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Abstract The proximal point algorithm (PPA) has been well studied in the literature. In
particular, its linear convergence rate has been studied by Rockafellar in 1976 under certain
condition. We consider a generalized PPA in the generic setting of finding a zero point of
a maximal monotone operator, and show that the condition proposed by Rockafellar can
also sufficiently ensure the linear convergence rate for this generalized PPA. Indeed we
show that these linear convergence rates are optimal. Both the exact and inexact versions
of this generalized PPA are discussed. The motivation of considering this generalized PPA
is that it includes as special cases the relaxed versions of some splitting methods that are
originated from PPA. Thus, linear convergence results of this generalized PPA can be used
to better understand the convergence of some widely used algorithms in the literature. We
focus on the particular convex minimization context and specify Rockafellar’s condition to
see how to ensure the linear convergence rate for some efficient numerical schemes, including
the classical augmented Lagrangian method proposed by Hensen and Powell in 1969 and
its relaxed version, the original alternating direction method of multipliers (ADMM) by
Glowinski and Marrocco in 1975 and its relaxed version (i.e., the generalized ADMM by
Eckstein and Bertsekas in 1992). Some refined conditions weaker than existing ones are
proposed in these particular contexts.
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1 Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉. A set-valued mapping T : H → 2H

is said to be monotone if

〈z − z′, w − w′〉 ≥ 0, ∀z, z′ ∈ H, w ∈ T (z), w′ ∈ T (z′).

T is said to be maximal monotone if, in addition, its graph is not properly contained in
the graph of any other monotone operator. A fundamental problem is finding a zero point,
denoted by z∗, of a maximal monotone set-valued mapping T :

0 ∈ T (z). (1.1)

Throughout, the set of T ’s zero point, denoted by zer(T ), is assumed to be nonempty.
The proximal point algorithm (PPA), which traces back to [25,27], has been playing an

important role both theoretically and algorithmically for (1.1). Starting from an arbitrary
point z0 in H , the PPA iteratively generates its sequence {zk} by the scheme

0 ∈ ckT (zk+1) + zk+1 − zk, (1.2)

where {ck}, called proximal parameter, is a sequence of positive real numbers. Indeed, as
shown in [34], the convergence of PPA can be ensured when {ck} is bounded away from zero.
Moreover, an inexact version of PPA was proposed in [34], allowing the subproblem (1.2)
to be solved approximately subject to some inexactness criteria. Conceptually, the inexact
version of PPA can be written as

0 ≈ ckT (zk+1) + zk+1 − zk, (1.3)

in which the accuracy should be judiciously chosen to guarantee its convergence. Let

JckT := (I + ckT )−1 (1.4)

denote the resolvent operator of the maximal monotone set-valued mapping T for a positive
scalar ck (Note that JckT is single-valued, see, e.g., [12]). Then, the exact and inexact versions
of the PPA can be written, respectively, as

zk+1 = JckT (zk) (1.5)

and

zk+1 ≈ JckT (zk). (1.6)

Technically, (1.6) includes (1.5) as the special case where the tolerance of accuracy is zero.
But we still discuss them individually because (1.5) is of particular interest and it may have
stronger convergence, because it requires estimating the resolvent operator accurately.

Research results on the convergence of PPA can be found in earlier literature. For example,
when T is specified as the sum of a single-valued, monotone and hemicontinuous mapping
and the normal cone to a bounded set, i.e., the problem (1.1) reduces to a variational inequality,
then some convergence of the exact version of PPA (1.2)with ck ≡ c in theweak topologywas
investigated in [25,26]. In [34], the convergence of both the exact and inexact versions of PPA
was comprehensively studied; it is indeed the work [34] that popularized PPA in optimization
community. More specifically, under the condition that {ck} is bounded away from zero, the
convergence of (1.6) [thus also (1.5)] in the weak topology was proved when the accuracy for
“≈” in (1.6) is specified into certain forms (see (A) and (B) of Section 1 in [34]). In fact, the
exact version (1.5) was shown to find a solution point of (1.1) after finitely many iterations in
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[34]. Note that the strongmonotonicity of T is not required for the analysis in [34].Moreover,
if the inverse of T (denoted by T−1) is Lipschitz continuous at 0 (see Definition 2.4 in Section
2 or Section 3 in [34]) and {ck} is bounded away from zero, it was proved in [34] that the
(1.6) [thus also (1.5)] with some relative error control in its accuracy is linearly convergent.
There are many other articles studying the PPA from various perspectives. For example, the
PPA application to nonconvex problems studied in [14], the PPA with variable metric in
[6], a unified convergence rate analysis for some PPA-based decomposition methods in [36],
accelerated PPA schemes with a worst-case O(1/k2) convergence rate proposed in [19], the
logarithmic quadratic proximal extension considered in [1,2], and some other proximal-type
algorithms in [38].Weparticularly refer to [18,28] for some insightful analysis on the iteration
complexity of PPA, which can be regarded as a measure of its worst-case convergence rate.
Algorithmically, the PPA is the basis of a large number of celebrated methods, e.g., the
projected gradient method [31], the extragradient method [22], the extended extragradient
and hyperplane schemes in [1], the forward-backward operator splitting method [24], and
the accelerated projected gradient method [29].

As studied in [8,12,15,17], the PPA schemes (1.5) and (1.6) can be generalized, respec-
tively, as

[Exact Version] : zk+1 = zk − γ (zk − JckT (zk)), (1.7)

and

[Inexact Version] : zk+1 ≈ zk − γ (zk − JckT (zk)). (1.8)

In (1.7) and (1.8), the proximal parameter sequence {ck} is also required to be bound away
from zero, i.e., ck ≥ κ > 0 for all k, and the relaxation factor γ ∈ (0, 2). The generalized
PPA schemes (1.7) and (1.8) usually can accelerate the original PPA schemes numerically,
see, e.g., [3,7,13] for some numerical verifications. Thus, from the PPA perspective itself, it
is interesting to consider its generalized versions. Another reason of considering the gener-
alized PPA schemes (1.7) and (1.8) is that the original PPA scheme (1.5) indeed is a unified
illustration of some different schemes for different models—it has been well studied that
some popular iterative schemes such as the Douglas–Rachford splitting method (DRSM) in
[11,24], the Peaceman–Rachford splitting method in [24,30] and the augmented Lagrangian
method (ALM) in [21,32] are all special cases of the PPA (1.5) with specific choices of T .
Thus, generalizing the PPA scheme (1.5) (Resp., (1.6)) as (1.7) (Resp., (1.8)) represents a
unified consideration for accelerating a series of well known splitting algorithms, especially
in the convex optimization context. Let us just elaborate on the detail of the DRSM. Recall
that (see [12], also Section 8 for details) the DRSM is a special case of the PPA (1.5). In
[15], it was proved that the alternating direction method of multipliers (ADMM), which was
originally proposed in [16] and now finds many applications in a wide range of areas, is a
special case of the DRSM. Thus, the ADMM is also a special case of (1.5) and it can be
accelerated immediately by the scheme (1.7). This application inspired the so-called gener-
alized ADMM in [12], whose acceleration effectiveness was demonstrated recently in [13]
by some statistical learning applications.

Our main purpose is to extend the analysis in [34] to the generalized PPA schemes (1.7)
and (1.8), and establish their linear convergence rates under the same assumption as [34]: T−1

is Lipschitz continuous at 0. We further show that these linear convergence rates are indeed
optimal. Because of the just-mentioned explanation, studying the linear convergence of the
generalized schemes (1.7) and (1.8) helps us better understand the convergence properties
of a number of specific splitting methods in the convex optimization context through a
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unified perspective. In [15], the linear convergence of the exact version (1.7) with ck ≡ c
and γ ∈ (1, 2) was discussed under the assumptions that T is both strongly monotone (see
Definition 2.3) and Lipschitz continuous. In [8], also under the assumption that T is strongly
monotone, the sublinear and linear convergence rates of the schemes (1.7) and (1.8) with
ck ≡ c was studied; and these results were especially specified for the DRSM and PRSM
scenarios. The results in [8] were then refined in [9] for the special DRSM and PRSM cases
of (1.2). Note that, as analyzed in [34], “the assumption of Lipschitz continuity of T−1 at 0
turns out to be very natural in applications to convex programming”. Indeed, we will show
later that this assumption is weaker than those considered in [8,9,15] (see the example in
Sect. 2.2) and it suffices to ensure the linear convergence of the schemes (1.7) and (1.8) for
the case γ ∈ (0, 2). Thus, the distinction of this work from existing results in the literature is
that stronger convergence rates are established under weaker conditions for the generalized
PPA schemes (1.7) and (1.8). We will also consider several specific convex optimization
contexts of the abstract model (1.1) and investigate how this assumption can be specified in
these special contexts to ensure the linear convergence rates for somewell-studied benchmark
algorithms in the literature.

The rest of this paper is organized as follows. In Sect. 2, some preliminaries useful for
further analysis are summarized. Then,wediscuss the convergence and the linear convergence
rate of the exact version of the generalized PPA (1.7) in Sect. 3. In Sect. 4, the convergence
and linear convergence rate of its inexact version (1.8), in which the inexactness criterion is
also specified, is studied. Then, we revisit the assumption “T−1 is Lipschitz continuous at
0” in Sect. 5 and show that it can be further relaxed. In Sect. 6, we discuss the possibility of
deriving the superlinear convergence for the schemes (1.7) and (1.8). In Sect. 7, we apply the
scheme (1.7) to a canonical convex minimization model with linear constraints and discuss
the linear convergence for the resulting generalized ALM scheme. In Sect. 8, we focus on
the analysis for the linear convergence of the ADMM and the generalized ADMM scheme,
both are special cases of the scheme (1.7). Finally, some conclusions are made in Sect. 9.

2 Preliminaries

In this section, we recall some definitions and known results for further discussions.

2.1 Some Definitions

We first recall some basic definitions to be used in our analysis.

Definition 2.1 Let T : H → 2H be set-valued and maximal monotone. Then, T is said to
be nonexpansive if ‖w′ − w‖ ≤ ‖z′ − z‖, ∀ z, z′ ∈ H, w ∈ T (z), w′ ∈ T (z′).

Definition 2.2 Let T : H → 2H be set-valued and maximal monotone. Then, T is said to be
firmly nonexpansive if ‖w′ − w‖2 ≤ 〈z′ − z, w′ − w〉, ∀ z, z′ ∈ H, w ∈ T (z), w′ ∈ T (z′).

Definition 2.3 Let T : H → 2H be set-valued and maximal monotone. Then, T is called
α-strongly monotone if 〈z − z′, w − w′〉 ≥ α‖z − z′‖2, ∀ z, z′ ∈ H, w ∈ T (z), w′ ∈ T (z′)
for α > 0.

Definition 2.4 Let T be set-valued and be defined on H . Then, T−1 is called Lipschitz
continuous at 0 with modulus a ≥ 0 if there is a unique solution z∗ to 0 ∈ T (z) (i.e.
T−1(0) = {z∗}), and for some τ > 0 we have ‖z − z∗‖ ≤ a‖w‖ whenever z ∈ T−1(w) and
‖w‖ ≤ τ .
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Definition 2.4 is quoted from [34]. Based on these definitions, we have some immediate
conclusions. For examples, if T is nonexpansive, then it is Lipschitz continuous. Moreover,
clearly, the problem (1.1) has a unique solution point when T−1 is Lipschitz continuous at 0.

2.2 An Example

Consider the problem (1.1), where T : �2 → �2 is defined by

T (x1, x2) := 1

a
(x2,−x1) with a > 0. (2.1)

Obviously, the operator T defined in (2.1) is maximal monotone and the solution point of
(1.1) with (2.1) is z∗ = (0, 0). Moreover, it holds

‖T−1(z1) − T−1(z2)‖ ≤ a‖z1 − z2‖, ∀z1, z2 ∈ �2, (2.2)

and

〈T (z1) − T (z2), z1 − z2〉 = 0, ∀z1, z2 ∈ �2. (2.3)

Thus, T−1 is Lipschitz continuous at 0withmodulus a > 0while T is not stronglymonotone.
This example indeed shows that the assumption “T−1 is Lipschitz continuity at 0” is weaker
than the strong monotonicity assumption on T as assumed in [8,9,15].

2.3 Some Known Results

Then, we summarize some known results that are relevant to our analysis. The following
lemma summarizes some well-known properties of a firmly nonexpansive operator. The
proof is straightforward and thus omitted, or see, e.g, [12].

Lemma 2.5 We have the following facts.

i) All firmly nonexpansive operators are nonexpansive.
ii) An operator T is firmly nonexpansive if and only if 2T − I is nonexpansive.
iii) An operator is firmly nonexpansive if and only if it is of the form 1

2 (C + I ), where C is
nonexpansive.

iv) An operator T is firmly nonexpansive if and only if I − T is firmly nonexpansive.

In the following lemma, we show some simple conclusions for the resolvent operator of
a maximal monotone operator.

Lemma 2.6 Let T : H → 2H be set-valued and maximal monotone; JcT be defined in (1.4),
and c > 0 be a scalar. Then, we have

i) 〈JcT (z) − JcT (z′), (I − JcT )(z) − (I − JcT )(z′)〉 ≥ 0, ∀z, z′ ∈ H.
ii) ‖z − z′‖2 ≥ ‖JcT (z) − JcT (z′)‖2 + ‖(I − JcT )(z) − (I − JcT )(z′)‖2, ∀z, z′ ∈ H.

Proof Obviously, JcT defined in (1.4) is nonexpansive, and it implies the first property
immediately. The second property is trivial because of Property (i). ��

Last, let us recall the representation lemma, see, e.g., [12].

Lemma 2.7 (The representation lemma) Let c > 0 and let T be monotone on H. Then every
element z of H can be written in at most one way as x+cy, where y ∈ T (x). If T is maximal,
then every element z of H can be written in exactly one way as x + cy, where y ∈ T (x).
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3 Convergence of the Exact Version (1.7)

In this section, we show that the generalized PPA (1.7) also converges linearly to a zero point
of T under the assumption “T−1 is Lipschitz continuous at 0 with positive modulus”, the
same one as that in [34]. For a lighter notation in analysis, we use the notation z̃k = JckT (zk)
in the following analysis.

3.1 Global Convergence

First, we show the global convergence of (1.7). Note that we do not need the assumption “T−1

is Lipschitz continuous at 0 with positive modulus” for proving the global convergence. The
next theorem shows that the sequence {zk} generalized by (1.7) with γ ∈ (0, 2) is strictly
contractive with respective to the solution set of (1.1), an important property ensuring its
global convergence.

Theorem 3.1 [12] (Strict contraction) Let {zk} be the sequence generated by the exact
version of the generalized PPA scheme (1.7) with γ ∈ (0, 2) and {ck} bounded away from 0;
let z∗ be a solution point of (1.1). We have

‖zk+1 − z∗‖2 ≤ ‖zk − z∗‖2 − γ (2 − γ )

∥
∥
∥zk − z̃k

∥
∥
∥

2
. (3.1)

Based on Theorem 3.1, the convergence of (1.7) can be easily established.

Theorem 3.2 (Global convergence) Let {zk} be the sequence generated by the exact version
of the generalized PPA scheme (1.7) with γ ∈ (0, 2) and {ck} bounded away from 0. Then it
converges in the weak topology to a solution point of (1.1).

Proof According to (3.1), the sequence {zk} is bounded, and it has at least one weak accu-
mulation point, say z∞. Let {zk j } be the subsequence converging in the weak topology to
z∞. Recall the notation z̃k = JckT (zk) and the definition of JckT in (1.4). We thus have

c−1
k j

(zk j − z̃k j ) ∈ T (z̃k j ).

Then, using the monotonicity of T , for an integer k j , it holds that

〈z − z̃k j , w − c−1
k j

(zk j − z̃k j )〉 ≥ 0, for all z, w satisfying w ∈ T (z). (3.2)

Again, it follows from (3.1) that lim j→∞ ‖zk j − z̃k j ‖ = 0. Recall {ck} is bounded away from
0. Then, taking j → ∞ in (3.2), we obtain

〈z − z∞, w〉 ≥ 0 for all z, w satisfying w ∈ T (z).

In view of the maximality of T , this inequality implies that z∞ is a solution point of (1.1),
see, e.g. [34]. It is easy to see from Theorem 3.1 that the sequence {zk} cannot have more than
one accumulation point. Thus, {zk} converges in the weak topology to z∞ which a solution
point of (1.1). The proof is complete. ��

Remark 1 If the real Hilbert space H is finite dimension, the result in this theorem can be
improved to “strongly converge”.
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3.2 Linear Convergence

Now, under the assumption “T−1 is Lipschitz continuous at 0 with positive modulus”, we
prove the linear convergence of (1.7). First, two lemmas are presented.

Lemma 3.3 Let T : H → 2H be maximal monotone and z∗ be a solution point of (1.1); let
ck > 0. If T−1 is Lipschitz continuous at 0 with modulus a > 0, then there exists a positive
τ such that

‖JckT (z) − z∗‖ ≤ a
√

a2 + c2k

‖z − z∗‖ when ‖c−1
k (z − JckT (z))‖ ≤ τ, ∀z ∈ H. (3.3)

Proof Applying Property (ii) in Lemma 2.6 with z̃ = z∗ and c = ck , we get

‖z − z∗‖2 ≥ ‖JckT (z) − z∗‖2 + ‖(I − JckT )(z)‖2. (3.4)

Recall the definition of JckT in (1.4). We have

c−1
k (I − JckT )(z) ∈ T (JckT (z)).

Since T−1 is Lipschitz continuous at 0 with modulus a > 0, it follows from Definition 2.4
that there exists a positive parameter τ such that

‖JckT (z) − z∗‖ ≤ a‖c−1
k (I − JckT )(z)‖ when ‖c−1

k (I − JckT )(z)‖ ≤ τ.

Substituting this inequality into (3.4), we obtain (3.3). The proof is complete. ��
Remark 2 If some stronger assumptions such as “T is 1

a -strongly monotone” hold as some
existing work [8,15], the assertion (3.3) can be easily improved as

‖JckT (z) − z∗‖ ≤ a

a + ck
‖z − z∗‖ ∀z ∈ H. (3.5)

Under the weaker assumption “T−1 is Lipschitz continuous at 0 with positive modulus”,
however, the assertion (3.3) is optimal in the sense that the coefficient in the right-hand side
cannot be smaller. To see this, let us consider the example (2.1) again in Sect. 2.2. It follows
from (2.3) that

〈

ckT
(

JckT (z)
) − ckT

(

JckT (z∗)
)

, JckT (z) − z∗
〉 = 0. (3.6)

Consequently, we have

‖z − z∗‖2 = ‖JckT (z) − z∗‖2 + ‖z − JckT (z)‖2 + 2
〈

z − JckT (z), JckT (z) − z∗
〉

= ‖JckT (z) − z∗‖2 + ‖ckT (JckT (z))‖2 + 2
〈

ckT
(

JckT (z)
)

, JckT (z) − z∗
〉

= ‖JckT (z) − z∗‖2 + ‖ckT (JckT (z))‖2
+2

〈

ckT (JckT (z)) − ckT (JckT (z∗)), JckT (z) − z∗
〉

=
(

1 + c2k
a2

)

‖JckT (z) − z∗‖2, (3.7)

in which the last inequality is because of the identity

‖ckT
(

JckT (z)
) − ckT

(

JckT (z∗)
) ‖2 = c2k

a2
‖JckT (z) − JckT (z∗)‖2

and the assertion (3.6). Therefore, the inequality (3.3) is tight and this indeed implies that
the linear convergence rate to be established for (1.7) is optimal.
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Lemma 3.4 Let {zk} be the sequence generated by the exact version of the generalized PPA
scheme (1.7)with γ ∈ (0, 2), and z∗ be a solution point of (1.1). If T−1 is Lipschitz continuous
at 0 with modulus a > 0, and the proximal parameter sequence {ck} is bounded away from
zero (ck ≥ κ > 0 for any k), then there exists an integer k̂ such that

‖z̃k − z∗‖ ≤ a
√

a2 + c2k

‖zk − z∗‖ ∀k > k̂. (3.8)

Proof It follows from Lemma 3.3, also can be derived from Theorem 2 of [34]. ��
Now, we prove the local linear convergence rate of (1.7) in the following theorem.

Theorem 3.5 If T−1 is Lipschitz continuous at 0 with modulus a > 0 and the proximal
parameter {ck} is bounded away from zero (ck ≥ κ > 0), then the sequence {zk} generated
by the exact version of the generalized PPA scheme (1.7) with γ ∈ (0, 2) converges strongly
to z∗, the unique solution of (1.1). Moreover, there exists an index k̂ such that

‖zk+1 − z∗‖2 ≤ �‖zk − z∗‖2, ∀ k > k̂, (3.9)

with

� := 1 − min
(

γ, 2γ − γ 2) c2k
a2 + c2k

∈ (0, 1). (3.10)

That is, the sequence {zk} converges linearly to a solution point of (1.1).

Proof Simple algebra shows that

‖zk+1 − z∗‖2 = (1 − γ )2‖zk − z∗‖2 + γ 2‖z̃k − z∗‖2
+2γ (1 − γ )〈z̃k − z∗, zk − z∗〉

= (1 − γ )2‖zk − z∗‖2 + (2γ − γ 2)‖z̃k − z∗‖2
+2γ (1 − γ )〈z̃k − z∗, zk − z̃k〉. (3.11)

Obviously, the assertion (3.9)–(3.10) follows directly from Lemma 3.4 when γ = 1. If
0 < γ ≤ 1, then it follows from Lemma 3.4 that

‖zk+1 − z∗‖2 ≤ (1 − γ )‖zk − z∗‖2 + γ ‖z̃k − z∗‖2

=
(

1 − γ
c2k

a2 + c2k

)

‖zk − z∗‖2.

On the other hand, applying the property (ii) in Lemma 2.6 with z = zk and z̃ = z∗, we get

‖zk − z∗‖2 ≥ ‖z̃k − z∗‖2 + ‖zk − z̃k‖2. (3.12)

We thus have

〈z̃k − z∗, zk − z̃k〉 ≥ 0, (3.13)

Moreover, if 1 < γ < 2, because of (3.11), (3.13) and Lemma 3.4, we have

‖zk+1 − z∗‖2 ≤
(

1 − (2γ − γ 2)
c2k

a2 + c2k

)

‖zk − z∗‖2.
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To show (3.10), notice that γ ∈ (0, 2) and ck ≥ κ > 0 for any k. Thus, we have

0 < 1 − min(γ, 2γ − γ 2) ≤ � := 1 − min(γ, 2γ − γ 2)
c2k

a2 + c2k

< 1 − min(γ, 2γ − γ 2)
κ2

a2 + κ2 < 1.

Therefore, the inequalities (3.9) and (3.10) imply the local linear convergence rate of the
sequence {zk}. The proof is complete. ��
Remark 3 For the problem (1.1) with T defined in (2.1), it follows from (3.11) and the
analysis in Remark 2 that

‖zk+1 − z∗‖2 = (1 − γ )2‖zk − z∗‖2 + (2γ − γ 2)‖z̃k − z∗‖2
+2γ (1 − γ )〈z̃k − z∗, zk − z̃k〉

= (1 − γ )2‖zk − z∗‖2 + (2γ − γ 2)‖z̃k − z∗‖2

=
(

1 − (2γ − γ 2)
c2k

a2 + c2k

)

‖zk − z∗‖2, ∀ γ ∈ (0, 2). (3.14)

Recall (3.9) and (3.10), this means the bound derived in Theorem 3.5 is tight at least for
γ ∈ [1, 2). Hence, the linear convergence established in Theorem 3.5 is optimal for the PPA
scheme (1.7) with γ ∈ [1, 2).
Remark 4 For simplicity, we fix γ ∈ (0, 2) as a constant in our discussion. According to the
proof of Theorem 3.5, it is trivial to see that the the convergence result still holds when γ is
permitted to vary iteratively and the sequence {γk} satisfies the condition ∑

k γk(2 − γk) =
+∞.

Remark 5 Similarly as Definition 2.4, if a sequence {zk} converges to z∗, we can define “T−1

is Lipschitz continuous with modulus a ≥ 0 at the sequence {zk}” if there exists some τ > 0
such that

‖zk − z∗‖ ≤ a‖wk‖ whenever zk ∈ T−1(wk) and ‖wk‖ ≤ τ.

Then, it can be easily seen that the linear convergence of {zk} generated by (1.7) can be
guaranteed under the less strengthen assumption “ T−1 is Lipschitz continuous at the iterates
{z̃k} with positive modulus when k is sufficiently large”. Recall the fact z̃k ∈ T−1(c−1

k (zk −
z̃k)) and z∗ ∈ T−1(0). Then, this less strengthen assumption is equivalent to saying that there
exists an integer k̂ such that

‖z̃k − z∗‖ ≤ a‖c−1
k (zk − z̃k)‖ when k > k̂, (3.15)

where k̂ is large enough such that ‖c−1
k (zk − z̃k)‖ ≤ τ . Note that ‖c−1

k (zk − z̃k)‖ ≤ τ can be
ensured by the fact limk→∞ ‖zk − z̃k‖ = 0 implied in (3.1) and that {ck} is bounded away
from 0. More discussion is referred to Sect. 5.

4 Convergence of the Inexact Version (1.8)

In this section, we specify the inexactness criterion for (1.8) and show its linear convergence
under the same assumption of “T−1 is Lipschitz continuous at 0 with positive modulus”.

123



J Sci Comput (2018) 74:826–850 835

This is a generalization of the inexact version (1.6) considered in [34]. More specifically, we
consider the scheme

{

zk+1 = (1 − γ )zk + γ z̄k,
∥
∥z̄k − JckT (zk)

∥
∥ ≤ δk‖zk − zk+1‖, (4.1)

where γ ∈ (0, 2), ck ≥ κ > 0 for any k, and {δk} is a sequence of positive real numbers
satisfying

∑

k δk < +∞.
Note that in (4.1), we consider using relative errors to control the accuracy in (1.8); thus

it is different from the inexact version in [8] which uses absolute errors. We still use the
notation z̃k = JckT (zk) in the upcoming analysis.

4.1 Global Convergence

Again, we first show the global convergence for the sequence {zk} generated by (4.1). Note
that we do not need the assumption “T−1 is Lipschitz continuous at 0with positive modulus”
for proving the global convergence. We first prove several lemmas for this purpose. Their
proofs are elementary; but we still include them for completeness.

Lemma 4.1 [41] Let {αk} be a positive sequence satisfying
∑∞

k=1 αk < +∞. Then, we
have

∞
∏

k=1

(1 + αk) < +∞.

Proof Obviously, it holds that log(1 + x) ≤ x when 0 < x < 1. Hence, we have

∞
∑

k=1

log(1 + αk) ≤
∞
∑

k=1

αk < +∞,

which implies the assertion immediately. ��
Lemma 4.2 [41] Let {δk} be a positive sequence satisfying

∑∞
k=1 δk < +∞ and γ > 0 be

a constant. Then, we have
∞
∏

k=1

1 + γ δk

1 − γ δk
< +∞.

Proof Since
∑∞

k=1 δk < +∞, we have δk → 0 when k → ∞. Thus, there exists an integer
k̂ such that

1 − γ δk ≥ 1

2
when k ≥ k̂. (4.2)

Hence, we have

∞
∏

k=1

1 + γ δk

1 − γ δk
=

k̂−1
∏

k=1

1 + γ δk

1 − γ δk
·

∞
∏

k=k̂

1 + γ δk

1 − γ δk

≤
k̂−1
∏

k=1

1 + γ δk

1 − γ δk
· 2

∞
∏

k=k̂

(1 + γ δk) < +∞.

The proof is complete. ��
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The proof of the following lemma can be found in, e.g., [39,40]; thus we omit it.

Lemma 4.3 Let {ak} and {bk} be positive sequences; ∑∞
k=1 bk < +∞; and

ak+1 ≤ ak + bk, ∀k. (4.3)

Then, the sequence {ak} is convergent.
Now we start to prove the global convergence of (4.1). The key is the sequence generated

by the inexact version (4.1) is asymptotically emerged with the sequence by the generalized
PPA (1.7). With this fact, the convergence of (4.1) can be established easily.

Theorem 4.4 Let {zk} be the sequence generated by the inexact version of the generalized
PPA scheme (4.1). Then, we have

(1) The sequence {zk} is bounded.
(2) It holds that

lim
k→∞ ‖zk − z̃k‖ = 0. (4.4)

Proof Recall we use z̃k = JckT (zk) for easier notation. Let us use one more notation

ẑk+1 := (1 − γ )zk + γ z̃k .

Indeed, ẑk+1 denotes the iterate generated by the exact version (1.7) from the given zk . Thus,
for an arbitrary solution point z∗ of (1.1), it follows from (3.1) that

‖ẑk+1 − z∗‖2 ≤ ‖zk − z∗‖2 − γ (2 − γ )‖zk − z̃k‖. (4.5)

Recall the definition of zk+1 in (4.1). We have

ẑk+1 − zk+1 = γ (z̃k − z̄k), (4.6)

where z̄k is also given in (4.1). Thus, for any solution point z∗ of (1.1), we have

‖zk+1 − z∗‖ ≤ ‖zk+1 − ẑk+1‖ + ‖ẑk+1 − z∗‖
≤ γ δk‖zk − zk+1‖ + ‖ẑk+1 − z∗‖
≤ γ δk(‖zk − z∗‖ + ‖zk+1 − z∗‖) + ‖ẑk+1 − z∗‖
≤ γ δk(‖zk − z∗‖ + ‖zk+1 − z∗‖) + ‖zk − z∗‖, (4.7)

where the second inequality results from the inexact criterion in (4.1) and the last inequality
follows from (4.5). Without loss of generality, we assume that 1 − γ δk > 0 for all k. Then,
we get

‖zk+1 − z∗‖ ≤ 1 + γ δk

1 − γ δk
‖zk − z∗‖ ≤ · · · ≤

k
∏

i=1

1 + γ δi

1 − γ δi
‖z0 − z∗‖.

Using Lemma 4.2, the sequence {zk} is bounded. The first assertion is proved.
Now we prove the second assertion. Again, for an arbitrary solution point z∗ of (1.1),

since {zk} is bounded and because of (4.5), there exists a positive scalar R such that

‖zk − z∗‖ < R, ∀k (4.8)

and

‖ẑk − z∗‖ < R, ∀k. (4.9)
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We thus have

‖zk+1 − z∗‖2 = ‖ẑk+1 − z∗ + (zk+1 − ẑk+1)‖2
= ‖ẑk+1 − z∗‖2 + ‖zk+1 − ẑk+1‖2 + 2〈ẑk+1 − z∗, zk+1 − ẑk+1〉
≤ ‖ẑk+1 − z∗‖2 + 2‖ẑk+1 − z∗‖‖zk+1 − ẑk+1‖ + ‖zk+1 − ẑk+1‖2
≤ ‖ẑk+1 − z∗‖2 + 2Rγ δk‖zk − zk+1‖ + γ 2δ2k‖zk − zk+1‖2
≤ ‖zk − z∗‖2 − γ (2 − γ )‖zk − z̃k‖2 + 4R2γ δk + 4R2γ 2δ2k , (4.10)

where the second inequality follows from (4.9) and (4.1); and the last inequality is because
of (4.5) and (4.8). Moreover, since γ ∈ (0, 2), we have

‖zk+1 − z∗‖2 ≤ ‖zk − z∗‖2 + 4R2γ δk + 4R2γ 2δ2k ,

and
∑

k

(4R2γ δk + 4R2γ 2δ2k ) < +∞.

Now, using Lemma 4.3 with ak := ‖zk − z∗‖2 and bk := 4R2γ δk + 4R2γ 2δ2k , we obtain

lim
k→∞ ‖zk − z∗‖ =: A, (4.11)

where A is a positive scalar. On the other hand, recall that {δk} is summable, so is {δ2k }. We
thus have

∑

k δ2k < ∞. Then, it follows from (4.10) that

γ (2 − γ )‖zk − z̃k‖2 ≤ ‖zk − z∗‖2 − ‖zk+1 − z∗‖2 + 4R2γ δk + 4R2γ 2δ2k , ∀k.
Then, we have

∑

k ‖zk − z̃k‖2 < ∞ and thus limk→∞ ‖zk − z̃k‖ = 0. The proof is complete.
��

Theorem 4.4 shows that the accuracy of iterates generated by the inexact version (4.1) is
iteratively increased, which essentially implies the convergence of the sequence of (4.1). We
provide the rigorous proof in the following theorem.

Theorem 4.5 (Global convergence)Let {zk}be the sequence generated by the inexact version
of the generalized PPA scheme (4.1). Then, it converges in the weak topology to a solution
point of (1.1).

Proof Since the sequence {zk} is bounded, it has a weak accumulation point z∞. Let {zk j }
be the subsequence converging in the weak topology to z∞. Note that

c−1
k (zk − JckT (zk)) ∈ T (JckT (zk)).

Thus, using the monotonicity of T , for any k, we have

〈z − JckT (zk), w − c−1
k (zk − JckT (zk))〉 ≥ 0, for all z, w satisfying w ∈ T (z).

Let k = k j in the above inequality, take j → ∞, and combine it with (4.4). We thus have

〈z − z∞, w〉 ≥ 0, for all z, w satisfying w ∈ T (z).

which, together with the maximal monotonicity of T , means that z∞ is a solution point of
(1.1).

Finally, using (4.11), we can prove by contradiction that the sequence {zk} has only one
weak accumulation point (the proof is similar to that of Theorem3 in [12]). Thus, the sequence
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{zk} converges in the weak topology to z∞ which is a solution point of (1.1). The proof is
complete. ��
Remark 6 If the real Hilbert space H is finite dimension, the result in this theorem can be
improved to “strongly converge”.

4.2 Linear Convergence

In this subsection, under the assumption “T−1 is Lipschitz continuous at 0 with positive
modulus”, we prove the linear convergence for the sequence {zk} generated by (4.1). Recall
the notation z̃k = JckT (zk). The following lemma can be found in [34].

Lemma 4.6 [34] Let {zk} be the sequence generated by the inexact version of the generalized
PPA scheme (4.1) with γ ∈ (0, 2) and

∑

k δk < +∞. If T−1 is Lipschitz continuous at 0
with modulus a > 0, then there exists an integer k1 such that

‖z̃k − z∗‖ ≤ a
√

a2 + c2k

‖zk − z∗‖ ∀k > k1.

Proof FromTheorem 4.4, we know that limk→0 ‖zk − z̃k‖ = 0. Then, the conclusion follows
immediately from the proof of Lemma 3.4. ��

The main result of this subsection is summarized in the following theorem. This result
reduces to Theorem 2 in [34] if γ = 1.

Theorem 4.7 Assume T−1 is Lipschitz continuous at 0with modulus a > 0 and the proximal
parameter sequence {ck} is bounded away from zero (ck ≥ κ > 0). Let {zk} be the sequence
generated by the inexact version of the generalized PPA scheme (4.1). Then, the sequence
{zk} converges strongly to the unique solution z∗. Moreover, there exists an integer k̂ such
that

‖zk+1 − z∗‖ ≤ θk‖zk − z∗‖ when k > k̂,

where z∗ is a solution point of (1.1) and

0 < θk :=

√
(

1 − min(γ, 2γ − γ 2)
c2k

a2+c2k

)

+ γ δk

1 − γ δk
< 1, when k > k̂.

That is, {zk} converges linearly to z∗.

Proof Recall in Theorem 4.5, it is proved that the sequence {zk} converges to a solution point
z∗ of (1.1). First, it is easy to see that there exists an integer k1 such that

‖ẑk+1 − z∗‖2 ≤
(

1 − min(γ, 2γ − γ 2)
c2k

a2 + c2k

)

‖zk − z∗‖2, k > k1. (4.12)

In addition, it follows from (4.7) that

‖zk+1 − z∗‖ ≤ γ δk(‖zk − z∗‖ + ‖zk+1 − z∗‖) + ‖ẑk+1 − z∗‖
≤ γ δk(‖zk − z∗‖ + ‖zk+1 − z∗‖)

+
√
√
√
√

(

1 − min(γ, 2γ − γ 2)
c2k

a2 + c2k

)

‖zk − z∗‖, k > k1,
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where the last inequality follows from (4.12). Accordingly, we have

‖zk+1 − z∗‖ ≤

√

1 − min(γ, 2γ − γ 2)
c2k

a2+c2k
+ γ δk

1 − γ δk
‖zk − z∗‖ when k > k1.

Note that δk → 0 and ck ≥ κ > 0. Then, there exists an integer k̂, without loss of generality,
assuming k̂ > k1, such that

θk :=

√

1 − min(γ, 2γ − γ 2)
c2k

a2+c2k
+ γ δk

1 − γ δk
< 1, when k > k̂.

Hence, {zk} converges linearly to z∗, a solution point of (1.1). The proof is complete. ��
Remark 7 Again, the results in Theorem 4.7 still hold if γ varies iteratively and the sequence
{γk} satisfies the condition ∑

k γk(2 − γk) = +∞.

Remark 8 Similarly as Sect. 3.2, it can been seen from the proofs of Lemma 4.6 and Theorem
4.7 that the linear convergence of the sequence {zk} generated by (4.1) can be guaranteed
under the less strengthen condition “ T−1 is Lipschitz continuous at the iterates {z̃k} with
positive modulus when k is large enough”.

5 Further Study on Assumption

Under the assumption “T−1 is Lipschitz continuous at 0 with positive modulus”, we have
shown the linear convergence for both the exact version (1.7) and inexact version (4.1) of the
generalized PPA. Recall that the generalized PPA (1.7) include the PPA (1.5) as a special case
with γ = 1 and our analysis extends the result in [34] for (1.5). In [8], the linear convergence
of the generalized PPA (1.7) with ck ≡ c has been studied under the assumption that T is
α-strongly monotone, which is stronger than “T−1 is Lipschitz continuous at 0 with positive
modulus”.

In the following, we show that although we restrict our analysis under the assumption
“T−1 is Lipschitz continuous at 0 with positive modulus”, theoretically this assumption can
be further relaxed in order to ensure the linear convergence of (1.7) and (4.1). Note that the
assertion in the following lemma does not depend on any specific iterative scheme.

Theorem 5.1 Let z∗ be a solution point of (1.1) and the sequence {ck} be both upper and
below bounded, i.e., 0 < κ ≤ ck ≤ ζ for all k. If T−1 is Lipschitz continuous at 0with positive
modulus a, then JckT defined in (1.4) is Lipschitz continuous at z∗ and supk{Lk} < 1, where
Lk is the Lipschitz constant of JckT .

Proof It follows from Lemma 3.3 that there exists τ > 0 such that

‖JckT (z) − z∗‖ ≤ a
√

a2 + c2k

‖z − z∗‖, when ‖c−1
k (z − JckT (z))‖ ≤ τ. (5.1)

Recall that z∗ ∈ T−1(0), JckT (z) ∈ T−1(c−1
k (z − JckT (z)) and T−1 is Lipschitz continuous

at 0. We thus have

‖JckT (z) − z∗‖ → 0, when ‖c−1
k (z − JckT (z))‖ → 0.
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Since ck ≤ ζ for all k, we have 1
ζ
‖JζT (z) − z‖ ≤ 1

ck
‖JckT (z) − z‖ → 0. From above

inequality, we see that ‖z − z∗‖ → 0 when c−1
k ‖z − JckT (z)‖ → 0. Thus, JckT is Lipschitz

continuous at z∗ with the constant Lk := a
√

a2+c2k
≤ a√

a2+κ2
< 1 for any k, according to

(5.1). The proof is complete. ��
Theorem 5.2 Suppose the sequence {ck} is both upper and below bounded, that is, there
exists constants ς and κ such that 0 < κ ≤ ck ≤ ς for all k. Let {zk} be the sequence
generated by the exact version of the generalized PPA (1.7) or the inexact version (4.1). If
JckT is Lipschitz continuous at z∗ with the constant Lk , and LG := supk{Lk} < 1, then

(1) T−1 is Lipschitz continuous at all the iterates {z̃k} with positive modulus when k is
sufficiently large.

(2) {zk} converges linearly to a solution point of (1.1).

Proof For a solution point of (1.1), z∗, we have z∗ = JckT (z∗). Recall the notation z̃k =
JckT (zk). Thus, it holds that

‖zk − z̃k‖ =
∥
∥
∥(zk − z∗) − (JckT (zk) − JckT (z∗))

∥
∥
∥

≥ ‖zk − z∗‖ −
∥
∥
∥JckT (zk) − JckT (z∗)

∥
∥
∥

≥ (1 − LG)‖zk − z∗‖, (5.2)

which implies

1

(1 − LG)2
‖zk − z̃k‖2 ≥ ‖zk − z∗‖2 ≥ ‖z̃k − z∗‖2 + ‖zk − z̃k‖2. (5.3)

Then, it follows from the above inequality and 0 < ck ≤ ς that

‖z̃k − z∗‖2 ≤ 2LG − L2
G

(1 − LG)2
‖zk − z̃k‖2

≤ 2LG − L2
G

(1 − LG)2
ς2

∥
∥
∥c−1

k (zk − z̃k)
∥
∥
∥

2
. (5.4)

According toTheorems 3.1 and 4.4, for the sequence {zk} generated by either the exact version
(1.7) or the inexact version (4.1), we have limk→∞ ‖zk − z̃k‖ = 0. Since ck ≥ κ > 0, there
exists an integer k̂ such that

∥
∥
∥c−1

k (zk − z̃k)
∥
∥
∥ ≤ κ−1‖zk − z̃k‖ ≤ τ when k > k̂,

where τ > 0 is a given constant. Note the facts z̃k ∈ T−1(c−1
k (zk − z̃k)) and z∗ ∈ T−1(0).

Consequently, it follows from (5.4) that T−1 is Lipschitz continuous at all the iterates {z̃k}
with modulus a := ς

√

2LG−L2
G

1−LG
when k is large enough.

Now, we prove (2). Indeed, as commented in Remarks 5 and 8, the linear convergence
of the schemes (1.7) and (4.1) can be ensured since T−1 is Lipschitz continuous at all the
iterates {z̃k} with positive modulus when k is sufficiently large and {ck} is below bounded.
Thus, the assertion (2) is proved. The proof is complete. ��

So far, we have mentioned various conditions including strongly convexity in [8], the
assumption in [34] and the one in Theorems 5.1 and 5.2, to ensure the linear convergence of
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the schemes (1.7) and (4.1). In Fig. 1, we show their relationships for the special case where
ck ≡ c for all k, which is clearly an interesting choice for implementing the schemes (1.7)
and (4.1).

Finally, we indicate that the linear convergence results both in Theorems 3.5 and 4.7
still hold when the condition that T−1 is Lipschitz continuous at 0” is replaced with the
assumption “T is metrically subregular at z∗ ∈ T−1(0)” [23,37]. Let us take Lemma 3.3,
which is a key lemma in our analysis, as an example to illustrate how to extend our results
to the case with the relaxed assumption.

Lemma 5.3 Let T : H → 2H be maximal monotone and z∗ be a solution point of 0 ∈ T (z);
let ck > 0. If T is metrically subregular at z∗ ∈ T−1(0) with modulus a > 0, then there
exists a neighborhood U of z∗ such that

dist(JckT (z), T−1(0)) ≤ a
√

a2 + c2k

dist(z, T−1(0)) when z ∈ U. (5.5)

Proof Applying Property (ii) in Lemma 2.6 with z̃ = z∗ (any z∗ ∈ T−1(0)) and c = ck , we
get

‖z − z∗‖2 ≥ ‖JckT (z) − z∗‖2 + ‖(I − JckT )(z)‖2. (5.6)

We have

c−1
k (I − JckT )(z) ∈ T (JckT (z)).

Hence,

‖z − JckT (z)‖ ≥ ck min{‖z‖ | z ∈ T (JckT (z))} = ckdist(0, T (JckT (z))). (5.7)

Since T is metrically subregular at z∗ ∈ T−1(0) with modulus a > 0, it follows that there
exists a neighborhood U of z∗ such that

dist(JckT (z), T−1(0))2

≤ ‖JckT (z) − PT−1(0)(z)‖2 where PT−1(0)(·) represents the projection

(5.6)≤ ‖z − PT−1(0)(z)‖2 − ‖z − JckT (z)‖2
(5.7)≤ dist(z, T−1(0))2 − c2kdist(0, T (JckT (z)))2

∗≤ dist(z, T−1(0))2 − c2k
a2

dist(JckT (z), T−1(0))2 when z ∈ U. (5.8)

The last inequality (*) is because of the metric subregularity of T at z∗ ∈ T−1(0) and
JckT (z) ∈ U whenever z ∈ U . With rearrangements, the proof is complete. ��

6 Discussion on the Superlinear Convergence

In [34], under the assumption that“ T−1 is Lipschitz continuous at 0 with positive modulus”,
it was shown that the special case of (4.1) with γ = 1 is superlinearly convergent if the
proximal parameter ck → ∞. See Theorem 2 in [34]. One may ask if we can extend the
same superlinear convergence result to (4.1) with a general γ in (0, 2). In this section, we
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Fig. 1 Relationships among different conditions for linear convergence of (1.7) and (4.1)

take a closer look at this issue and give a negative answer to this question. It is sufficient to
just analyze the exact version (1.7) to answer this question.

Recall (3.9) and (3.10). We have

‖zk+1 − z∗‖2 ≤
(

1 − min(γ, 2γ − γ 2)
c2k

a2 + c2k

)

‖zk − z∗‖2. (6.1)

As mentioned, this inequality is tight when the maximal monotone operator T is defined as

(2.1). Note that min(γ, 2γ − γ 2)
c2k

a2+c2k
→ 1 when ck → ∞ and γ = 1. Moreover, we have

0 < min(γ, 2γ − γ 2) < 1 and 0 <
c2k

a2 + c2k
≤ 1

when γ ∈ (0, 2) and γ �= 1. Thus, if ck → ∞, the coefficient in (6.1) goes to 0 only when
γ = 1. This excludes the hope of establishing the superlinear convergence for the exact
version of the generalized PPA (1.7) with γ �= 1 even when ck → ∞.

7 Application to ALM

Previously, we have discussed the linear convergence rates for the generalized PPA schemes
(1.7) and (1.8) in the generic setting of (1.1) where T is an abstract maximal operator. In this
and next sections, we specify our discussion to some special convexminimizationmodels and
discuss the linear convergence rates for two important algorithms which can be obtained by
specifying the exact version of the generalized PPA scheme (1.7). For succinctness, discus-
sions for their inexact counterparts stemming from the inexact version (1.8) are omitted. We
refer to, e.g., [23], for some convergence rate analysis in terms of the iteration complexity for
several splitting algorithms. The analysis therein is based on the inexact Krasosel’skii-Mann
iteration from the nonexpansive operator perspective.

Let us first recall some known results and summarize them in the following two lemmas.
The proof of the first lemma can be found in [33], and the proof of the second is trivial.

Lemma 7.1 Let f : �n → � be closed, proper and convex. Then, we have

i) If f is μ f -strongly convex, then f ∗ is differentiable and ∇ f ∗ is (1/μ f )-Lipschitz con-
tinuous.
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ii) If f is differentiable and ∇ f is L f -Lipschitz continuous, then f ∗ is 1/L f -strongly
convex.

Lemma 7.2 Let f : �n → � be closed, proper and strongly convex; let ∂ f be the subdif-
ferential of f . Then, ∂ f is strongly monotone.

7.1 Preliminaries of ALM

First, we consider a canonical convex minimization model with linear constraints:

min f (x)
s.t. Ax = b.

(7.1)

where f : Rn → (−∞,∞] is a closed and convex function, A ∈ Rm×n and b ∈ Rm .
For solving (7.1), a benchmark is the augmented Lagrangian method (ALM) originally

proposed in [21,32]. Its iterative scheme reads as

{

xk+1 = argminx { f (x) − 〈pk, Ax〉 + 1
2ck‖Ax − b‖2},

pk+1 = pk − ck(Axk+1 − b),
(7.2)

where pk is the Lagrange multiplier and ck > 0 is the penalty parameter of the linear
constraints. As analyzed in [34], the dual problem of (7.1) is

max
p

{− f ∗(A� p) + 〈b, p〉}, (7.3)

where “*” denotes the conjugate of a function, see [34]. Thus, solving (7.3) is equivalent to

0 ∈ SA(p) := A · ∂ f ∗ · (A� p) − b, (7.4)

which is a specific application of the generic setting of (1.1) with T = SA. In [35], it was
precisely analyzed that the ALM scheme (7.2) is an application of the PPA (1.2) to the dual
problem (7.4). Also in [34], it was mentioned that the mapping SA(p) defined in (7.4) is
maximal monotone.

7.2 A Generalized ALM

Following the analysis in [34], it is easy to see that if we apply the generalized PPA scheme
(1.7) to (7.4), we can obtain a generalized ALM scheme as follows

{

xk+1 = argminx { f (x) − 〈pk, Ax〉 + 1
2ck‖Ax − b‖2},

pk+1 = pk − γ ck(Axk+1 − b),
(7.5)

which differs from the original ALM (7.2) in that there is a parameter γ ∈ (0, 2) for updating
the Lagrange multiplier pk+1. The details are presented in the following theorem.

Theorem 7.3 The generalized ALM scheme (7.5) is an application of the exact version of
the generalized PPA (1.7) to (7.4).

Proof The proof can be referred to that of Lemma 8.1 with the special consideration of g = 0
and B = 0. Thus, we omit it. ��
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7.3 Linear Convergence of ALM schemes

Below, we show some conditions that can sufficiently ensure that the mapping S−1
A (SA

defined in (7.4)) is Lipschitz continuous at 0 with positive modulus, and thus guarantee the
linear convergence rate of the generalized ALM (7.5) (also the original ALM (7.2) if taking
γ = 1 in (7.5)).

Theorem 7.4 Let SA be defined in (7.4) and {pk} be the sequence generated by the gen-
eralized ALM scheme (7.5). For the model (7.1), if f is convex and twice continuously
differentiable at a neighborhood of x∗, and the matrix A is full row rank. Then, we have

(1) The mapping SA is strongly monotone at a neighborhood of p∗ (p∗ is a zero point of
SA(p) defined in (7.4)).

(2) The mapping S−1
A exists and it is Lipschitz continuous at the origin with a positive

modulus.
(3) The sequence {pk} converges locally on a linear rate to a zero point of SA.

Proof (1) Since f is twice continuously differentiable at a neighborhood of x∗, ∇ f is L f -
Lipschitz continuous locally. It follows fromProperty (ii) ofLemma7.1 that f ∗ is 1

L f
-strongly

convex locally. Then, according to Lemma 7.2, we know that ∂ f ∗ is 1
L f

-strongly monotone

locally. For any p, p′ ∈ N (p∗, δ) ⊆ Rm ; w ∈ SA(p) and w′ ∈ SA(p′); there exist
u ∈ ∂ f ∗ · (A� p) and u′ ∈ ∂ f ∗ · (A� p′) such that w = Au−b and w′ = Au′−b. We thus
have

〈w − w′, p − p′〉 = 〈A(u − u′), p − p′〉 = 〈u − u′, A�(p − p′)〉
≥ 1

L f
‖A�(p − p′)‖2 ≥ 1

L f
λmin(AA

�)‖p − p′‖2,

in which λmin(AA�) is the minimal eigenvalue of AA� and it holds that λmin(AA�) > 0
because A is assumed to be full row rank. Note that the first inequality above is because of
the 1

L f
-strong monotonicity of ∂ f ∗ at the neighborhood N (A� p∗, δ′) ⊆ Rn , Thus, it follows

from Definition 2.3 that the mapping SA is strongly monotone locally. For assertion (2), it is
an immediate conclusion based on Definitions 2.3 and 2.4. For assertion (3), it is a conclusion
of Theorem 3.5 with T = SA. The proof is complete. ��
Remark 9 Note that the full-row-rank assumption of the matrix A in Theorem 7.4 can be
replaced with other assumptions such as “the Hessian matrix ∇2 f (x∗) is positive definite
in the null space of A�”, i.e., the strong second-order condition as analyzed in [35] and
many others, provided that more assumptions such as the strict complementary condition are
further assumed for the model (7.1) per se. This discussion is beyond the scope of this paper,
and we omit the analysis in details.

8 Application to ADMM

In this section, we consider another convex minimization model with a separable objective
function:

minx { f (x) + g(Mx)} (8.1)

where f : Rn → (−∞,∞] and g : Rm → (−∞,∞] are closed and convex functions, and
the matrix M ∈ Rm×n . Again, we only focus on the specification of the exact version of the
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generalized PPA (1.7) and discuss how to ensure its linear convergence rate for the particular
convex minimization context (8.1).

8.1 Preliminaries of ADMM

One particular case of (8.1) with a wide range of applications is where the functions f and g
have their own properties and it is necessary to treat them individually in algorithmic design.
For this purpose, we can reformulate (8.1) as

min f (x) + g(w)

s.t. Mx = w,
(8.2)

wherew ∈ Rm is an auxiliary variable. For solving (8.2), a benchmark is the ADMM scheme
originally proposed in [16]. The ADMM scheme for (8.2) reads as

⎧

⎨

⎩

xk+1 = argminx { f (x) + 〈pk, Mx〉 + 1
2λ‖Mx − wk‖2},

wk+1 = argminw{g(w) − 〈pk, w〉 + 1
2λ‖Mxk+1 − w‖2},

pk+1 = pk + λ(Mxk+1 − wk+1),

(8.3)

where pk is the Lagrange multiplier and λ > 0 is a penalty parameter of the linear constraints
in (8.2).

Next, we recall some results in [12,15] to demonstrate that the ADMM is indeed a special
case of the PPA (1.5). All the details can be found in [12]. First, the dual of (8.2) is

max
p∈Rm

−{ f ∗(−M� p) + g∗(p)} (8.4)

where “ f ∗” and “g∗” denote the conjugate of the convex functions f and g, respectively.
Let

A := ∂[ f ∗ · (−M�)] and B := ∂g∗. (8.5)

As shown in [33], both A and B defined in (8.5) are maximal monotone. Then, (8.4) can be
written as

0 ∈ A(p) + B(p). (8.6)

We use JλA and JλB to denote the resolvent operators of A and B, respectively. Moreover,
we denote

Gλ,A,B = JλA(2JλB − I ) + (I − JλB) (8.7)

and

Sλ,A,B := G−1
λ,A,B − I. (8.8)

As shown in [12], Sλ,A,B is maximal monotone whenA and B are both maximal monotone.
Indeed, the definition of Sλ,A,B can be expressed as

Sλ,A,B = {(v + λb, u − v)|(u, b) ∈ B, (v, a) ∈ A, v + λa = u − λb}, (8.9)

where A and B are defined in (8.5). Moreover, let p∗ be an solution point of (8.6) and z∗ a
solution point of

0 ∈ Sλ,A,B(z), (8.10)

123



846 J Sci Comput (2018) 74:826–850

and let the sequence {zk} be iteratively represented by

zk+1 = JλA
(

(2JλB − I )(zk)
) + (I − JλB)(zk). (8.11)

Indeed, (8.11) is exactly the application of the Douglas–Rachford splitting method (DRSM)
in [11,24] to (8.6). According to [12], we know some conclusions such as: (1) If z∗ is a
solution point of (8.10), then we have p∗ := JλB(z∗) is a solution point of (8.6); and (2)
If p∗ is a solution point of (8.6) and (x∗, w∗) is a solution point of (8.2), then we have
x∗ ∈ ∂ f ∗ · (−M� p∗) and w∗ ∈ ∂g∗(p∗).

Applying the scheme (1.7)with T = Sλ,A,B, we obtain the exact version of the generalized
PPA scheme

zk+1 = zk − γ (zk − JSλ,A,B (zk)) with γ ∈ (0, 2). (8.12)

Indeed, via (8.12), the following exact version of the generalized ADMM scheme proposed
in [12] can be recovered

⎧

⎨

⎩

xk+1 = argminx { f (x) + 〈pk, Mx〉 + 1
2λ‖Mx − wk‖2},

wk+1 = argminw{g(w) − 〈pk, w〉 + 1
2λ‖γ Mxk+1 + (1 − γ )wk − w‖2},

pk+1 = pk + λ(γ Mxk+1 + (1 − γ )wk − wk+1).

(8.13)

In the following,we elucidate the relationship between the sequence {(xk, wk, pk)} generated
by the generalized ADMM (8.13) and {zk} represented by (8.12); and demonstrate that the
generalized ADMM (8.13) can be written compactly as (8.12). The following lemma also
clearly shows that the generalized ADMM (8.13) is an application of the generalized PPA
(1.7) with T = Sλ,A,B and ck ≡ 1 to (8.10).

Lemma 8.1 Let {(xk, wk, pk)} be generated by the generalized ADMM (8.13) and {zk} be
represented by (8.12); the operator Sλ,A,B be defined in (8.8). Assume that the initial points
satisfy with z0 = p0 + λw0 and p0 = JλB(z0). Then, it holds that zk = pk + λwk and
pk = JλB(zk) for all iterates.

Proof The proof can be found in [12] (Theorem 8 therein). ��
Finally, let us first present a lemma; its proof can be found in [24].

Lemma 8.2 The operator Gλ,A,B defined in (8.7) is firmly nonexpansive and it satisfies

〈Gλ,A,B(z) − Gλ,A,B(z′), z − z′〉 ≥ ‖Gλ,A,B(z) − Gλ,A,B(z′)‖2
+〈(I − JλB)(z) − (I − JλB(z′), JλB(z) − JλB(z′))〉,
∀ z, z′ ∈ H. (8.14)

8.2 When Does the Assumption Hold?

Based on our previous analysis, it is clear that the linear convergence of the generalized
ADMM (8.13) can be ensured by the assumption “The mapping S−1

λ,A,B (Sλ,A,B defined in
(8.8)) exists and it is Lipschitz continuous at 0 with positive modulus”. When the specific
model (8.1) is considered, it is interesting to discern sufficient conditions that can ensure this
assumption and thus guarantee the linear convergence of the generalized ADMM scheme
(8.13); this is the main purpose of this subsection. We also refer to, e.g., [5,10,20] for
discussions on the linear convergence of the original ADMM (8.3) for some special cases.

In the following, we show one scenario that can sufficiently ensure the mentioned assump-
tion for the specificmodel (8.1) and thus guarantee the linear convergence of the the sequence
{zk} represented by (8.12).
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Theorem 8.3 For the model (8.1), if the function g is differentiable and strongly convex, and
∇g is Lipschitz continuous near a solution point, then we have

(1) The operator B := ∇g∗ is both strongly monotone and Lipschitz continuous near the
solution point.

(2) The mapping S−1
λ,A,B is Lipschitz continuous at the iterate z̃k := JSλ,A,B (zk)with positive

modulus when k stays large enough.
(3) The sequence {zk} represented by (8.12) converges linearly to a solution point of (8.10).
Proof (1) According to Lemma 7.1, we know that g∗ is differentiable. Thus, B := ∇g∗

is both strongly monotone and Lipschitz continuous near the solution point of (8.4)
according to Lemmas 7.1 and 7.2. Thus, the first conclusion is proved.

(2) Next, we show that the Lipschitz constant of the operator Gλ,A,B is less than 1. Note
that 1

λ
((I − JλB)(z)) ∈ B(JλB(z)). Let us assume that the strongly monotone modulus

of B is α. That is,

〈(I − JλB)(z) − (I − JλB)(z′), JλB(z) − JλB(z′)〉
≥ λα‖JλB(z) − JλB(z′)‖2, ∀z, z′ ∈ H.

Moreover, let us assume that Lipschitz continuous constant of B is β. Then, we have

‖z − z′‖2 = ‖JλB(z) − JλB(z′) + λB(JλB(z)) − λB(JλB(z′))‖2
≤ (1 + λβ)2‖JλB(z) − JλB(z′)‖2, ∀z, z′ ∈ H.

Combining these two inequalities, we get

〈(I − JλB)(z) − (I − JλB)(z′), JλB(z) − JλB(z′)〉
≥ λα

(1 + λβ)2
‖z − z′‖2, ∀z, z′ ∈ H. (8.15)

Then, it follows from Lemma 8.2 and (8.15) that

‖z − z′‖2 ≥ 〈Gλ,A,B(z) − Gλ,A,B(z′), z − z′〉
≥ ‖Gλ,A,B(z) − Gλ,A,B(z′)‖2 + 〈(I − JλB)(z)

−(I − JλB(z′), JλB(z) − JλB(z′))〉
≥ ‖Gλ,A,B(z) − Gλ,A,B(z′)‖2 + λα

(1 + λβ)2
‖z − z′‖2, ∀z, z′ ∈ H,

where the first inequality follows from the non-expansiveness of the operator Gλ,A,B;
the second inequality is because of (8.14) and the last inequality holds because of (8.15).
Consequently, we prove that

‖Gλ,A,B(z) − Gλ,A,B(z′)‖ ≤
√

1 − λα

(1 + λβ)2
‖z − z′‖, ∀z, z′ ∈ H.

Recall the definitions of the strongly monotonicity and the Lipschitz continuity of B. We
have α ≤ β and thus the above inequality means the fact that the Lipschitz continuity
constant of the operator Gλ,A,B is less than 1. Finally, it follows from Theorem 5.2
with T = Sλ,A,B, ck ≡ 1 and G = Gλ,A,B that the mapping S−1

λ,A,B is Lipschitz

continuous at the iterate {z̃k} with positive modulus when k stays large enough, where
z̃k := JSλ,A,B (zk).

(3) Finally, the linear convergence of the sequence {zk} follows assertion (2) of Theorem 5.2
with ck ≡ 1 and assertion (2) immediately. The proof is complete. ��
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Note that the linear convergence of {zk} represented by (8.12) can be easily specified as
the linear convergence of the generalized ADMM scheme (8.13) in terms of the variables in
(8.2) and its dual. We summarize the specifications in the following corollary and omit the
proofs.

Corollary 8.4 When the sequence {zk} represented by (8.12) converges linearly to a solution
point of (8.10), we have

(1) The sequence {pk} converges R-linearly to a solution point p∗ of the dual problem (8.4).
(2) The sequence {wk} converges R-linearly to a solution point w∗ of the primal problem

(8.2).
(3) The sequence {Mxk} converges R-linearly to Mx∗, where x∗ is a solution point of the pri-

mal problem (8.1). Moreover, if M is full column rank, then the sequence {xk} converges
R-linearly to x∗.

Remark 10 Under one of the following conditions, we can also prove the conclusion “The
mapping S−1

λ,A,B (Sλ,A,B defined in (8.8)) exists and it is Lipschitz continuous at 0 with
positive modulus”. We omit the proof because it is analogous to that of Theorem 8.3.

(1) The matrix M is full row rank, the function f is strongly convex and ∇ f is Lipschitz
continuous near x∗, where x∗ is a solution point of (8.1).

(2) The matrix M is full row rank, the function f is convex and g is strongly convex near
Mx∗, and ∇ f is Lipschitz continuous near x∗, where x∗ is a solution point of (8.1).

(3) The function f is strongly convex near x∗ and g is convex, and∇g is Lipschitz continuous
near Mx∗, where x∗ is a solution point of (8.1).

Together with the condition in Theorem 8.3, these conditions coincide with the conditions
in [9] (when B = −I and b = 0 in the model (2) therein) to ensure the linear convergence
of the generalized ADMM (8.13) for solving (8.1). In other words, the assumption “The
mapping S−1

λ,A,B (Sλ,A,B defined in (8.8)) exists and it is Lipschitz continuous at 0 with
positive modulus” is weaker than these conditions.

Remark 11 In [8], the linear convergence of the generalized ADMM (8.13) for solving (8.1)
is ensured under the following assumptions: (1)M is full rank, f is convex and differentiable,
∇ f is Lipschitz continuous, and g is strongly convex; (2) f is strongly convex, g is convex and
differentiable, and∇g is Lipschitz continuous.We here give some less strengthen conditions.

9 Conclusion

In this paper, we extend the condition in [34] that can ensure the linear convergence of the
proximal point algorithm (PPA) to a generalized PPA scheme. Both the exact and inexact
versions of the generalized PPA are studied, and their linear convergence rates are established
under the same condition as the original PPA in [34]. We specifically consider two convex
optimization models and study the linear convergence rates for generalized versions of the
benchmark augmented Lagrangian method (ALM) and the alternating direction method of
multipliers (ADMM), both are special cases of the proposed generalized PPA. Some concrete
conditions are specified in the convex optimization contexts. It is interesting to find that the
condition in [34] turns out to be still weaker than most of the existing conditions in the
literature that were proposed to ensure the linear convergence for various specific forms of
the PPA. This study provides a unified understanding of the linear convergence of a family
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of operator splitting methods which have found a board spectrum of applications in various
areas. These methods include the mentioned ALM, ADMM, their generalized and inexact
versions, the Douglas–Rachford splitting method, the Peaceman–Rachford splitting method,
and their generalized versions. Last, it is worthwhile to mention that our discussion can
be easily extended to the case with weaker assumptions such as the metric subregularity
considered in, e.g., [37].
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