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Abstract The proximal point algorithm (PPA) is a fundamental method in optimiza-
tion and it has been well studied in the literature. Recently a generalized version of the
PPA with a step size in (0, 2) has been proposed. Inheriting all important theoretical
properties of the original PPA, the generalizedPPAhas somenumerical advantages that
have beenwell verified in the literature by various applications.A common sense is that
larger step sizes are preferred whenever the convergence can be theoretically ensured;
thus it is interesting to knowwhether or not the step size of the generalized PPA can be
as large as 2. We give a negative answer to this question. Some counterexamples are
constructed to illustrate the divergence of the generalized PPA with step size 2 in both
generic and specific settings, including the generalized versions of the very popular
augmented Lagrangian method and the alternating direction method of multipliers. A
by-product of our analysis is the failure of convergence of the Peaceman–Rachford
splitting method and a generalized version of the forward–backward splitting method
with step size 1.5.
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1 Introduction

A basic mathematical problem is finding a zero point, denoted by z∗, of a maximal
monotone set-valued mapping T :

0 ∈ T (z), (1)

where T : H → 2H andH is a real Hilbert spacewith inner product 〈·, ·〉. Throughout,
the set of T ’s zero points, denoted by zer(T ), is assumed to be nonempty. Given an
initial point z0 inH, the proximal point algorithm (PPA) proposed originally in [22,23]
for (1) iteratively generates a sequence {zk} by the scheme

0 ∈ cT (zk+1) + zk+1 − zk, (2)

where the proximal parameter c is positive. We refer to, e.g. [30], for the study of
convergence of the PPA (2) and the restriction on the proximal parameter c. Let
JcT := (I + cT )−1 be the resolvent operator of the set-valued mapping T . Then, the
PPA (2) can be rewritten as

zk+1 = JcT (zk). (3)

ThePPA (3) has been playing a fundamental role both theoretically and algorithmically
in optimization. In particular, when the abstract operator T is specified, the PPA (3)
can be specified as a number of fundamental algorithms in different settings such as
the augmented Lagrangian method (ALM) in [19,28], alternating direction method of
multipliers (ADMM) in [16], Douglas–Rachford splitting method (DRSM) in [9,21],
projected gradient method [27], extragradient method in [20], and so on. We refer to,
e.g., [18,24,30,33], for some important literatures in which the importance of PPA
was well elaborated on.

In [17], the generalized version of PPA

zk+1 = zk − γ (zk − JcT (zk)) (4)

was proposed with γ ∈ (0, 2). Both the generic setting (4) and its special settings have
been further analyzed in some recent literatures. Note that we can discuss the more
general case for (4) with a sequence of dynamical step sizes {γk} under the restriction
0 < infk{γk} ≤ γk ≤ supk{γk} < 2. But to expose our main idea with lighter notation,
we focus on the constant step size case: γk ≡ γ . Obviously, the original PPA (3) is a
special case of (4) with γ = 1. Moreover, the generalized PPA scheme (4) includes
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other interesting methods as special cases such as the generalized ALM in [34], the
generalized ADMM in [12] and the generalized DRSM in [7,8]. For the convergence
of (4) with γ ∈ (0, 2), it was shown in [34] that under the assumption that T−1 is
Lipschitz continuous at the origin; this is an extension of the analysis in [30] for the
original PPA (3). Numerically, the step size γ ∈ (0, 2), particularly when γ is close
to 2, could accelerate the original PPA (3) as widely verified in the literature, see,
e.g., [3,11,13,35] for some numerical verification in the particular ALM and ADMM
contexts1.

A common sense is that larger step sizes are preferred whenever the convergence
can be theoretically ensured. We are thus interested in the question of whether or not
the step size γ can be as large as 2 in the generalized PPA scheme (4). Theoretically,
it seems that very little is known about this question—a clear case is when the PPA
(3) corresponds to the DRSM. In this case, the scheme (4) with γ = 2 reduces to the
Peaceman–Rachford splitting method (PRSM) in [21,26] and as analyzed in [7,10],
the convergence of PRSM is not guaranteed. We will further discuss this case in
Sect. 6. Empirically, this case works occasionally; and indeed sometimes it is more
efficiently—as shown in [15] for the comparison between DRSM and PRSM.

In this note, we answer this perplexing question negatively: the convergence of the
generalized PPA (4), if no additional assumption on T is assumed, is not necessar-
ily convergent when γ = 2. In addition to the generic setting where T represents
an abstract maximal monotone operator, we discuss several specific settings of (1)
where T represents some particular operators and the scheme (4) can be specified
as generalized versions of some very popular algorithms in the literature such as the
ALM and the ADMM. Some counterexamples are constructed to show the divergence
of (4) with γ = 2 in different settings. Our analysis thus ascertain that there is no
convergence for the generalized versions of a series of popular algorithms with step
size 2. A by-product of our analysis is that we further show the failure of convergence
for the PRSM (even though it is known already in [7,10]) and a generalized version of
the forward–backward splitting method (FBSM) in [25] with a step size 1.5 (its upper
bound).

2 Preliminaries

This section recalls some definitions and known results for further discussions.

Definition 1 [2] Let T : H → 2H be set-valued and maximal monotone. Then, T is
called β-cocoercive if there exists a positive scalar β such that

〈T (z) − T (z′), z − z′〉 ≥ β‖T (z) − T (z′)‖2, ∀ z, z′ ∈ H.

1 Note that it is even possible to consider γ > 2 in (4); but this case usually requires much stronger
assumptions on T to ensure the convergence, see, e.g., [7] for details. We thus do not consider the case of
γ > 2 in this note.
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Definition 2 [2] Let T : H → 2H be uniformly monotone with modulus � :
[0,+∞) → [0,+∞) if � is increasing, vanishes only at 0, and

〈T (x) − T (y), x − y〉 ≥ �(‖x − y‖).

It is clear that the strong monotonicity implies the uniform monotonicity, which itself
implies the monotonicity, see e.g., [2].

In the following, we recall some known results regarding the convergence of (4)
with γ ∈ (0, 2). Their proofs can be found in, e.g., [34].

Theorem 1 [34] Let {zk} be the sequence generated by the generalized PPA (4) with
γ ∈ (0, 2). For a solution point of (1) z∗, then we have

‖zk+1 − z∗‖2 ≤ ‖zk − z∗‖2 − γ (2 − γ )

∥
∥
∥zk − z̃k

∥
∥
∥

2
, (5)

where z̃k = JcT (zk).

Theorem 2 [34] Let {zk} be the sequence generated by the generalized PPA (4) with
γ ∈ (0, 2). If zer(T ) is not empty, then {zk} globally converges to a solution point of
(1).

The following lemma is crucial for constructing the counterexamples to illustrate
the divergence of (4) with γ = 2.

Lemma 1 [1,4] Assume that A ∈ �n×n (n ≥ 2), A� = −A and the scalar c > 0.
Then the matrix (I + cA)−1(I − cA) is orthogonal.

3 Divergence of the generalized PPA (4) with γ = 2

We first show the divergence of the generalized PPA (4) with γ = 2 in the generic
setting of finding a zero point of a maximal monotone operator, i.e., the problem (1).

We consider the case of (1) where T is a skew symmetric matrix in the space�n×n ,
denoted by A. That is, we solve the system of linear equation Ax = 0. In this case,
the generalized PPA (4) with γ = 2 is specified as

zk+1 = 2z̃k − zk = (2(I + cA)−1 − I )(zk) = (I + cA)−1(I − cA)(zk). (6)

If n = 2, then the solution of Ax = 0 is unique, i.e., x∗ = 0. We take z0 �= 0
as the initial iterate and implement the iteration (6). It follows from Lemma 1 that
‖zk‖2 = ‖z0‖2 �= 0 for any k. Thus, the sequence {zk} is divergent.

Indeed, more examples for the case where n > 2 can also be constructed. For
example, we choose A as

A(i, j) =
⎧

⎨

⎩

0, if i = j;
1, if i > j;
−1, if i < j;

(7)
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and fix c = 1 and z0 = en . Hereafter, ei ∈ �n denotes the vector whose i-th entry
is 1 and the others are 0. Then, if n = 2m − 1 (m > 1), it is easy to verify that the
sequence {zk} generated by (6), starting with z0, is n-periodic satisfying

zk =
{

e1, k = nt + 1;
(−1)i−1ei , k = nt + i, i = 2, . . . , n; ∀ t ∈ Z.

Thus, the sequence {zk} is not convergent. Meanwhile, if n = 2m (m > 1), then the
sequence {zk} is 2n-periodic satisfying

zk =

⎧

⎪⎪⎨

⎪⎪⎩

e1, k = nt + 1;
(−1)i−1ei , k = nt + i, i = 2, . . . , n;
−e1, k = nt + n + 1;
(−1)i ei , k = nt + n + i, i = 2, . . . , n;

∀ t ∈ Z,

which is clearly divergent.

4 Divergence of the generalized ALM with step size γ = 2

Now we consider some special cases of the abstract model (1) in which T represents
some specific operators and accordingly the PPA (3) can be specified as some well-
known algorithms in the literature. We show that the generalized PPA (4) with γ = 2
may be divergent for these special cases.

We first consider the canonical linearly constrained convex programming problem

minx f (x)
s.t. Ax = b,

(8)

where f : �n → � is a convex function, A ∈ �m×n , b ∈ �m . Assume that
ri(dom( f )) ∩ F �= φ, where F := {u ∈ �n| Ax = b}. As analyzed in [30], the
dual problem of (8) is

max
λ

{− f ∗(A�λ) + 〈b, λ〉}, (9)

where “*” denotes the conjugate of a convex function, see [29]. Thus, the problem
(8) can be regarded as a special case of (1) in sense of the optimality condition of (9).
Note that the solution set of (9) is nonempty if the solution set of (8) is assumed to be
nonempty.

When the ALM in [19,28] is applied to solve (8), the iterative scheme reads as

{

xk+1 = argminx { f (x) − 〈λk, Ax − b〉 + �
2‖Ax − b‖2},

λk+1 = λk − �(Axk+1 − b),
(10)

where � > 0 is a penalty parameter. It was shown in [31] that the scheme (10) is a
special case of the PPA (3) with T := A · ∂ f ∗ · (A�·) − b and c := �. Therefore,
applying the generalized PPA (4), we obtain a generalized version of the ALM:
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{

xk+1 = argminx { f (x) − 〈λk, Ax − b〉 + �
2‖Ax − b‖2},

λk+1 = λk − γ �(Axk+1 − b),
(11)

where the step size γ ∈ (0, 2), see more analysis in, e.g., [17,34]. We refer to [3] for
the verification of numerical acceleration of the generalized ALM (11).

To analyze the convergence of the generalized ALM (11), we recall a theorem in
[34].

Theorem 3 Let {(xk, λk)} be the sequence generated by the generalized ALM with
γ ∈ (0, 2) and � > 0. Then, we have

‖λk+1 − λ∗‖2 ≤ ‖λk − λ∗‖2 − γ (2 − γ )�2‖Axk+1 − b‖2. (12)

This theorem implies the strict contraction of the sequence {λk} and thus essentially
ensures the convergence of the generalized ALM (11) with γ ∈ (0, 2) in sense of the
dual variable λ. If γ = 2 in (11), the conclusion (12) reduces to

‖λk+1 − λ∗‖2 ≤ ‖λk − λ∗‖2,
which does not guarantee the strict contraction of the sequence {λk} and thus the
convergence of (11) may not be ensured. It is also our starting point to construct
an example to show that the generalized ALM (11) with γ = 2 is not necessarily
convergent. Indeed, in (8), we specifically take

f (x) = w�x with w = (1, 1)�, A =
(

0 1
−1 0

)

and b = (0, 0)�.

Obviously, for this example the optimal primal and dual solutions are x∗ = (0, 0)�
and λ∗ = (1,−1)�, respectively. Furthermore, we set the penalty parameter � = 1 in
(11) and the initial iterate λ0 = (0, 0)�. Then we have

xk =
{

(−1,−1)�, k is odd;
(1, 1)�, k is even.

λk =
{

2(1,−1)�, k is odd;
(0, 0)�, k is even.

This means the sequence {λk} generated by the generalized ALM (11) with γ = 2 is
not convergent.

5 Divergence of the generalized ADMM with step size γ = 2

In this section, we show that when the PPA (3) reduces to the ADMM in [16], its
generalized version (4) with γ = 2 may not be convergent. Thus, the generalized
ADMM with step size 2 is not necessarily convergent.

We consider the following linearly constrained two-block separable convex mini-
mization problem

minx,y f (x) + g(y)
s.t. Ax + By = b,

(13)
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where f : �n → � and g : �l → � are convex functions, A ∈ �m×n , B ∈ �m×l

and b ∈ �m . Its dual problem can be written as

min
λ

{ f ∗(A�λ) + g∗(B�λ) − b�λ}. (14)

Thus, finding a solution point of (13) can be regarded as a special case of (1). Recall
that the iterative scheme of ADMM in [16] for (13) reads as

⎧

⎨

⎩

xk+1 = argminx { f (x) − 〈λk, Ax〉 + α
2 ‖Ax + Byk − b‖2},

yk+1 = argminy{g(y) − 〈λk, By〉 + α
2 ‖Axk+1 + By − b‖2},

λk+1 = λk − α(Axk+1 + Byk+1 − b),
(15)

where λk is the Lagrange multiplier and α > 0 is a penalty parameter. In [12,14],
it was shown that the ADMM (15) is a special case of the PPA (3) with c = 1 and
T = Sα,A,B where Sα,A,B is defined as

Sα,A,B := G−1
α,A,B − I (16)

in which I is the identity mapping,

Gα,A,B = JαA ◦ (2JαB − I ) + (I − JαB); (17)

A := A∂ f ∗A�(·) − b, B := B∂g∗B�(·); (18)

and JαA and JαB are the resolvent operators of A and B, respectively.
Hence, the generalized PPA (4) was specified in [12] (see Theorem 8 therein) to

generate the generalized ADMM for model (13):

⎧

⎨

⎩

xk+1 = argminx { f (x) − 〈λk, Ax〉 + α
2 ‖Ax + Byk − b‖2},

yk+1 = argminy{g(y) − 〈λk, By〉 + α
2 ‖γ (Axk+1 − b)−(1 − γ )Byk + By‖2},

λk+1 = λk − α(γ (Axk+1 − b)−(1 − γ )Byk + Byk+1),

(19)

where γ ∈ (0, 2). We refer to [11,13,35] for some theoretical and numerical studies
for the generalized ADMM (19) with γ ∈ (0, 2).

Next, we construct an example to show the divergence of the generalized ADMM
(19) with γ = 2. Indeed, we consider the special quadratic programming case of (13):

min 1
2 x

�
(

1 0
0 1

)

x + 1
2 y

�
⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠ y

s.t.

⎛

⎝

1 0
0 0
0 0

⎞

⎠ x +
⎛

⎝

1 0 0
0 0 0
0 0 0

⎞

⎠ y =
⎛

⎝

0
0
0

⎞

⎠ .

(20)
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It is easy to see that the optimal solution of (20) is x∗ = (0, 0)� and y∗ = (0, 0, 0)�;
and the optimal solution of its dual problem is λ∗ = (0, λ2, λ3)� with arbitrary λ2
and λ3 in �.

Applying (19) with γ = 2 to (20), if we fix α = 1 and take the initial iterate
y0 = λ0 = (1, 1, 0)�, then it is easy to see that the sequence {yk} is given by

yk =
{

(0,−1, 0)�, k is odd;
(0, 1, 0)�, k is even.

(21)

Thus, it is clear that the sequence generated by the generalized ADMM (19) with
γ = 2 is divergent for the example (20).

6 Divergence of the PRSM

Now, we consider the special case of (1) where T is the sum of twomaximal monotone
operators:

0 ∈ A(z) + B(z), (22)

where both A : H → 2H and B : H → 2H are maximal monotone. To solve (22),
it was shown in [12] that the well-known DRSM in [9,21] can be written as a special
case of the PPA (3) with T = Sα,A,B, i.e.,

zk+1 = JSα,A,B (zk), (23)

where Sα,A,B is defined in (16) (except that A and B are not necessarily given by
(18)). Thus, applying the generalized PPA (4) results in the generalized DRSM for the
special setting (22):

zk+1 = zk − γ (zk − JSα,A,B (zk)) γ ∈ (0, 2), (24)

with γ ∈ (0, 2). The convergence analysis of this generalized DRSM (24) can be
found in, e.g., [7,8,12,34]. Moreover, the PRSM in [21,26] is known to be the case
where γ = 2 in (24), see, e.g., [7]. Indeed, for the PRSM, its divergence is known
already, see [7,10,21].

Aby-product of our previous analysis is thatwe can show that the PRSMis divergent
for a class of problems in form of (22):

(A + B)z = 0, (25)

whenever A ∈ �n×n and B ∈ �n×n are matrices. In the following, we present a
theorem.

Theorem 4 Assume that A, B ∈ �n×n (n ≥ 2), A� = −A, B� = −B and a scalar
α > 0. Then the matrix (I + αA)−1(I − αA)(I + αB)−1(I − αB) is orthogonal.
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Proof Note that

(I + αA)−1(I − αA)(I + αB)−1(I − αB)
[

(I + αA)−1(I − αA)(I + αB)−1(I − αB)
]�

= (I + αA)−1(I − αA)(I + αB)−1(I − αB)(I − αB�)(I + αB�)−1(I − αA�)(I + αA�)−1

= (I + αA)−1(I − αA)(I + αB)−1(I − αB)(I + αB)(I − αB)−1(I + αA)(I − αA)−1

= (I + αA)−1(I − αA)(I + αB)−1(I + αB)(I − αB)(I − αB)−1(I + αA)(I − αA)−1

= (I + αA)−1(I − αA)(I + αA)(I − αA)−1

= I.

The assertion follows directly. ��
Based on this theorem,wewill see that the PRSMis divergent for a class of problems

defined in (25) for n = 2. Indeed, according to (24) with γ = 2, we have

zk+1 = 2
[

(I + αA)−1
(

2(I + αB)−1 − I
)

+ I − (I + αB)−1
]

zk − zk

= 2

[

(I + αA)−1
(

2(I + αB)−1 − I
)

− 1

2
(2(I + αB)−1 − I )

]

zk

=
[

2(I + αA)−1 − I
] [

2(I + αB)−1 − I
]

zk

= (I + αA)−1(I − αA)(I + αB)−1(I − αB)zk . (26)

For the case n = 2, the solution of (25) is unique, i.e., z∗ = 0. If we take z0 �= 0
as the initial iterate and implement PRSM for (25), then we have ‖zk‖2 = ‖z0‖2 �= 0
for any k because of Theorem 4. Thus, the sequence {zk} generated by the PRSM is
divergent for the model (25).

For the case where n > 2, the solution set of (25) may not be unique, meaning the
null space of A + B may include nonzero vectors. For this case, we can construct the
following example to show the divergence of PRSM. Let us choose

A(i, j) =
⎧

⎨

⎩

0, if i = j;
1, if i > j;
−1, if i < j;

and B(i, j) =
⎧

⎨

⎩

−1, if (i, j) = (1, n);
1, if (i, j) = (n, 1);
0, otherwise.

Then we fix α = 1 in (24) and set the initial iterate as z0 = en . For the case where
n = 2m + 1 and m > 1, it is easy to verify that the sequence {zk} generated by (24)
is (n − 1)-periodic satisfying

zk = (−1)i ei+1, for k = (n − 1)t + i, i = 1, . . . , n − 1, ∀ t ∈ Z.

For the case where n = 2m and m ≥ 1, the sequence {zk} generated by (24) is
2(n − 1)-periodic satisfying

zk =
{

(−1)i ei+1, if k = 2t (n − 1) + i;
(−1)i+1ei+1, if k = (2t + 1)(n − 1) + i; i = 1, . . . , n − 1, ∀ t ∈ Z.

Therefore, the PRSM is not convergent for a class of problems in form of (25).
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7 Divergence of the generalized FBSM

To discuss the convergence/divergence of a generalized version of the FBSM for the
problem (22), we follow the literature (see, e.g., [2,5,6]) and assume that B in (22) is
single-valued and β-cocoercive. The FBSM alternates an explicit step (forward step)
using the operator B with an implicit resolvent step (backward step) involving the
operator A. Its iterative scheme for (22) reads as

zk+1 = JcA(zk − cB(zk)), (27)

where c is a judiciously chosen step size to ensure its convergence. For example, the
restriction c ∈ (0, 2β) has been well studied in the literature, see [2,5,6,32] to just
mention a few. Technically, the FBSM (27) is not a specific case of the PPA (2). But
similarly as our previous analysis, we can consider a generalized version of (27) as
the following

zk+1 = zk − γ (zk − JcA(zk − cB(zk))), (28)

with γ > 0 and c ∈ (0, 2β). Note that we can also consider the case with dynamically
changed step sizes γk for (28); but for simplicity we still fix it as a constant.

Another by-product of our previous analysis is that we can extend the presented
analysis for the generalized PPA (4) to the generalized FBSM (28) and show that the
latter is not necessarily convergent with a step size 1.5 (which is indeed the upper
bound). In the next theorem, we first show some conditions in [2] that are sufficient to
ensure the convergence of the generalized FBSM (28). Note that the condition on γ in
[2] is “γk ⊆ [0, δ] and ∑∞

k=1 γk(δ − γk) = +∞” because the case with dynamically
chosen step sizes γk was considered therein.

Theorem 5 [2] Let A : H → 2H and B : H → 2H be β-cocoercive with β > 0.
Choose c ∈ (0, 2β) and set δ := min(1, β/c)) + 1/2. Let 0 < γ < δ. Suppose the
solution set of (22) is nonempty. Let {zk} be the sequence generated by the generalized
FBSM (28) starting with z0 ∈ H. Then we have the following assertions.

i. There exists a solution point z∗ of (22) such that

‖zk+1 − z∗‖2 ≤ ‖zk − z∗‖ − γ (δ − γ )‖JcA(zk − cB(zk))‖2. (29)

ii. If one of the following holds:
a. A is uniformly monotone on every nonempty bounded subset of domA,
b. B is uniformly monotone on every nonempty bounded subset of domB,
Then, the sequence {zk} converges strongly to the unique solution point.

Proof (i) Combining Proposition 5.15 and the proof of Theorem 25.8 in [2], the first
assertion follows directly. (ii) It follows directly from Theorem 25.8 in [2]. ��

It follows from Theorem 5 that δ attains the maximum value 1.5 if c = β. This
inspires us to construct the following example to show the divergence of the generalized
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FBSM (28) when γ = 1.5. Again, we consider a special case of (22) in form of

(A + B)z = 0, (30)

where both A and B are matrices. Let us choose

A =

⎛

⎜
⎜
⎝

−0.3074 0 0 1.0208
0 0 0 0
0 0 12.0540 0

−0.4253 0 0 1.1372

⎞

⎟
⎟
⎠

and B =

⎛

⎜
⎜
⎝

0.1945 0 0 −0.4719
0 1.0000 0 0
0 0 0.6663 0

0.4719 0 0 0.1945

⎞

⎟
⎟
⎠

.

(31)

Then, it is easy to see B is positive definite; and thus uniformly monotone. Thus, Case
(b) of Assertion (ii) in Theorem 5 holds. Obviously, the solution point of the problem
(30)–(31) is z∗ = 0 since (A+ B) is nonsingular. According to Definition 1, by some
elementary calculations, we know that the operator B is cocoercive with β = 0.7466.
Thus, the iterative scheme (28) with c = β and γ = δ = 1.5 for (30) can be specified
as

zk+1 = M · zk, with M = 1.5(I + βA)−1(I − βB) − 0.5 · I. (32)

Indeed, it follows from (31) that

M =

⎛

⎜
⎜
⎝

1.1642 0 0 0
0 −0.1200 0 0
0 0 −0.4246 0
0 0 0 0.1934

⎞

⎟
⎟
⎠

and ρ(M) = 1.1642 > 1,

where ρ(M) is the spectral radius of M . Obviously, if we implement the generalized
FBSM (28) with the initial iterate z0 = (1, 0, 0, 0)� for the problem (30)–(31), then
the sequence {zk} is divergent.

8 Conclusion

The proximal point algorithm (PPA) is fundamental and it has been generalized with
a step size less than 2 in the literature. But it was unknown whether or not the step size
of the generalized PPA can be further enlarged to 2; a case with potential advantages
in numerics. We construct some examples to show that in general it is not possible
to enlarge the step size as large as 2 for the generalized PPA, for both the generic
setting of finding a root of a maximal monotone operator and some specific convex
programming settings. A problem complementary to our negative assertion regarding
the step size 2 is that under what conditions the generalized PPA in some specific
settings is convergent even if its step size is 2.
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