now, we present the inexact PSALM for VI (1.1)–(1.3). As we have mentioned,
like PSALM in [16], the inexact PSALM is also in the prediction-correction fash-
ion, where the prediction step generates a predictor (denoted by w̃k = (x̃k, ỹk, λ̃k)

with the given iterate wk = (xk, yk, λk), and the correction step corrects the predictor
to generate the new iterate wk+1 = (xk+1, yk+1, λk+1).

To simplify our following analysis, we denote

Rk = rkIn1, Sk = skIn2, and Gk =
⎛
⎝Rk + AT HA

Sk + BT HB

H−1

⎞
⎠ ,

(3.9)
where rk > 0 and sk > 0.

Algorithm Inexact parallel splitting augmented Lagrangian methods for VI (1.1)–
(1.3)
Step 0. Let Q(w) be defined in (2.7) and Gk be defined in (3.9). Let ε > 0, ν ∈ (0,1),
γ ∈ (0,2) and H ∈ Rm×m be positive definite. Let w0 = (x0, y0, λ0) ∈ Rn1 × Rn2 ×
Rm, r0 > 0, s0 > 0, and k = 0.
Step 1. Prediction Step Produce w̃k = (x̃k, ỹk, λ̃k) via the following steps:

Step 1.1 Set

x̃k := PX

[
xk − 1

rk

(
f (xk) − AT [λk − H(Axk + Byk − b)])

]
, (3.10)

where rk > 0 is chosen such that

‖ξk
x ‖ ≤ νrk‖xk − x̃k‖ with ξk

x := f (xk) − f (x̃k) + AT HA(xk − x̃k). (3.11)

Step 1.2 Set

ỹk := PY

[
yk − 1

sk

(
g(yk) − BT [λk − H(Axk + Byk − b)])

]
, (3.12)

where sk > 0 is chosen such that

‖ξk
y ‖ ≤ νsk‖yk − ỹk‖ with ξk

y := g(yk) − g(ỹk) + BT HB(yk − ỹk). (3.13)

Step 1.3 Update λ̃k via

λ̃k = λk − H(Ax̃k + Bỹk − b). (3.14)

Step 2. Correction Step Generate the new iterate wk+1 = (xk+1, yk+1, λk+1) by:



446 M. Tao, X. Yuan

Form I

wk+1
I = wk − αkd1(w

k, w̃k, ξk) (3.15)

where

d1(w
k, w̃k, ξk) = Gk(w

k − w̃k) − ξk with ξk =
⎛
⎝ξk

x

ξk
y

0

⎞
⎠ , (3.16)

or

Form II

wk+1
II = PW [wk − αkd2(w

k, w̃k)], (3.17)

where

d2(w
k, w̃k) = Q(w̃k) +

⎛
⎝AT H [A(xk − x̃k) + B(yk − ỹk)]

BT H [A(xk − x̃k) + B(yk − ỹk)]
0

⎞
⎠ . (3.18)

Here, the step size αk in (3.15) and (3.17) is determined by

αk = γ α∗
k , α∗

k = ϕ(wk, w̃k, ξk)

‖d1(wk, w̃k, ξk)‖2
, (3.19)

with

ϕ(wk, w̃k, ξk) := (wk − w̃k)T d1(w
k, w̃k, ξk) + (λk − λ̃k)T [A(xk − x̃k)

+ B(yk − ỹk)]. (3.20)

Remark 3.1 We first illustrate that the conditions (3.11) and (3.13) on the inexact
terms are well-defined. In fact, recall that both f (x) and g(y) are assumed to be
Lipschitz continuous (see A.2). We denote by Lf and Lg the Lipschitz constants of
f (x) and g(y), respectively. Obviously, when rk satisfies

rk ≥ Lf + ‖AT HA‖
ν

, (3.21)

it follows that

‖ξk
x ‖ (3.11)≤ (Lf + ‖AT HA‖)‖xk − x̃k‖ (3.21)≤ νrk‖xk − x̃k‖,

which guarantees the condition (3.11). Analogously, when sk satisfies

sk ≥ Lg + ‖BT HB‖
ν

, (3.22)

we have that

‖ξk
y ‖ (3.13)≤ (Lg + ‖BT HB‖)‖yk − ỹk‖ (3.22)≤ νsk‖yk − ỹk‖,



An inexact parallel splitting augmented Lagrangian method 447

which guarantees the condition (3.13). Thus, in the implementation of the proposed
algorithm, we can increase the values of rk and sk whenever the conditions (3.11) and
(3.13) are not satisfied. Note that the Lipschitz continuity of f (x) and g(y) ensures
that we can find qualified rk and sk in finitely many trails even though the exact values
of Lf and Lg are unknown. Therefore, the sequences {rk} and {sk} are both upper
bounded. In fact, as we will illustrate in Sect. 5, we can ensure that these sequence
are also lower bounded.

Remark 3.2 Because the sequences {rk} and {sk} are both lower and upper bounded,
the sequence {Gk} defined in (3.9) is also both lower and upper bounded. Thus, we
can define

inf
k

{δk| δk is the smallest eigenvalue of the matrix Gk} = δ > 0. (3.23)

and

sup
k

{ζk| ζk is the largest eigenvalue of the matrix Gk} = ζ < +∞. (3.24)

Remark 3.3 We note that x̃k obtained by (3.10) and ỹk obtained by (3.12) are actually
solutions of the following VIs:

(x′ − x̃k)T {f (xk) − AT [λk − H(Axk + Byk − b)] + Rk(x̃
k − xk)} ≥ 0,

∀ x′ ∈ X , (3.25)

(y′ − ỹk)T {g(yk) − AT [λk − H(Axk + Byk − b)] + Sk(ỹ
k − yk)} ≥ 0,

∀ y′ ∈ Y . (3.26)

With (3.25), (3.26) and (3.14)–(3.18), we have

(w′ − w̃k)T
{
d2(w

k, w̃k) − d1(w
k, w̃k, ξk)

} ≥ 0, ∀ w′ ∈ W . (3.27)

3.3 Relationship to some existing methods

In this subsection, we recall two relevant splitting methods which are applicable
for VI (1.1)–(1.3). Then, we delineate their difference from the proposed inexact
PSALM. In Sect. 5, we will report their numerical comparison with the proposed
inexact PSALM.

We first recall the proximal-based decomposition method (PBDM for abbrevia-
tion) proposed in [3]. When this method is applied to solve VI (1.1)–(1.3), the new
iterate (xk+1, yk+1, λk+1) is generated by solving the following problems:

(x′ − xk+1)T
{
f (xk+1) − AT [λ − H(Axk + Byk − b) + rk(x

k+1 − xk)]} ≥ 0,

∀ x′ ∈ X , (3.28a)

(y′ − yk+1)T
{
g(yk+1) − BT [λ − H(Axk + Byk − b) + sk(y

k+1 − yk)]} ≥ 0,

∀ y′ ∈ Y , (3.28b)

λk+1 = λk − H(Axk+1 + Byk+1 − b),



448 M. Tao, X. Yuan

where rk > 0 and sk > 0. Essentially, PBDM also applies the PPA to solve the sub-
VIs in (1.4). In fact, in [3], the penalty matrix H ≡ βI with β > 0 and the proximal
parameters rk ≡ sk = 1/β . In addition, the value of β is required to satisfy

β ≤ 1

2 max{‖A‖,‖B‖} .

Obviously, PBDM is also in the parallel nature since the involved subproblems
(3.28a) and (3.28b) can be solved in parallel.

To see the difference of PBDM from the proposed inexact PSALM, we empha-
size that the proximally regularized subproblems (3.28a) and (3.28b) are still hard to
solve, and they do not have closed-form solutions. Actually, by applying Lemma 2.2
again, we know that the solutions of (3.28a) and (3.28b) are given by:

xk+1 = PX
[
xk − β[f (xk+1) − AT [λk − H(Axk + Byk − b)]]] (3.29)

and

yk+1 = PY
[
yk − β[g(yk+1) − BT [λk − H(Axk + Byk − b)]]], (3.30)

which are both implicit in the sense that their solutions cannot be solved directly.
For the proposed inexact PSALM, the resulting sub-VIs are much easier as they have
closed-form solutions as given by (3.10) and (3.12). Because of this advantage, we
anticipate that the proposed inexact PSALM outperforms PBDM numerically even
though it requires additional correction steps, and we will verify this anticipation by
some numerical results in Sect. 5.

Another splitting method relevant to the proposed inexact PSALM is the alter-
nating projection based prediction-correction method (APBPCM for abbreviation)
proposed in [14]. Like PSALM and the proposed inexact PSALM, APBPCM is also
in the prediction-correction fashion and it applies inexact PPA to solve the subprob-
lems. But, APBPCM solves the resulting sub-VIs in the alternating order, which is
different from the parallel type methods such as PBDM, PSALM, and the proposed
inexact PSALM. More specifically, APBPCM solves the following subproblems to
generate the predictor (x̃k, ỹk, λ̃k):

(x′ − x̃k)T
{
f (xk) − AT [λ − H(Axk + Byk − b) + rk(x̃

k − xk)]} ≥ 0,

∀ x′ ∈ X , (3.31a)

(y′ − ỹk)T
{
g(yk) − BT [λ − H(Ax̃k + Byk − b) + sk(ỹ

k − yk)]} ≥ 0,

∀ y′ ∈ Y , (3.31b)

λ̃k = λk − H(Ax̃k + Bỹk − b).

Then, APBPCM corrects the predictor (x̃k, ỹk, λ̃k) by some correction steps to gener-
ate the new iterate (xk+1, yk+1, λk+1). Note that the subproblem (3.31b) requires the
solution x̃k of (3.31a). Thus, these two sub-VIs (3.31a) and (3.31b) must be solved
sequentially, rather than in parallel.



An inexact parallel splitting augmented Lagrangian method 449

4 Convergence

In this section, we establish the convergence of the proposed inexact PSALM. Recall
that the approximate solutions (3.3) and (3.4) are derived in the framework of inexact
PPA. We first prove a lemma which is very useful in the following analysis.

Lemma 4.1 Let w̃k = (x̃k, ỹk, λ̃k) be generated by (3.10)–(3.14) from the given
wk = (xk, yk, λk), and ϕ(wk, w̃k, ξk) be defined in (3.20). Then, we have

ϕ(wk, w̃k, ξk) ≥ min

{
2 − √

2

2
,1 − ν

}
δ‖wk − w̃k‖2, (4.1)

where δ is defined in (3.23).

Proof First, according to the definitions (see (3.9) and (3.20)), we have that

ϕ(wk, w̃k, ξk) = ‖A(xk − x̃k)‖2
H + ‖B(yk − ỹk)‖2

H + ‖λk − λ̃k‖2
H−1 + ‖xk − x̃k‖2

Rk

+ ‖yk − ỹk‖2
Sk

+ (Axk − Ax̃k)T (λk − λ̃k)

+ (Byk − Bỹk)T (λk − λ̃k) − (wk − w̃k)T ξk. (4.2)

By using the Cauchy-Schwarz inequality, we get

(Axk − Ax̃k)T (λk − λ̃k) ≥ −
√

2

2
‖A(xk − x̃k)‖2

H −
√

2

4
‖λk − λ̃k‖2

H−1, (4.3)

and

(Byk − Bỹk)T (λk − λ̃k) ≥ −
√

2

2
‖B(yk − ỹk)‖2

H −
√

2

4
‖λk − λ̃k‖2

H−1 . (4.4)

Using (3.11), (3.13) and the Cauchy-Schwarz inequality, we have that

(wk − w̃k)T ξk ≥ −ν

(
xk − x̃k

yk − ỹk

)T (
Rk 0
0 Sk

)(
xk − x̃k

yk − ỹk

)
.

Substituting the above three inequalities into (4.2), we obtain

ϕ(wk, w̃k) ≥ min

{
2 − √

2

2
,1 − ν

}
‖wk − w̃k‖2

Gk

≥ min

{
2 − √

2

2
,1 − ν

}
λmin(Gk)‖wk − w̃k‖2 (4.5)

≥ min

{
2 − √

2

2
,1 − ν

}
δ‖wk − w̃k‖2, (4.6)

which completes the proof. �



450 M. Tao, X. Yuan

Before we prove the convergence of the proposed inexact PSALM, we first illus-
trate why we choose the step size αk as (3.19). Let w∗ = (x∗, y∗, λ∗) ∈ W ∗ be an
arbitrary solution point of VI(Q, W ). In order to find an appropriate step size α for
the correction step, we denote by wk+1

I (α) and wk+1
II (α) the correction forms I and II

with a undetermined step size, i.e.,

wk+1
I (α) := wk − αd1(w

k, w̃k, ξk), (4.7)

and

wk+1
II (α) := PW [wk − αd2(w

k, w̃k)], (4.8)

where α > 0 is the step size to be determined. Moreover, we measure the improve-
ment obtained by the (k + 1)-th iteration by:

Θk(α) := ‖wk − w∗‖2 − ‖wk+1(α) − w∗‖2, (4.9)

which is dependent on the value of the undetermined step size α. Our natural desire
is to find such an optimal value of α that maximizes the function Θk(α) at each
iteration. Unfortunately, due to the lack of w∗, this goal is not practical. Therefore,
we do the next-best thing: find a lower bound of Θk(α) which does not involve w∗,
and then choose a value of α to maximize this lower bound. This objective is realized
in the following theorem.

Theorem 4.1 Let wk+1(α) be the correction step (4.7) or (4.8) with a undetermined
step size, and Θk(α) be defined in (4.9). Then we have

Θk(α) ≥ Ψk(α), (4.10)

with

Ψk(α) := 2αϕ(wk, w̃k, ξk) − α2‖d1(w
k, w̃k, ξk)‖2, (4.11)

where ϕ(wk, w̃k, ξk) and d1(w
k, w̃k, ξk) are defined in (3.20) and (3.16), respec-

tively.

Proof We divide the proof into two parts for (4.7) and (4.8), respectively.
(I). We first prove the assertion for the correction form (4.7). For this purpose, we

need to prove the following inequality:

(wk − w∗)T d1(w
k, w̃k, ξk) ≥ ϕ(wk, w̃k, ξk). (4.12)

In fact, by using Lemma 2.2, we can reformulate (3.27) into:

w̃k = PW
[
w̃k − [d2(w

k, w̃k) − d1(w
k, w̃k, ξk)]]. (4.13)

Setting v = w̃k − (d2(w
k, w̃k) − d1(w

k, w̃k, ξk)) and u = w∗ in (2.1), we get that

(w∗ − w̃k)T
{[w̃k − (d2(w

k, w̃k) − d1(w
k, w̃k, ξk))] − w̃k

} ≤ 0,



An inexact parallel splitting augmented Lagrangian method 451

that is,

(w∗ − w̃k)T (d2(w
k, w̃k) − d1(w

k, w̃k, ξk)) ≥ 0.

Then, it follows that

(w̃k − w∗)T d1(w
k, w̃k, ξk) ≥ (w̃k − w∗)T d2(w

k, w̃k). (4.14)

On the other hand, using the definition and monotonicity of Q(w) (see (2.7)), we
have

(w̃k − w∗)T d2(w
k, w̃k)

= (w̃k − w∗)T
⎧⎨
⎩Q(w̃k) +

⎛
⎝AT H [A(xk − x̃k) + B(yk − ỹk)]

BT H [A(xk − x̃k) + B(yk − ỹk)]
0

⎞
⎠

⎫⎬
⎭

≥ (w̃k − w∗)

⎛
⎝AT H [A(xk − x̃k) + B(yk − ỹk)]

BT H [A(xk − x̃k) + B(yk − ỹk)]
0

⎞
⎠

= (λk − λ̃k)T [A(xk − x̃k) + B(yk − ỹk)], (4.15)

where the inequality follows from the monotonicity of Q(w); and the last equality is
because Ax∗ + By∗ − b = 0 and

Ax̃k + Bỹk − b = H−1(λk − λ̃k),

which is derived from (3.14). Note that w∗ ∈ W ∗, we thus have that

(w̃k − w∗)T Q(w̃k) ≥ (w̃k − w∗)T Q(w∗) ≥ 0.

Using the definition of ϕ(wk, w̃k, ξk) (see (3.20)), we have that

(w̃k − w∗)T d2(w
k, w̃k) ≥ ϕ(wk, w̃k) − (wk − w̃k)T d1(w

k, w̃k).

Then, the inequality (4.12) follows immediately from the above inequality and (4.14).
By a straightforward manipulation, we have that

Θk(α)
def= ‖wk − w∗‖2 − ‖wk+1(α) − w∗‖2

(4.7)= ‖wk − w∗‖2 − ‖wk − αd1(w
k, w̃k, ξk) − w∗‖2

= 2α(wk − w∗)T d1(w
k, w̃k, ξk) − α2‖d1(w

k, w̃k, ξk)‖2

≥ 2αϕ(wk, w̃k, ξk) − α2‖d1(w
k, w̃k, ξk)‖2

(4.11)= Ψk(α), (4.16)

which implies that the assertion (4.10) holds for the correction form (4.7).



452 M. Tao, X. Yuan

(II). Now, we prove the assertion (4.10) for the second correction form (4.8). At
the first stage, it follows from (4.15) that

(wk − w∗)T d2(w
k, w̃k)

≥ (wk − w̃k)T d2(w
k, w̃k) + (λk − λ̃k)T [A(xk − x̃k) + B(yk − ỹk)]. (4.17)

Then, since w∗ ∈ W and wk+1(α) = PW [wk − αd2(w
k, w̃k)], it follows from (2.3)

that

‖wk+1(α)−w∗‖2 ≤ ‖wk −αd2(w
k, w̃k)−w∗‖2 −‖wk −αd2(w

k, w̃k)−wk+1(α)‖2.

Consequently, we get

Θk(α) = ‖wk − w∗‖2 − ‖wk+1(α) − w∗‖2

(2.3)≥ ‖wk − w∗‖2 + ‖wk − wk+1(α) − αd2(w
k, w̃k)‖2 − ‖wk − w∗

− αd2(w
k, w̃k)‖2

= ‖wk − wk+1(α)‖2 + 2α{wk+1(α) − wk}T d2(w
k, w̃k)

+ 2α(wk − w∗)T d2(w
k, w̃k). (4.18)

Applying (4.17) to the last term of the right-hand-side of (4.18), we obtain

Θk(α) ≥ ‖wk − wk+1(α)‖2 + 2α{wk+1(α) − w̃k}T d2(w
k, w̃k)

+ 2α(λk − λ̃k)T [A(xk − x̃k) + B(yk − ỹk)]. (4.19)

Since wk+1(α) ∈ W and (4.13), it follows from (2.1) that

0 ≥ 2α(wk+1(α) − w̃k)T {[w̃k − (d2(w
k, w̃k) − d1(w

k, w̃k))] − w̃k},
∀α > 0. (4.20)

Adding (4.19) and (4.20) together, we get

Θk(α) ≥ ‖wk − wk+1(α)‖2 + 2α{wk+1(α) − w̃k}T d1(w
k, w̃k, ξk)

+ 2α(λk − λ̃k)T [A(xk − x̃k) + B(yk − ỹk)].
By regrouping the right-hand-side of the above inequality, we obtain

Θk(α) ≥ ‖(wk − wk+1(α)) − αd1(w
k, w̃k, ξk)‖2 − α2‖d1(w

k, w̃k, ξk)‖2

+2α{(λk − λ̃k)T [A(xk − x̃k) + B(yk − ỹk)]
+ (wk − w̃k)T d1(w

k, w̃k, ξk)}
(3.20)≥ 2αϕ(wk, w̃k, ξk) − α2‖d1(w

k, w̃k, ξk)‖2,

which indicates the validity of the assertion (4.10) for the second correction step (4.8).
The proof is completed. �



An inexact parallel splitting augmented Lagrangian method 453

Now, the reason for choosing the step size αk as (3.19) is clear. In fact, based on
the result in Theorem 4.1, we know that

‖wk+1(α) − w∗‖2 ≤ ‖wk − w∗‖2 − Ψk(α), (4.21)

which motivates us to seek such a value of α that maximizes the lower bound Ψk(α)

at each iteration. Since Ψk(α) is a quadratic function of α (see (4.11)), it reaches its
maximum at

α∗
k = ϕ(wk, w̃k, ξk)

‖d1(wk, w̃k, ξk)‖2
. (4.22)

Note that we also attach a relaxation factor γ to the second-best step size (4.22)
because we only maximize the lower bound Ψk(α), rather than Θk(α).

By setting the step size in the correction step (3.15) or (3.17) as αk = γ α∗
k , we can

easily derive that

Ψk(αk) = Ψk(γ α∗
k )

(4.11)= 2γ α∗
kϕ(wk, w̃k, ξk) − (γ 2α∗

k )(α∗
k‖d1(w

k, w̃k, ξk)‖2)

(3.19)= γ (2 − γ )α∗
kϕ(wk, w̃k, ξk). (4.23)

Since ϕ(wk, w̃k, ξk) > 0 whenever a solution is not found (see Lemma 4.1), it fol-
lows from (4.21) that the relaxation factor must satisfy γ ∈ (0,2) for the purpose of
generating a new iterate which is closer to the solution set, i.e., Ψk(αk) > 0.

Based on the above analysis, we instantly have the following corollary of Theo-
rem 4.1.

Corollary 4.1 Let the sequence {wk} be generated by the proposed inexact PSALM
and w∗ ∈ W ∗. Then, we have

‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 − γ (2 − γ )α∗
kϕ(wk, w̃k, ξk). (4.24)

The next lemma indicates that α∗
k defined in (4.22) is uniformly bounded below

from a positive number for all iterations generated by the proposed PSALM.

Lemma 4.2 For the proposed inexact PSALM, there exists a constant c1 > 0 such
that α∗

k ≥ c1 for any k > 0.

Proof First, it follows from (3.11) and (3.13) that

‖ξk‖2 = ‖ξk
x ‖2 + ‖ξk

y ‖2

(3.11, 3.13)≤ ν2(r2
k ‖xk − x̃k‖2 + s2

k‖yk − ỹk‖2)

≤ ν2‖Gk‖2‖wk − w̃k‖2

≤ ν2ζ 2‖wk − w̃k‖2, (4.25)



454 M. Tao, X. Yuan

where the last inequality comes from (3.24). Therefore, we derive that

‖d1(w
k, w̃k, ξk)‖ = ‖Gk(w

k − w̃k) − ξk‖
≤ ‖Gk‖‖wk − w̃k‖ + ‖ξk‖

(4.25)≤ (‖Gk‖ + νζ )‖wk − w̃k‖
≤ (1 + ν)ζ‖wk − w̃k‖, (4.26)

where the last inequality is again because of (3.24).
Thus, according to (4.1) and (4.26), we have that

α∗
k = ϕ(wk, w̃k, ξk)

‖d1(wk, w̃k, ξk)‖2
≥ c1 := min

{
2 − √

2

2
,1 − ν

}
δ

(1 + ν)2ζ 2
> 0,

which is the assertion. �

Now, based on Lemma 4.1, Corollary 4.1 and Lemma 4.2, we have the follow-
ing corollary from which we can establish the convergence of the proposed inexact
PSALM easily.

Corollary 4.2 Let {wk} be the sequence generated by the proposed inexact PSALM
and w∗ ∈ W ∗. Then, we have

‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 − γ (2 − γ )min

{
2 − √

2

2
,1 − ν

}
δc1‖wk − w̃k‖2.

(4.27)

We need the following result to prove the convergence of the proposed inexact
PSALM.

Lemma 4.3 Let {wk} and {w̃k} be generated by the proposed inexact PSALM. Let
E[W , Q](w) be defined in (2.8). Then, there exists a constant c2 > 0 such that

‖E[W , Q](w̃k)‖ ≤ c2‖wk − w̃k‖, ∀k > 0. (4.28)

Proof Using Lemma 2.2, (3.16), (3.18) and (4.13), we get

w̃k = PW
{
w̃k − {Q(w̃k) + (A,B,0)T H [A(xk − x̃k) + B(yk − ỹk)]

− Gk(w
k − w̃k) + ξk}}.

Thus, we have

‖E[W , Q](w̃k)‖ = ∥∥PW
{
w̃k − {Q(w̃k) + (A,B,0)T H [A(xk − x̃k)

+ B(yk − ỹk)] − Gk(w
k − w̃k) + ξk}} − PW {w̃k − Q(w̃k)}∥∥

≤ ‖Gk(w
k − w̃k) − ξk − (A,B,0)T H [A(xk − x̃k)



An inexact parallel splitting augmented Lagrangian method 455

+ B(yk − ỹk)]‖
≤ ‖Gk‖‖wk − w̃k‖ + ‖(A,B,0)T H [A(xk − x̃k)

+ B(yk − ỹk)]‖ + ‖ξk‖
(4.25)≤ ζ(1 + ν)‖wk − w̃k‖ + ‖(A,B,0)T H [A(xk − x̃k)

+ B(yk − ỹk)]‖,
where the first inequality comes from (2.2). Hence, the assertion is proved. �

Now, we are ready to establish the convergence of the proposed inexact PSALM.

Theorem 4.2 The sequence {wk} generated by the proposed inexact PSALM con-
verges to some w∞ ∈ W ∗.

Proof First, it follows from Corollary 4.2 that

‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2, (4.29)

which implies that the sequence {wk} is bounded. Moreover, since ν ∈ (0,1) and
γ ∈ (0,2), it follows from (4.27) that

γ (2 − γ )min

{
2 − √

2

2
,1 − ν

}
δc1

∞∑
k=0

‖wk − w̃k‖2 ≤ ‖w0 − w∗‖2,

which implies that limk→∞ ‖wk − w̃k‖2 = 0. We thus conclude that the se-
quence {w̃k} is also bounded. In addition, according to Lemma 4.3, we have that
limk→∞ ‖E[W , Q](w̃k)‖ = 0.

Let w∞ be a cluster point of {w̃k} and {w̃kj } be the subsequence converg-
ing to w∞. Since E[W , Q](w̃k) is a continuous function of w, it follows that
E[W , Q](w∞) = limj→∞ E[W , Q](w̃kj ) = 0. Then, from Lemma 2.3, we know that
w∞ ∈ W ∗, i.e., w∞ is a solution of VI(W ,Q).

Now, we have to show that the sequence {wk} actually converges to w∞. Since
limk→∞ ‖w̃k − wk‖ = 0 and {w̃kj } → w∞, for any given ε > 0, there exists l > 0,
such that

‖wkl − w̃kl‖ <
ε

2
, and ‖w̃kl − w∞‖ <

ε

2
. (4.30)

Therefore, for any k ≥ kl , it follows from (4.29) and (4.30) that ‖wk − w∞‖ ≤ ε.
Thus, the sequence {wk} converges to w∞ ∈ W ∗. The proof is completed. �

5 Numerical experiments

In this section, we apply the proposed inexact PSALM to solve some applications of
the VI (1.1)–(1.3) arising in traffic equilibrium problems, and thus show its efficiency
by preliminary numerical results. In particular, we will compare the inexact PSALM



456 M. Tao, X. Yuan

numerically with PBDM in [3], APBPCM in [14] and PSALM in [16]. All codes
were written by MATLAB v7.8.0 (R2009a) and all numerical experiments were done
on a T6500 laptop with CPU 2.6 GHz and 1.75 GB memory.

5.1 Implementation details

As we have mentioned, a critical technique to implement the proposed inexact
PSALM is to choose appropriate rk and sk to satisfy the conditions (3.11) and (3.13).
Let

νx
k := ‖ξk

x ‖/(rk‖xk − x̃k‖),
and

ν
y
k := ‖ξk

y ‖/(sk‖yk − ỹk‖).
Then, empirically we update the values of rk and sk subject to the following rules:

rk+1 :=
{

rk ∗ κ, if νx
k > ν,

rk, otherwise,

and

sk+1 :=
{

sk ∗ κ, if ν
y
k > ν,

sk otherwise,

where κ > 1 is a scaling constant. Therefore, we can easily ensure that the sequences
{rk} and {sk} are lower bounded in the implementation of the proposed inexact
PSALM. On the other hand, recall that the Lipschitz continuity of f (x) and g(y)

ensures that the conditions (3.11) and (3.13) can be satisfied by increasing the values
of rk and sk in finitely many times. Thus, the sequences {rk} and {sk} are also upper
bounded.

In the following, we delineate the implementation details of the proposed inexact
PSALM with the second correction form (3.17), and we omit the delineation for the
first correction form (3.15) for the sake of succinctness.

Implementation details of the proposed inexact PSALM

Step 0. Let ε > 0, ν ∈ (0.5,1), γ ∈ (0,2), κ > 1, rmin > 0, smin > 0 and H ∈
Rm×m be positive definite. Let w0 = (x0, y0, λ0) ∈ Rn1 × Rn2 × Rm, r0 > rmin,
s0 > smin and k = 0.

Step 1. Prediction Step Produce w̃k = (x̃k, ỹk, λ̃k) via the following steps:
Step 1.1. Calculate x̃k :

1) Set pk
x := f (xk) − AT [λk − H(Axk + Byk − b)].

2) x̃k := PX [xk − pk
x/rk];

ξk
x := f (xk) − f (x̃k) + AT HA(xk − x̃k);

νx
k := ‖ξk

x ‖/(rk‖xk − x̃k‖).
3) If νx

k > ν, then increase rk by rk := rk ∗ νx
k ∗ κ and go to 2).

Step 1.2. Calculate ỹk :
1) Set pk

y := g(yk) − BT [λk − H(Axk + Byk − b)].



An inexact parallel splitting augmented Lagrangian method 457

2) ỹk := PY [yk − pk
y/sk];

ξk
y := g(yk) − g(ỹk) + BT HB(yk − ỹk);

ν
y
k := ‖ξk

y ‖/(sk‖yk − ỹk‖).
3) If ν

y
k > ν, then increase sk by sk := sk ∗ ν

y
k ∗ κ and go to 2).

Step 1.3. Calculate λ̃k : set pk
λ := H(Ax̃k + Bỹk − b);

λ̃k := λk − pk
λ.

Step 2. Calculate the direction of the correction step (3.18):
Set qk

x := f (x̃k) − AT λ̃k + AT H [A(xk − x̃k) + B(yk − ỹk)];
qk
y := g(ỹk) − BT λ̃k + BT H [A(xk − x̃k) + B(yk − ỹk)].

Step 3. Calculate the step-size in the correction step: αk = γ α∗
k , (the formula of

α∗
k see (3.19)).

Step 4. Correction Step Generate the new iterate wk+1 = (xk+1, yk+1, λk+1) by
the following step:

xk+1 = PX {xk − αkq
k
x };

yk+1 = PY {yk − αkq
k
y };

λk+1 = λk − αkp
k
λ;

Step 5. Adjust the values of rk and sk :

rk+1 :=
{

max{rmin, rk ∗ νx
k ∗ κ}, if νx

k ≤ 0.5,

rk, otherwise.

sk+1 :=
{

max{smin, sk ∗ ν
y
k ∗ κ}, if ν

y
k ≤ 0.5,

sk. otherwise.
k := k + 1, go to Step 1.

5.2 Numerical results for traffic equilibrium problems

In this subsection, we test some specific applications of the VI (1.1)–(1.3) arising in
traffic equilibrium problems with link capacity bounds, which have been well studied
in the literature of transportation. In particular, we test Examples 7.4 and 7.5 in [19],
and we refer to [15] for the procedure of reformulating these traffic equilibrium prob-
lems into VIs. Overall, these traffic equilibrium problems with link capacity bounds
can be characterized by VIs with linear inequality constraints:

(x − x∗)T f (x∗) ≥ 0, ∀ x ∈ Π, (5.1)

with

Π = {x ∈ Rn| AT x ≤ b, x ≥ 0}, (5.2)

where x ∈ Rn represents the traffic flow on paths, b is the vector indicating the ca-
pacities on links, A ∈ Rn×m is the path-link indicating matrix, and f is the vector
indicating the traffic flows on links, see [15] for details. Obviously, by introducing
the slack variable y ≥ 0, VI (5.1)–(5.2) is equivalent to

(x − x∗)T f (x∗) ≥ 0, ∀ x ∈ Ω, (5.3)



458 M. Tao, X. Yuan

with

Ω = {(x, y)|AT x + y = b, x ≥ 0, y ≥ 0}, (5.4)

which is a special case of VI (1.1)–(1.3) with g(y) ≡ 0, B = I , X = Rn+ and Y =
Rm+. For Example 7.4 in [19], n = 49, m = 28 and A ∈ R49×28; and for Example 7.5
in [19], n = 55, m = 37 and A ∈ R55×37.

In the implementation of the proposed inexact PSALM, we set ν = 0.95, γ = 1.85,
κ = 1.25, r0 = 1, s0 = 1.1, H = βI with β = 1.1 and the initial iterative is x0 = 1 and
y0 = λ0 = 0. For the parameters of APBPCM, we take their values as recommended
in [14]. For the parameters of PSALM, the values are taken as the proposed inexact
PSALM. Note that both PBDM and PSALM apply the method in [12] to solve the
resulting sub-VIs iteratively. We use the following stopping criterion:

max

{‖ex(w
k)‖∞

‖ex(w0)‖∞
,‖ey(w

k)‖∞,‖eλ(w
k)‖∞

}
≤ ε. (5.5)

In Table 1, we report the numerical performance for PBDM, APBPCM, PSALM
and the proposed inexact PSALM (denoted by “IPSALM”) for Examples 7.4 and 7.5
in [19] with different values of b (link capacity). We report the number of iterations
(No. of iterations), the number of function evaluations (No. of F evaluations), and
the CPU time in seconds (Time). Since PBDM and PSALM need to solve the result-
ing sub-VIs iteratively at the inner loops, we report the aggregate numbers of inner
iterations in the parenthesis for these two methods.

The data in Table 1 illustrates the efficiency of the proposed inexact PSALM and
its superiority to PBDM, APBPCM and PSALM in terms of both CPU time and
number of function evaluations.

As illustrated in [15, 19], the solution of VI (5.3)–(5.4) indicates the flow on all
paths under consideration, and the Lagrange multiplier λ∗ actually means the toll
that should be charged on links to avoid congestion. To see the traffic flows and toll
on links when the equilibrium is achieved, we report their values generated by the
proposed inexact PSALM in Tables 2 and 3, respectively, for the tested examples
with the capacity b = 40.

Note that the data in Tables 2 and 3 indicates that no toll is charged for those links
whose flows are lower than their capacities.

6 Conclusions

In this paper, we proposed the inexact parallel splitting augmented Lagrangian
method (PSALM) for variational inequalities with separable structures. The new
method improves the exact PSALM in [16] in the sense that the resulting subprob-
lems can be solved easily with closed-form solutions. We verify the efficiency of the
new method by some traffic equilibrium problems.

In [16], PSALM was extended to solve VI (1.1) with three separable blocks:

u =
⎛
⎝x

y

z

⎞
⎠ , F (u) =

⎛
⎝f (x)

g(y)

h(z)

⎞
⎠ , (6.1)



An inexact parallel splitting augmented Lagrangian method 459

Ta
bl

e
1

N
um

er
ic

al
co

m
pa

ri
so

n
of

PB
D

M
,A

PB
PC

M
,P

SA
L

M
an

d
IP

SA
L

M
fo

r
va

ri
ou

s
ε

E
xa

m
pl

es
b

N
o.

of
ite

ra
tio

ns
N

o.
of

F
ev

al
ua

tio
ns

T
im

e

PB
D

M
A

PB
PC

M
PS

A
L

M
IP

SA
L

M
PB

D
M

A
PB

PC
M

PS
A

L
M

IP
SA

L
M

PB
D

M
A

PB
PC

M
PS

A
L

M
IP

SA
L

M

ε
=

10
−4

E
x.

7.
4

in
[1

9]
30

92
8(

46
32

)
30

0
97

(2
51

91
)

19
3

10
35

4
63

4
22

70
2

40
3

0.
43

0.
10

0.
80

0.
07

40
94

9(
47

63
)

33
6

82
(2

72
98

)
19

0
10

73
6

71
4

16
11

0
40

9
0.

38
0.

11
0.

60
0.

07

E
x.

7.
5

in
[1

9]
30

11
04

(7
30

4)
31

8
14

9(
66

74
8)

38
2

15
88

9
68

0
25

47
4

78
3

0.
43

0.
11

1.
00

0.
14

40
11

28
(8

94
7)

47
6

15
8(

70
81

9)
42

6
19

44
1

10
24

25
28

4
88

3
0.

50
0.

15
0.

99
0.

15

ε
=

10
−5

E
x.

7.
4

in
[1

9]
30

11
34

(4
86

9)
38

4
10

4(
25

19
8)

25
5

13
62

4
80

2
23

45
8

53
0

0.
43

0.
11

0.
82

0.
09

40
11

55
(5

01
5)

41
5

15
2(

27
36

8)
24

7
12

71
7

87
2

17
14

6
52

0
0.

43
0.

14
0.

64
0.

10

E
x.

7.
5

in
[1

9]
30

13
52

(7
55

2)
40

1
25

0(
66

85
5)

42
8

11
69

2
86

2
26

70
2

87
5

0.
51

0.
12

1.
07

0.
12

40
13

75
(9

19
4)

59
3

23
9(

70
91

2)
46

7
13

52
3

12
84

26
69

6
95

6
0.

55
0.

15
1.

06
0.

14

ε
=

10
−6

E
x.

7.
4

in
[1

9]
30

13
40

(5
07

5)
46

7
15

6(
25

25
0)

26
2

14
24

2
96

8
24

45
8

54
4

0.
45

0.
13

0.
87

0.
10

40
13

61
(5

22
1)

49
5

27
0(

27
48

6)
26

9
13

33
5

10
32

18
15

8
56

0
0.

42
0.

14
0.

69
0.

10

E
x.

7.
5

in
[1

9]
30

16
00

(7
77

8)
48

0
54

6(
67

15
1)

46
6

12
43

6
10

28
28

38
2

96
7

0.
53

0.
14

1.
15

0.
14

40
16

23
(9

44
2)

72
2

56
6(

71
23

9)
53

0
14

26
8

15
70

28
05

6
10

82
0.

58
0.

17
1.

15
0.

16



460 M. Tao, X. Yuan

Table 2 Flow and toll for Example 7.4 in [19] with b = 40

Link Flow Charge Link Flow Charge Link Flow Charge Link Flow Charge

1 0 0 8 32.90 0 15 27.06 0 22 33.95 0

2 12.94 0 9 0 0 16 5.27 0 23 0 0

3 40.00 25.2 10 0 0 17 1.83 0 24 12.94 0

4 12.94 0 11 0 0 18 32.90 0 25 40.00 124.6

5 0 0 12 33.95 0 19 0 0 26 32.33 0

6 40.00 125.4 13 27.06 0 20 0 0 27 34.16 0

7 34.73 0 14 12.94 0 21 0 0 28 0 0

Table 3 Flow and toll for Example 7.5 in [19] with b = 40

Link Flow Charge Link Flow Charge Link Flow Charge Link Flow Charge

1 40.00 4.3 11 1.85 0 21 40.00 1.1 31 11.96 0

2 38.15 0 12 11.96 0 22 40.00 136.6 32 40.00 164.2

3 40.00 163.2 13 26.19 0 23 26.19 0 33 40.00 135.7

4 13.81 0 14 13.81 0 24 0 0 34 26.19 0

5 0 0 15 0 0 25 0 0 35 28.04 0

6 0 0 16 0 0 26 0 0 36 40.00 301.3

7 0 0 17 0 0 27 0 0 37 0 0

8 0 0 18 0 0 28 0 0 – – –

9 0 0 19 0 0 29 26.19 0 – – –

10 40.00 1.1 20 40.00 1.8 30 1.85 0 – – –

and

Ω = {(x, y, z)| Ax + By + Cz = b, x ∈ X , y ∈ Y , z ∈ Z}, (6.2)

where X ⊂ Rn1 , Y ⊂ Rn2 and Z ⊂ Rn3 are nonempty closed and convex sets; A ∈
Rm×n1 , B ∈ Rm×n2 and C ∈ Rm×n3 are given matrices; f : X → Rn1 , g : Y → Rn2

and h : Y → Rn3 are given monotone and Lipschitz continuous mappings; b ∈ Rm

is a given vector and n1 + n2 + n3 = n. Without any difficulty, the proposed inexact
PSALM can also be extended to solve VI(1.1) with the structure (6.1)–(6.2). For
example, we can prove a similar inequality as (4.1) for the case (6.1)–(6.2). Thus, it
is easy to establish the contractive property as Corollary 4.2 for the case (6.1)–(6.2).
Since the involved techniques for establishing the convergence are very similar as the
case of VI (1.1) with (1.2)–(1.3), we omit the details of this extension.

Acknowledgements Min Tao was supported by the Scientific Research Foundation of Nanjing Univer-
sity of Posts and Telecommunications (NY210049) and the NSFC Grant 10971095. Xiaoming Yuan was
supported by a Hong Kong General Research Fund.



An inexact parallel splitting augmented Lagrangian method 461

References

1. Attouch, H., Briceo-Arias, L.-M., Combettes, P.-L.: A parallel splitting method for coupled monotone
inclusions. SIAM J. Control Optim. 48, 3246–3270 (2010)

2. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice-
Hall, Englewood Cliffs (1989)

3. Chen, G., Teboulle, M.: A proximal-based decomposition method for convex minimization problems.
Math. Program. 64, 81–101 (1994)

4. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algo-
rithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

5. Eckstein, J., Fukushima, M.: Some reformulation and applications of the alternating direction method
of multipliers. In: Hager, W.W. (ed.) Large Scale Optimization: State of the Art. Kluwer Academic,
Dordrecht (1994)

6. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Prob-
lems. Springer, New York (2003)

7. Fukushima, M.: Application of the alternating direction method of multipliers to separable convex
programming problems. Comput. Optim. Appl. 2, 93–111 (1992)

8. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite-
element approximations. Comput. Math. Appl. 2, 17–40 (1976)

9. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M.,
Glowinski, R. (eds.) Augmented Lagrange Methods: Applications to the Solution of Boundary-Valued
Problems, pp. 299–331. North-Holland, Amsterdam (1983)

10. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)
11. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear

Mechanics. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1989)
12. He, B.S., Liao, L.-Z.: Improvements of some projection methods for monotone nonlinear variational

inequalities. J. Optim. Theory Appl. 112, 111–128 (2002)
13. He, B.S., Liao, L.-Z., Han, D.R., Yang, H.: A new inexact alternating directions method for monotone

variational inequalities. Math. Program. 92, 103–118 (2002)
14. He, B.S., Liao, L.-Z., Qian, M.J.: Alternating projection based prediction-correction methods for

structured variational inequalities. J. Comput. Math. 24, 693–710 (2006)
15. He, B.S., Liao, L.-Z., Yuan, X.M.: A LQP based interior prediction-correction method for nonlinear

complementarity problems. J. Comput. Math. 24, 33–44 (2006)
16. He, B.S.: Parallel splitting augmented Lagrangian methods for monotone structured variational in-

equalities. Comput. Optim. Appl. 42, 195–212 (2009)
17. Jiang, Z.K., Yuan, X.M.: New parallel descent-like method for solving a class of variational inequali-

ties. J. Optim. Theory Appl. 145, 311–323 (2010)
18. Martinet, B.: Regularisation d’inéquations variationelles par approximations succesives. Rev. Fran-

caise d’Inform. Rech. Oper. 4, 154–159 (1970)
19. Nagurney, A., Zhang, D.: Projected Dynamical Systems and Variational Inequalities with Applica-

tions. Kluwer Academic, Boston (1996)
20. Rockafellar, R.-T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim.

14, 877–898 (1976)


	An inexact parallel splitting augmented Lagrangian method for monotone variational inequalities with separable structures
	Abstract
	Introduction
	Preliminaries
	Inexact parallel splitting augmented Lagrangian methods for VI (1.1)-(1.3)
	Motivation
	Algorithm
	Relationship to some existing methods

	Convergence
	Numerical experiments
	Implementation details 
	Numerical results for traffic equilibrium problems

	Conclusions
	Acknowledgements
	References


