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Abstract
The alternating direction method of multipliers was proposed by Glowinski and Mar-
rocco in 1974, and it has been widely used in a broad spectrum of areas, especially in
some sparsity-driven application domains. In 1982, Fortin and Glowinski suggested
to enlarge the range of the dual step size for updating the multiplier from 1 to the
open interval of zero to the golden ratio, and this strategy immediately accelerates the
convergence of alternating direction method of multipliers for most of its applications.
Meanwhile, Glowinski raised the question of whether or not the range can be further
enlarged to the open interval of zero to 2; this question remains open with nearly
no progress in the past decades. In this paper, we answer this question affirmatively
for the case where both the functions in the objective function are quadratic. Thus,
Glowinski’s open question is partially answered. We further establish the global linear
convergence of the alternating direction method of multipliers with this enlarged step
size range for the quadratic programming under a tight condition.
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1 Introduction

The alternating direction method of multipliers (ADMM) was proposed by Glowinski
and Marrocco in [1]. Recently, the ADMM has found many applications in a variety
of areas [2–6] because of its simplicity in implementation and usually good numerical
performance, and it has received increasing attention in the literature. We refer to,
[2–4,7], for some review papers of the ADMM.

Notice that solving the subproblems related to the primal variables dominates the
implementation of the ADMM scheme. It is meaningful to discuss the theory of
enlarging the dual step size because it may offer an immediate accelerating on the
convergence of the ADMM. In [8],1 Fortin and Glowinski proposed a variant of the
ADMM scheme (see (3)) by introducing a dual step size in the multiplier updating
step, and established the global convergence for the step size range of zero to the
golden ratio. Though the convergence of the ADMM scheme with this range is well
studied; see, e.g., [9–15], numerically it has been observed as well that some values
exceeding the golden ratio and <2 may still perform convergence. It is natural to ask
whether we can enlarge the step size range to the open interval of zero to 2 in the
ADMM scheme while still guarantee the convergence. This question was raised by
Glowinski in [11]. In this paper, we establish the global convergence of the ADMM
scheme with the dual step size in the open interval of zero to 2 for solving quadratic
programming problems, hence partially answer Glowinski’s open question.Moreover,
we establish the global linear convergence under a new while tight condition.

The remaining part of this paper is organized as follows. In Sect. 2, we present the
problem under discussion and recall some known results in the ADMM studies. In
Sect. 3, we summarize some notations and definitions to be used, present the assump-
tions for further discussion, and prove a number of lemmas. Then, we conduct some
preparatory analysis in Sect. 4, including the specification of the matrix recursion of
the ADMM scheme for the quadratic programming model problem, the KKT con-
dition, and an example showing the divergence of the ADMM with step size 2. In
Sect. 5, the convergence of the ADMM scheme with the open interval of zero to 2
is proved for the quadratic programming. This is the main result of the paper. The
global linear convergence is established in Sect. 6, under a new condition different
from some existing work. Both the convergence and global linear convergence are
verified numerically by some examples in Sects. 5 and 6. Finally, some conclusions
are drawn in Sect. 7.

2 TheModel Problem and Some Known Results

We consider the following canonical convex minimization problem with linear con-
straints and a separable objective function without coupled variables:

min
x,y

{θ1(x) + θ2(y) : Ax + By = b, x ∈ X , y ∈ Y}, (1)

1 This is a translation from its original French version in 1982.
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where A ∈ R
m×n1 , B ∈ R

m×n2 , b ∈ R
m , X ⊂ R

n1 and Y ⊂ R
n2 are closed convex

sets, θ1 : R
n1 → R and θ2 : R

n2 → R are convex (not necessarily smooth) functions.
Let the augmented Lagrangian function of (1) be

Lβ(x, y, z) = θ1(x) + θ2(y) − z�(Ax + By − b) + β

2
‖Ax + By − b‖2,

with z ∈ R
m the Lagrange multiplier and β > 0 the penalty parameter. The iterative

scheme of ADMM for (1) reads as

xk+1 = argminx∈XLβ(x, yk, zk), (2a)

yk+1 = argminy∈YLβ(xk+1, y, zk), (2b)

zk+1 = zk − β(Axk+1 + Byk+1 − b). (2c)

Furthermore, Fortin andGlowinski in [8] proposed the following variant of theADMM
scheme:

xk+1 = argminx∈XLβ(x, yk, zk), (3a)

yk+1 = argminy∈YLβ(xk+1, y, zk), (3b)

zk+1 = zk − γβ(Axk+1 + Byk+1 − b), (3c)

with γ ∈]0, 1+√
5

2 [. It is worthwhile to mention that the parameter γ in (3c) is different
from the involved parameter in the so-called generalized ADMM that was discussed
in [16,17] based on the idea in [18] (see also [19]). The convergence of (3) with

γ ∈]0, 1+√
5

2 [ has been well addressed in various contexts; see, e.g., [9–15]. Numeri-

cally, it has been widely verified that a large value of γ close to 1+√
5

2 can accelerate
the convergence of ADMM immediately; see, e.g., [5,6,11,20]. Glowinski raised the
question in [11] (see pp. 182 therein) as: “ If G is linear, it has been proved by Gabay
and Mercier [1] that ALG2 converges if 0 < ρn = ρ < 2r . The proof of this result
is rather technical, and an open question is to decide whether it can be extended to
the more general cases considered here.” The function “G” in [11] corresponds to the
function θ2 in problem (1); “ALG2” refers to the ADMM scheme (3); “[1]” refers to

[10] and ρ := γβ in our setting. With the well studied results for γ ∈]0, 1+√
5

2 [ in
(3), the gap from γ ∈]0, 1+√

5
2 [ to γ ∈]0, 2[ remains unsolved and thus Glowinski’s

question is still open since it was proposed in [11].
The rationale of raising this question can also be explained as follows. Note that if

the problem (1) is regarded as a whole and the augmented Lagrangian method (ALM)
in [21,22] is directly applied to (1), the iterative scheme becomes:

(xk+1, yk+1) = argminx∈X , y∈YLβ(x, y, zk), (4a)

zk+1 = zk − β(Axk+1 + Byk+1 − b). (4b)
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Based on the work [23], the ALM scheme (4) is an application of the proximal point
algorithm (PPA) in [24] to the dual of the problem (1), and thus the result in [18] can
be applied to modify the scheme (4) as

(xk+1, yk+1) = argminx∈X , y∈YLβ(x, y, zk), (5a)

zk+1 = zk − γβ(Axk+1 + Byk+1 − b), (5b)

where γ ∈]0, 2[. Its convergence can be found in, e.g., [19]. Therefore, the ADMM
scheme (2) can be regarded as a splitting version of the ALM (4) which splits the
(xk+1, yk+1)-subproblem (4a) as the surrogates (2a) and (2b) by the Gauss–Seidel
manner. Then, with γ ∈]0, 2[ in (5b) for the ALM scheme, it is natural to ask if this
property can be maintained for the ADMM scheme (3). Since the ADMM (2) is just
an inexact version of the ALM (4), it is not straightforward to claim the validity of
this extension and this may explain why Glowinski’s question is still open.

In this paper, we restrict our attention to the following quadratic programming
problem:

min

{
1

2
x�Px + f �x + 1

2
y�Qy + g�y : Ax + By = b, x ∈ R

n1 , y ∈ R
n2

}
,

(6)

where P ∈ R
n1×n1 and Q ∈ R

n2×n2 are symmetric positive-semidefinite matrices,
A ∈ R

m×n1 , B ∈ R
m×n2 , b ∈ R

m , f ∈ R
n1 and g ∈ R

n2 . We refer to, e.g., [25–31],
for various applications that can be modeled as (6) in different fields. The solution set
of (6) is assumed to be non-empty throughout our discussion.

3 Preliminaries

3.1 Notations

Given a real number a, |a| represents the absolute value of a. The superscript “�”
denotes the transpose, and the superscript “H” denotes the conjugate transpose. A
unit vector means its 2-norm is 1, i.e., x�x = 1. We use a + bi to denote a complex
number, in which “i” represents the imaginary unit. For a complex number a, |a| and
Re(a) denote its modulus and the real part, respectively. Given a vector space V , its
dimension is denoted by dim(V). For a vector x ∈ R

n , ‖x‖2 represents
√∑n

i=1 |xi |2.
Given a square matrix M ∈ R

n×n , det(M) denotes its determinant. Given a matrix
M ∈ R

m×n that is not necessarily square, Rank(M) represents its rank. For amatrixM
∈ R

n×n , eig(M) represents all the eigenvalues ofM (considering themultiplicity), and
eig(M) represents all the nonzero eigenvalues of M (considering the multiplicity). We
use the notation σ(M) to denote its spectrum, i.e., the set of distinct eigenvalues. For
an symmetric matrix M , let ‖M‖2 denote its 2-norm. For a nonsymmetric matrix M ,
‖M‖ := √‖M�M‖ and ρ(M) refers to its spectral radius, i.e., the maximal modulus
of its eigenvalues. For a matrix M ∈ R

n×n that is not necessarily symmetric, λM
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denotes any one of its eigenvalues, λmin(M) and λmax(M) represent the maximal and
minimal eigenvalues of M , respectively. The matrix In represents the identity matrix
inR

n×n , and we omit the subscript only when its dimension is equal tom. For a matrix
M ∈ R

n×n that is not necessarily symmetric, the notation M � 0 means M is positive
semidefinite and M 	 0 means M is positive definite. We use the notation diag(·) to
denote a diagonal matrix. The notation N (·) represents the null space. The function
δi j is defined as

δi j =
{
1, if i = j,
0, if i 
= j .

3.2 Assumptions

Throughout this paper, we make the following assumptions.

Assumption 1 In (6), the symmetric positive-semidefinite matrices P and Q, and the
matrices A and B satisfy the conditions:

P + A�A 	 0 and Q + B�B 	 0.

Assumption 2 The KKT point set of (1) is non-empty.

Remark 3.1 UnderAssumptions 1–2, the x- and y-subproblems of theADMMscheme
(3) for solving (6) are well-posed (which means that we have existence and unique-
ness). Also, as shown by Corollary 1 in [32], Assumptions 1–2 are necessary for the
well-definedness of the ADMM scheme (3) for solving (6).

3.3 Some Lemmas

In the following, we prove a number of lemmas that will be used in later analysis.
Some of them are elementary.

Lemma 3.1 Let F andG be two symmetricmatrices inR
m×m satisfying the conditions

0 � F � I and 0 � G � I .

Then, we have −I � FG � I .

Proof Using Cauchy–Schwartz inequality, we have FG+GF � F2 +G2 � 2I . The
second follows from the conditions 0 � F � I and 0 � G � I . Analogously, we get
FG + GF � −F2 − G2 � −2I . Thus, the assertion follows directly. �
Lemma 3.2 Let F andG be two symmetricmatrices inR

m×m satisfying the conditions

0 � F � I and 0 � G � I .

Then, we have
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(i) For any x ∈ R
m with xT x = 1, we have |x�FGx | ≤ 1.

(ii) For any η ∈ C
m with ηHη = 1, if ηH FGη is a real number, then we also have

|ηH FGη| ≤ 1.

Proof For the first assertion, it follows from Cauchy–Schwarz inequality that

|x�FGx | = |(Fx)�(Gx)| ≤ x�F2x + x�G2x

2
≤ x�Fx + x�Gx

2
≤ 1.

For the second assertion, we assume that η := α1 +α2i with α1 ∈ R
m , α2 ∈ R

m and

α�
1 α1 + α�

2 α2 = 1.

If ηH FGη is a real number, then we have

|ηH FGη| = |(α1 + α2i)H FG(α1 + α2i)| = |α�
1 FGα1 + α�

2 FGα2|
≤ α�

1 F2α1 + α�
1 G

2α1

2
+ α�

2 F2α2 + α�
2 G

2α2

2
≤ α�

1 α1 + α�
2 α2 = 1.

The proof is complete. �
Lemma 3.3 LetU and V be two symmetricmatrices inR

m×m satisfying the conditions

− I

2
� U � I

2
and − I

2
� V � I

2
.

Then, for any x ∈ R
m such that x�x = 1, we have

∣∣∣∣x� (UV + VU )

2
x

∣∣∣∣ ≤ 1

4
and − I

4
� (UV + VU )

2
� I

4
.

Proof First, using Cauchy–Schwarz inequality, we get

|x�(UV )x | ≤ 1

2

(
x�U 2x + x�V 2x

)
, (7)

and

|x�(VU )x | ≤ 1

2

(
x�U 2x + x�V 2x

)
. (8)

Then, recalling − I
2 � V � I

2 and − I
2 � U � I

2 , we obtain that 0 � U 2 � I
4 and

0 � V 2 � I
4 . Substituting these two inequalities into (7) and (8), the first assertion

follows immediately. The second assertion follows directly from the first assertion. �
The following lemma is essential in the convergence analysis for the ADMM (3)

for the problem (6).

123



Journal of Optimization Theory and Applications (2018) 179:163–196 169

Lemma 3.4 Let F and G be two symmetric matrices in R
m×m satisfying 0 � F � I

and 0 � G � I . Then, we have 0 � I − F − G + 2FG � I .

Proof It is equivalent to show that

0 � I − F − G + FG + GF � I .

Since 0 � F � I and 0 � G � I , we obtain 0 � I − F � I and 0 � I − G � I .
With simple calculations, we have

I − F − G + FG + GF = (
I

2
− F)(

I

2
− G) + (

I

2
− G)(

I

2
− F) + I

2
. (9)

Because of 0 � F � I and 0 � G � I , we obtain

− I

2
� I

2
− F � I

2
, − I

2
� I

2
− G � I

2
. (10)

Thus, using Lemma 3.3, we get

− I

2
� (

I

2
− F)(

I

2
− G) + (

I

2
− G)(

I

2
− F) � I

2
. (11)

Combining (9) and (11), we have 0 � I − F − G + FG + GF � I . Thus, the proof
is complete. �

The following lemma plays a key role in the convergence analysis of (6).

Lemma 3.5 [33] Let A and B be m × m Hermitian matrices with eigenvalues

α1 ≥ α2 ≥ · · · ≥ αm and β1 ≥ β2 ≥ · · · ≥ βm,

respectively. Then, we have

min
π

{
m
�
i=1

(αi + βπ(i))

}
≤ det(A + B) ≤ max

π

{
m
�
i=1

(αi + βπ(i))

}
.

(The minimization and maximization above are taken over all permutations of the
indices 1, 2, . . . ,m). In particular, if αm + βm ≥ 0 (which is true if both A and B are
positive semidefinite), then we have

m
�
i=1

(αi + βi ) ≤ det(A + B) ≤ m
�
i=1

(αi + βm+1−i ).

Lemma 3.6 Let F and G be two symmetric matrices in R
m×m. Then, we have

Rank(F + G − 2FG) = Rank(F + G − 2GF).

Proof The proof is elementary; thus we omit here. �
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Lemma 3.7 Let F and G be two symmetric matrices in R
m×m satisfying 0 � F � I

and 0 � G � I . If 1 is an eigenvalue of the matrix (I − F − G + 2FG) and x
is an associated eigenvector, then we have that 1 is also an eigenvalue of the matrix
(I − F − G + 2GF) and x is an associated eigenvector.

Proof Assume that the vector x̂ is a unit eigenvector of the matrix (I −F−G+2FG)

associated with 1. It means that (I − F − G + 2FG)x̂ = x̂ . Thus, we get

x̂�(I − F − G + 2FG)x̂ = 1 with x̂� x̂ = 1. (12)

On the other hand, for any x ∈ R
m with x�x = 1, we have

x�(I − F − G + 2FG)x = x�
{
2

[(
I

2
− F

)(
I

2
− G

)
+ I

4

]}
x

≤
(
x�
(
I

2
− F

)2
x + x�

(
I

2
− G

)2
x

)
+ 1

2
≤ 1,

(13)

where the first and the second inequalities respectively follow from Cauchy–Schwarz
inequality and the facts that 0 � ( I2 − F)2 � I

4 and 0 � ( I2 − G)2 � I
4 (due to (10)).

Moreover, (12) implies that (13) holds with equality. Thus, checking the conditions
ensuring the (13) with equality. We have one of the following two arguments:

(i) ( 12 I − F)x = 1
2 x and ( 12 I − G)x = 1

2 x ;
(ii) ( 12 I − F)x = − 1

2 x and ( 12 I − G)x = − 1
2 x .

That is to say that one of the following assertions holds:

(i) Fx = Gx = 0;
(ii) Fx = Gx = x .

Consequently, we have (I − F − G + 2GF)x = x . It implies that the value 1 is an
eigenvalue of the matrix (I − F − G + 2GF) and x is its eigenvector. The proof is
complete. �
Lemma 3.8 Let F and G be two symmetric matrices in R

m×m satisfying 0 � F � I
and 0 � G � I . If 1 is an eigenvalue of the matrix (I − F − G + 2FG) and x is an
associated eigenvector, then one of the following assertions hold:

(i) Fx=Gx=x;
(ii) Fx=Gx=0.

Conversely, if a vector x satisfies (i) or (ii), then it is an eigenvector of (I − F − G +
2FG) associated with the eigenvalue 1.

Proof The proof is included in the proof for Lemma 3.7. �
The following lemma provides a new way to show that an eigenvalue of a nonsym-

metric matrix has the same geometric and algebraic multiplicities; see Theorem 1 in
[34].
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Lemma 3.9 [34] Let A ∈ C
n×n and let λ be an eigenvalue of A. Then the following

two statements are equivalent.

(i) There exist bi-orthonormal bases {x1, . . . , xJ } of N (A − λI ) and {y1, . . . , yJ }
of N (AH − λ̄I ) in the sense that yHj xk = δ jk , ∀ j , k = 1, . . . , J , where J is the
geometric multiplicity of λ.

(ii) The geometric multiplicity and algebraic multiplicity of λ are equivalent.

In the following lemma, we show that, if 1 is an eigenvalue of the matrix (I − F −
G + 2FG), then it has a complete set of eigenvectors.

Lemma 3.10 Let F and G be two symmetric matrices in R
m×m satisfying 0 � F � I

and 0 � G � I . If 1 is an eigenvalue of the matrix (I − F − G + 2FG), then this
eigenvalue has a complete set of eigenvectors. That is, the algebraic and geometric
multiplicities are the same, and we denote them by

 := m − Rank(F + G − 2FG). (14)

Proof Since 1 is an eigenvalue of the matrix (I − F − G + 2FG), its geometric
multiplicity of 1 is the  defined in (14). Invoking Lemma 3.7, we know that 1 is also
an eigenvalue of the matrix (I − F − G + 2GF). Moreover, any eigenvector x for
the matrix (I − F −G + 2FG) associated with 1 is also an eigenvector of the matrix
(I − F − G + 2GF) associated with 1. Then, it follows from Lemma 3.6 that the
geometric multiplicity of 1 for the matrix (I −F−G+2GF) is also  defined in (14).
Suppose {x1, . . . , xl} is a set of orthonormal eigenvectors associated with 1 for the
matrix (I −F−G+2FG) in sense of x�

j xk = δ jk , ∀ j, k = 1, . . . , l. Then, it is also
a set of orthonormal eigenvectors associated with 1 for the matrix (I −F−G+2GF).
According to Lemma 3.9, the algebraic multiplicity of the matrix (I − F −G+2FG)

is . Indeed, the set of orthonormal vectors {x1, . . . , xl} is exactly a complete set of
eigenvectors associated with the eigenvalue 1 for the matrix (I − F −G+2FG). The
proof is complete. �

The following lemma can be obtained immediately from Lemma 3.8.

Lemma 3.11 Let F and G be two symmetric matrices in R
m×m satisfying 0 � F � I

and 0 � G � I . If 1 is an eigenvalue of the matrix (I − F −G+2FG), then we have

dim ({x : x ∈ N (F − I ) ∩ N (G − I )}) + dim ({x : x ∈ N (F) ∩ N (G)}) = ,

(15)

where  is the algebraic and geometric multiplicities of (I − F − G + 2FG) defined
in (14).

Proof First, invoking Lemma 3.8, we have

{x : x ∈ N ([I − F − G + 2FG] − I )}
= {x : x ∈ N (F − I ) ∩ N (G − I )}

⋃
{x : x ∈ N (F) ∩ N (G)}. (16)
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Note that {x : x ∈ N (F − I )∩ N (G − I )}⋂{x : x ∈ N (F)∩ N (G)} = {0}. From
Lemma 3.10, we know that dim{x : x ∈ N ([I − F − G + 2FG] − I )} =  with 

defined in (14). Thus, the assertion (15) follows directly. �
Lemma 3.12 Let F and G be two symmetric matrices in R

m×m satisfying 0 � F � I
and 0 � G � I . If 1 is an eigenvalue of the matrix (I − F − G + 2FG), then there
exists an orthogonal matrix Q ∈ R

m×m such that

Q�FQ =
(
D 0×(m−)

0 F̂

)
and Q�GQ =

(
D 0×(m−)

0 Ĝ

)
, (17)

where D ∈ R
× is a diagonal matrix with the diagonal entries either 0 or 1, and the

matrices F̂, Ĝ ∈ R
(m−)×(m−) satisfy

0 � F̂ � Im−, 0 � Ĝ � Im− and F̂ + Ĝ − 2Ĝ F̂ 	 0. (18)

Proof Since 1 is an eigenvalue of the matrix (I − F − G + 2FG), it follows from
Lemma 3.10 that there exists a set of orthonormal eigenvectors associated with 1 for
the matrix (I − F − G + 2FG), denoted by {x1, . . . , xl}. Recall (16). We thus have

{x1, . . . , xl} = {x : x ∈ N (F − I ) ∩ N (G − I )}
⋃

{x : x ∈ N (F) ∩ N (G)}.

Let us construct an orthogonal matrix Q with the first  columns as (x1; . . . ; xl).
Then, we partition Q as (Q1; Q2) with Q1 = (x1; x2; . . . ; x) and Q2 ∈ R

m×(m−).

Invoking Lemma 3.8, we have FQ1 = Q1D and GQ1 = Q1D, with

D = diag(λ1, · · · , λ) and λi = 0 or 1, i = 1, . . . , .

Therefore, we get

Q�FQ =
(
Q�

1
Q�

2

)
F
(
Q1; Q2

) =
(
Q�

1
Q�

2

) (
Q1D; FQ2

) =
(
D 0
0 Q�

2 FQ2

)
.

Analogously, we have the second equation of (17). Thus, the proof is complete.
For the second assertion (18), let us define F̂ = Q�

2 FQ2 and Ĝ = Q�
2 GQ2. Then,

the first two inequalities in (18) hold.On the other hand, similar to the second inequality
in Lemma 3.4, we have F̂ + Ĝ − 2Ĝ F̂ � 0. Now, we prove the third inequality in
(18) by contradiction. Suppose that 0 is an eigenvalue of the matrix (F̂ + Ĝ − 2Ĝ F̂).
Then, 1 is an eigenvalue of the matrix (Im− + F̂ + Ĝ − 2Ĝ F̂). Assume that x̂ is
an eigenvector of the matrix (Im− + F̂ + Ĝ − 2Ĝ F̂) associated with the eigenvalue
1. Then, similar to the proof of Lemma 3.7, we know that either F̂ x̂ = Ĝ x̂ = x̂
or F̂ x̂ = Ĝ x̂ = 0 holds. This implies that F̂ and Ĝ have the common eigenvector
x̂ associated with the eigenvalue 1 or 0, which contradicts with the assertion (15).
Therefore, we have F̂ + Ĝ − 2Ĝ F̂ 	 0. The proof is complete. �
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Remark 3.2 Lemma 3.12 implies that the matrices F̂ and Ĝ have no common eigen-
vectors for either the eigenvalue 0 or 1.

4 Specification of the ADMM Scheme for Quadratic Programming

In this section, we first specify the application of the ADMM scheme (3) to the
quadratic programming problem (6) as a matrix recursion form and then discuss some
related issues. This matrix recursion form is the basis of our further analysis.

Obviously, applying the ADMMscheme (3) to the quadratic programming problem
(6) results in the iterative scheme:

(P + βA�A)xk+1 = A�zk − βA�Byk + βA�b − f ,

(Q + βB�B)yk+1 = B�zk − βB�Axk+1 + βB�b − g,

zk+1 = zk − γβ(Axk+1 + Byk+1 − b). (19)

4.1 Matrix Recursion Form

Notice that the variable x in the ADMM (3) plays an intermediate role in the sense
that xk is not involved in the iteration to generate the next iterate. That is, a new iter-
ate (xk+1, yk+1, zk+1) can be generated by (yk, zk). Therefore, we first eliminate the
variable x from thematrix recursion form (19) and obtain amore compactmatrix recur-
sion in a lower-dimension space. For this purpose, introducing an auxiliary variable
μk := zk/β, we can recast the scheme (19) as

(P/β + A�A)xk+1 = A�μk − A�Byk + A�b − f /β, (20a)

(Q/β + B�B)yk+1 = B�μk − B�Axk+1 + B�b − g/β, (20b)

μk+1 = μk − γ (Axk+1 + Byk+1 − b). (20c)

Note that (20a) can be written as

xk+1 = (P/β + A�A)
−1
[
A�μk − A�Byk + A�b − f /β

]
. (21)

Then, substituting (21) into (20b) and (20c), we eliminate xk+1 from (20) and obtain

Q̂yk+1 = B�AP̂−1A�Byk + (B� − B�AP̂−1A�)μk + α1,

γ Byk+1 + μk+1 = (I − γ AP̂−1A�)μk + γ AP̂−1A�Byk + α2, (22)

with

P̂ = P/β + A�A, Q̂ = Q/β + B�B, (23)

α1 = −B�AP̂−1A�b + B�AP̂−1 f /β + B�b − g/β, (24)

α2 = γ b − γ AP̂−1A�b + γ AP̂−1 f /β. (25)
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Then, with simple calculations, the iterative scheme (22) can be written compactly as
follows:

vk+1 = T (γ )vk + q, (26)

with

T (γ ) =
(
Q̂−1B�AP̂−1A�B Q̂−1B�(I − AP̂−1A�)

γ (I − BQ̂−1B�)AP̂−1A�B I − γ AP̂−1A� − γ BQ̂−1B�(I − AP̂−1A�)

)

(27)

and

vk =
(
yk

μk

)
, q =

(
q1 := Q̂−1α1

q2 := α2 − γ BQ̂−1α1

)
. (28)

Thus, the application of theADMMscheme (3) to the quadratic programming problem
(6) can be written as the matrix recursion form (26)–(28).

To establish the convergence of the ADMM (19) with γ ∈]0, 2[, we only need to
conduct a spectral analysis for the iterative matrix T (γ ) defined in (27). First, note
that the matrix T (γ ) can be factorized as

T (γ ) =
(
Q̂−1B�AP̂−1A� Q̂−1B�(I − AP̂−1A�)

γ (I − BQ̂−1B�)AP̂−1A� I − γ AP̂−1A� − γ BQ̂−1B�(I − AP̂−1A�)

)

·
(
B 0
0 I

)
. (29)

Thus, switching the order of the products by moving the first component to the last,
we have a new matrix defined as

T̃ (γ ) =
(
BQ̂−1B�AP̂−1A� BQ̂−1B�(I − AP̂−1A�)

γ (I − BQ̂−1B�)AP̂−1A� I − γ AP̂−1A� − γ BQ̂−1B�(I − AP̂−1A�)

)
.

(30)

For any two matrices X and Y (not necessarily square) with an appropriate dimension,
we have

eig(XY ) = eig(Y X).

Hence, we obtain

eig(T (γ )) = eig(T̃ (γ )). (31)

Therefore, we only need to conduct the spectral analysis in terms of the matrix T̃ (γ ).
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4.2 KKT Condition

In this subsection, we show several equivalent forms to characterize theKKT condition
of the quadratic programming problem (6)whichwill be useful for later analysis. These
are necessary preparation for the convergence analysis in the next section. Recall that
Assumptions 1–2 hold in our analysis.

Let (x∗, y∗, z∗) be a KKT point of the problem (6). That is, (x∗, y∗, z∗) satisfies
the following equations:

Px∗ = A�z∗ − f , Qy∗ = B�z∗ − g, Ax∗ + By∗ − b = 0.

Furthermore, we denote

μ∗ := z∗/β. (32)

Then, the pair (x∗, y∗, μ∗) satisfies the following equations:

Px∗ = βA�μ∗ − f , (33a)

Qy∗ = βB�μ∗ − g, (33b)

Ax∗ + By∗ − b = 0. (33c)

In the following, we present another equivalent form of the KKT condition of the
problem (6) represented by x∗ and (y∗, μ∗) separately. This form helps us better reveal
the relationship between a fixed point of the iterative matrix given in (26) and the KKT
point of (6). We first prove a lemma that turns out to be essential for the convergence
analysis to be presented.

Lemma 4.1 Suppose that Assumptions 1–2 hold. Let γ 
= 0. Then, the pair (x∗, y∗, z∗)
is a KKT point of (6) if and only if it satisfies the following equations:

x∗ = P̂−1
[
A�μ∗ − A�By∗ + A�b − f /β

]
and
[
I − T (γ )

]
v∗ = q, (34)

where (v∗)� := ((y∗)�, (μ∗)�) and the vectors μ∗, q, the matrix T (γ ) are defined
in (32), (28) and (27), respectively.

Proof Recall that the pair (x∗, y∗, z∗) is a KKT point of (6) if and only if it satisfies
(33). First, we show that Eq. (34) holds when (x∗, y∗, μ∗) satisfies (33). For this
purpose, we multiply both sides of (33c) by βA� from the left and add the resulting
equation to (33a). This manipulation yields the equation:

(P + βA�A)x∗ = β(A�μ∗ − A�By∗ + A�b − f /β).

Dividing both sides of the above equation by β and using the definition of P̂ in (23)
and then multiplying it by P̂−1 from the left, we obtain

x∗ = P̂−1
[
A�μ∗ − A�By∗ + A�b − f /β

]
. (35)
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Next, we multiply (33c) by βB� from the left and adding the resulting equation to
(33b), which is further divided in both sides by β. These operations enable us to have

(Q/β + B�B)y∗ = B�μ∗ − B�Ax∗ + B�b − g/β. (36)

Then, substituting (35) into the above equality and recalling the definitions of Q̂ in
(23) and α1 in (24), we get

Q̂y∗ = B�AP̂−1A�By∗ + (B� − B�AP̂−1A�)μ∗ + α1. (37)

On the other hand, it follows from (35) and the definition of α2 in (25) that (33c) can
be reformulated as

μ∗ = μ∗ − γ (Ax∗ + By∗ − b) = γ AP̂−1A�By∗ − γ By∗

+(I − γ AP̂−1A�)μ∗ + α2. (38)

Combining (37) with the equation above, we have

(
Q̂ 0
γ B I

)
v∗ =
(
B�AP̂−1A�B B� − B�AP̂−1A�
γ AP̂−1A�B I − γ AP̂−1A�

)
v∗ +
(

α1
α2

)
. (39)

Moreover, with simple calculations and recalling the definitions of T (γ ) in (27) and
q in (28), we get

v∗ = T (γ )v∗ + q. (40)

Then, combining (40) and (35), the assertion (34) is proved.
Next, we verify the assertion of the other direction. That is, if (34) holds with one

γ 
= 0, then (33) is true. Since (40) holds, we know that (39) is true. Furthermore,
we get (37) and the second equality in (38) because of (39). Substituting (35) into the
second equality of (38), we prove the first equality in (38). Also, substituting (35) into
(37), we get (36). Recall the definition P̂ in (23). Then, we have

(P/β + A�A)x∗ = A�μ∗ − A�By∗ + A�b − f /β,

(Q/β + B�B)y∗ = B�μ∗ − B�Ax∗ + B�b − g/β,

μ∗ = μ∗ − γ (Ax∗ + By∗ − b).

Because of γ 
= 0, it is equivalent to

(P/β + A�A)x∗ = A�μ∗ − A�By∗ + A�b − f /β,

(Q/β + B�B)y∗ = B�μ∗ − B�Ax∗ + B�b − g/β,

Ax∗ + By∗ − b = 0.
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Then, substituting the last equality into the first and second equations of the above
system, we obtain (33). Thus, the conclusion of this lemma follows directly and the
proof is complete. �
Remark 4.1 For the “only if” part, the equations in (34) hold for any γ . For the “if”
part, if there exists one γ 
= 0 such that (34) holds, then the pair (x∗, y∗, μ∗) satisfies
(33). That is, the pair (x∗, y∗, z∗) is a KKT point of (6).

4.3 Divergence for � = 2

In [19], we have shown that theALM (5) is not necessarily convergent if γ = 2. Hence,
it is intuitive to assert that the convergence of the ADMM scheme (3), as an inexact
version of the ALM (5), is not ensured with γ = 2 for the generic case (1), either.
Before we prove the convergence for the scheme (19) with γ ∈]0, 2[, we construct an
example to show that the convergence of (19) with γ = 2 is not guaranteed. Hence,
we just need to focus on γ ∈]0, 2[ for the discussion. That is, the range γ ∈]0, 2[ is
optimal and further enlargement of this range is not practical when the convergence
of the ADMM scheme (3) is discussed.

More specifically, let us take

P =
(
1 0
0 0

)
, Q =

(
0 0
0 1

)
, A =

(
0.4 0.3
0.5 2.2

)
, B =

(
1.2 −0.2
1.6 0.1

)
,

and f = g = b = 02×1. This is a special case of the quadratic programming (6), and
it has a unique solution x = y = 02×1.

With γ = 2 and β = 1, the iterative matrix in (27) is specified as

T (2) =

⎛
⎜⎜⎝

0.7897 0.0267 0.2142 −0.0292
0.1610 0.0111 −0.1639 0.0224

−1.1706 −0.0810 0.1923 −0.1626
0.8780 0.0608 −0.8942 −0.8781

⎞
⎟⎟⎠ .

By elementary calculations, we have ρ(T (2)) = 1 and one of its eigenvalues is −1.
Suppose η is the eigenvector corresponding to the eigenvalue −1. Let the sequence
{vk} be generated by (26) with the starting point v0 := η. Then, it is easy to verify
that the sequence {vk} is 2-periodic satisfying

vk =
{

η, if k is even,
−η, if k is odd.

Hence, the convergence of the scheme (19) with γ = 2 is not guaranteed.

5 Convergence Analysis

In this section, we establish the convergence of the scheme (19) with γ ∈]0, 2[. The
analysis still relies on the spectral analysis for the corresponding iterative matrix T (γ )
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defined in (27). But we would emphasize that our analysis is different from current
approaches in the literaturewhich are based on the strict contraction property of certain
distance function to the solution setmeasured bymatrix normswith positive-definite or
positive-semidefinite matrices (e.g., [10,13,14,35]) or the non-expansiveness property
of certain maximal monotone operator (e.g., [9,16,36]). Indeed, it is easy to show that
the so-called strict contraction property in these mentioned work does not hold for

the case where γ ≥ 1+√
5

2 and hence it is difficult to apply directly these existing

techniques to establish the convergence of the ADMM scheme (3) with γ ≥ 1+√
5

2 .
This may be explained as a difficulty of answering Glowinski’s open question under
consideration.

5.1 Theoretical Analysis

Even for the specific quadratic programming problem (6), the resulting iterativematrix
T (γ ) defined in (27) is complicated at least in the following senses. (1) It is nonsym-
metric; hence very few analytical tools are available for the spectral radius analysis.
(2) It may have complex eigenvalues and eigenvectors. (3) The penalty parameter β is
coupled in the iterative matrix. All these problems prohibit us to apply typical spec-
tral analysis techniques to this challenging case. Hence, the spectral analysis is more
complicated than the typical case of γ = 1. This is also why in Sect. 4 we suggest
first eliminating the variable x from the matrix recursion form and obtaining a non-
homogeneous matrix recurrence in a lower-dimension space. Then, some operations
such as a matrix transform with the same eigenvalues (accounting for multiplicity)
should be conducted to achieve a block-structure matrix so that a spectral analysis can
be applied.

In what follows, we shall verify that the eigenvalue λT (γ ) of the iterative matrix
T (γ ) defined in (27) is satisfied with |λT (γ )| < 1 or λT (γ ) = 1; and if 1 is an
eigenvalue of the iterative matrix, then it has a complete set of eigenvectors. We first
define a matrix and study its eigenstructure before investigating the spectral radius
analysis for the iterative matrix T (γ ) in (27).

Theorem 5.1 Let F and G be two symmetric matrices in R
m×m satisfying 0 � F � I

and 0 � G � I . For γ ∈]0, 2[, let us define

M(γ ) =
(
GF G − GF
γ F − γGF I − γ F − γG + γGF

)
. (41)

Then, for any eigenvalue of M(γ ), denoted by λ, we have |λ| < 1 or λ = 1.

Proof Note that the matrix M(γ ) can be factorized as:

M(γ ) =
(
G 0
0 I

)(
F I − F
γ (I − G)F I − γ F − γG + γGF

)
.
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Switching the order of the products by moving the first component to the last in M(γ ),
we obtain the matrix, denoted by M ′(γ ), as follows:

M ′(γ ) =
(
F I − F
γ (I − G)F I − γ F − γG + γGF

)(
G 0
0 I

)

=
(
FG I − F
γ (I − G)FG I − γ F − γG + γGF

)
.

Clearly, eig(M(γ )) = eig(M ′(γ )).Let λ be any eigenvalue of the matrixM(γ ). Then,
it is also an eigenvalue of thematrixM ′(γ ). Let (u�, w�)� be an eigenvector ofM ′(γ )

associated with λ. Then, we have

(
FG I − F
γ (I − G)FG I − γ F − γG + γGF

)(
u
w

)
= λ

(
u
w

)
.

This is equivalent to

FGu + (I − F)w = λu, (42a)

γ (I − G)FGu + γ (I − G)(I − F)w + (1 − γ )w = λw. (42b)

Multiplying both sides in (42a) by γ (I − G) from the left and then subtracting it by
(42b), we get

[λ − 1 + γ ]w = γ λ(I − G)u.

If λ − 1 + γ = 0, then |λ| = |γ − 1| < 1 because of γ ∈]0, 2[. The assertion is
proved.

In the following, we assume that λ − 1 + γ 
= 0. Dividing both sides of the above
equation by (λ − 1 + γ ) and then substituting it into (42a), we obtain

FGu + (I − F)
λγ

λ + γ − 1
(I − G)u = λu. (43)

Without loss of generality, we assume that ‖u‖2 = 1. Note that λ might be complex
number. Thus, the associated eigenvector (u�, w�)� might be a complex vector. Let
us define two constants as follows:

ξ1 := uH FGu and ξ2 = uH (I − F)(I − G)u.

Then, multiplying both sides of (43) by (λ + γ − 1)uH from the left yields

λ2 + (γ − 1 − ξ1 − γ ξ2)λ + (1 − γ )ξ1 = 0. (44)

For convenience, we define

f (λ) = λ2 + (γ − 1 − ξ1 − γ ξ2)λ + (1 − γ )ξ1. (45)
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Note that f (λ) = 0 is a quadratic equation with one variable λ. Thus, we define

Δ := (γ − 1 − ξ1 − γ ξ2)
2 − 4(1 − γ )ξ1.

The remaining part of the proof should be divided into two cases.

Case 1. λ is a real eigenvalue. The corresponding eigenvector (u�, w�)� is also real.
Thus, both ξ1 and ξ2 are real numbers. This means that the equation f (λ) = 0
has real coefficients. First, invoking Lemma 3.4, we have

0 ≤ ξ1 + ξ2 ≤ 1.

Thus, f (1) = γ − γ (ξ1 + ξ2) ≥ 0. The following discussion is divided into
three cases.

I) γ ∈]0, 1[.
Note that f (−1) = (2 − γ )(1 + ξ1) + γ ξ2 > 0. If ξ1 < 0, then f (0) < 0.
It implies that one of the roots of f (λ) = 0 belongs to ]0, 1], and the other
belongs to ] − 1, 0[. If ξ1 ≥ 0, then f (0) ≥ 0. It implies that the two roots
of f (λ) = 0 have the same sign. Moreover, we have |(1 − γ )ξ1| < 1 and
|γ − 1 − ξ1 − γ ξ2| ≤ 2. We conclude that Eq. (44) has two real roots, and
both of them belong to either [0, 1] or ] − 1, 0].

II) γ = 1.
The equation f (λ) = 0 has two roots: λ1 = 0 and λ2 = ξ1 + ξ2. Invoking
Lemma 3.4, we have 0 ≤ λ2 ≤ 1.

III) γ ∈]1, 2[.
If ξ1 ≤ 0, then we have ξ2 ≥ 0 because of ξ1 + ξ2 ≥ 0. Thus, we have
f (−1) > 0, f (0) ≥ 0 and f (1) ≥ 0. Also, we have |(1 − γ )ξ1| < 1 and
|γ − 1 − ξ1 − γ ξ2| < 2. We conclude that Eq. (44) has two real roots, and
both of them belong to either [0, 1] or ] − 1, 0].
If ξ1 > 0, then f (1) ≥ 0 and f (0) < 0.Note f (−1) = 2−γ +2ξ1−γ ξ1+γ ξ2.
If f (−1) > 0, then we know that one of the roots of f (λ) = 0 belongs to
]0, 1], and the other belongs to ]− 1, 0[. If f (−1) ≤ 0, it implies that Eq. (44)
has a root λ2 ≤ −1. In the following, we show that λ2 is an extraneous root by
contradiction. Without loss of generality, we assume that F 	 0 and G 	 0.
If λ2 is not an extraneous root, then it is an eigenvalue of (41). It follows from
(43) that λ2 is a root of the following equation:

det

(
FG + (I − F)

λγ

λ + γ − 1
(I − G) − λI

)
= 0. (46)

We denote

κ := λγ

λ + γ − 1
. (47)
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Since λ ≤ −1 and γ ∈]1, 2[, κ > 0 and the matrix ((κ − λ)I − κG) is
nonsingular. Thus, it follows from (46) that

det(F) · det
(
[(1 + κ)G − κ I ] [(κ − λ)I − κG]−1 + F−1

)
· det ((κ − λ)I − κG) = 0. (48)

Note that
(
[(1 + κ)G − κ I ] [(κ − λ)I − κG]−1) is a real symmetric matrix.

Denote the eigenvalues of F and G by 1 ≥ f1 ≥ f2 ≥ · · · ≥ fm > 0 and
1 ≥ g1 ≥ g2 ≥ · · · ≥ gm > 0, respectively. Then, using Lemma 3.5, we get

q(λ) := det(F) · det ([(1 + κ)G − κ I ] [(κ − λ)I − κG]−1 + F−1)
· det ((κ − λ)I − κG)

≥
(

m
�
i=1

fi

){
min

π

m
�
i=1

(
(1 + κ)gi − κ

(κ − λ) − κgi
+ 1

fπ(i)

)}(
m
�
i=1

[(κ − λ) − κgi ]

)

≥
(

m
�
i=1

fi

){
m
�
i=1

(
(1 + κ)gi − κ

(κ − λ) − κgi
+ 1

fm+1−i

)}(
m
�
i=1

[(κ − λ) − κgi ]

)

≥ m
�
i=1

{
− 1

λ + γ − 1

[
λ2 + λ (−1 + γ gi − (1 + γ )gi fm+1−i

+γ fm+1−i ) + (1 − γ ) fm+1−i gi
]}

. (49)

The second inequality is due to the fact that the function h(x) = (1+κ)x−κ
(κ−λ)−κx is

an increasing function with respect to x and Lemma 3.5, and the last follows
from (47). If we denote

qi (λ) := λ2 + λ (−1 + γ gi − (1 + γ )gi fm+1−i + γ fm+1−i )

+(1 − γ ) fm+1−i gi ,

then we have

q(λ) ≥ m
�
i=1

[
− 1

λ + γ − 1
qi (λ)

]
. (50)

Indeed, for any i = 1, . . . ,m, we have

qi (1) = γ (gi + fm+1−i − 2 fm+1−i gi ) ≥ 0, qi (0)

= (1 − γ )gi fm+1−i < 0, (51)

and

qi (−1) = 2 + 2 fm+1−i gi − γ fm+1−i − γ gi > 2

+2 fm+1−i gi − 2 fm+1−i − 2gi ≥ 0. (52)
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Combining (51) and (52), we have

qi (λ) > 0 when λ ≤ −1, ∀i = 1, . . . ,m. (53)

Also note that

− 1

λ + γ − 1
> 0 when λ ≤ −1 and γ ∈]1, 2[. (54)

Combining (50), (53) and (54), we get q(λ) > 0,when λ ≤ −1 and γ ∈]1, 2[.
Recalling the definition of q(λ) in (49), the above result is contradicted with
(46). Therefore, we verify that λ2 is an extraneous root when F 	 0 and
G 	 0. Finally, if F � 0 and G � 0, we can take two positive definite matrix
sequences {Fn} and {Gn} which converge to F and G in the Frobenius norm,
respectively. Then, using the fact that the eigenvalue of a matrix is continuous
with respect to the matrix’s entries (see, e.g., [37]), we can also show that the
eigenvalues of the matrix M(γ ) are not less than or equal to −1.

Case 2. λ is a complex eigenvalue of the matrix M(γ ). Indeed, we only need to focus
on γ > 1. For this case, the matrix M(γ ) contains only real numbers and thus
its complex eigenvalues must occur in conjugate pairs (see, e.g., [37]). If the
equation f (λ) = 0 still has real coefficients, then it has a pair of conjugate
complex roots, i.e., λ and λ̄. Then, λ · λ̄ = (1 − γ )ξ1 < 1 which is due to
Lemma 3.2. Thus, we have |λ| < 1. If the equation f (λ) = 0 has complex
coefficients, it implies that λ must be complex. For this case, the equation
(48) still holds. Consequently,

det
(
[(1 + κ)G − κ I ] [(κ − λ)I − κG]−1 + F−1

)
= 0.

Since G is symmetric, there exists an orthogonal matrix S such that G =
S−1ΛS where Λ := diag(g1, . . . , gm). Then, we get

det
(
[(1 + κ)Λ − κ I ] [(κ − λ)I − κΛ]−1 + F̃−1

)
= 0, (55)

with F̃ = SFS−1. We denote

Λ1 + Λ2i := [(1 + κ)Λ − κ I ] [(κ − λ)I − κΛ]−1 ,

where both of Λ1 and Λ2 are real diagonal matrices. It follows from (55), we
get

(
Λ1 + F̃−1

)
� 0.

Thus, we have λm(Λ1 + F̃−1) ≤ 0, where λm(·) denotes the smallest eigen-
value. Invoking Theorem III.2.1 of [38], we have 0 ≥ λm(Λ1 + F̃−1) ≥
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λm(Λ1) + λm(F̃−1). In the following, we represent the complex eigen-
value λ of the matrix M(γ ) as a + bi . With simple calculations, we get
Λ1 := diag(Δ(g1), . . . , Δ(gm)), where

Δ(g) := Δ1(g)

Δ2(g)
,

with

Δ1(g) := ((aγ + a + γ − 1)g − aγ )(−a2 + a + b2 − agγ )

+ ((bγ + b)g − bγ )(−2ab + b − bγ g),

Δ2(g) := (b2 − a2 − agγ + a)2 + (−2ab + b − bγ g)2.

Note that Δ2(g) > 0 because λ is complex. Consequently, we obtain that

min
g∈[0,1]

(
Δ(g) + λm(F̃−1)

)
≤ 0.

Recalling λm(F̃−1) ≥ 1, we obtain that

min
g∈[0,1] (Δ(g) + 1) ≤ 0.

which is equivalent to the following minimization problem:

min
g∈[0,1](Δ1(g) + Δ2(g)) ≤ 0. (56)

By some elementary calculations, we know that

Δ1(g) + Δ2(g) := δ2g
2 + δ1g + δ0 with δ2 = −|λ|2γ − aγ (γ − 1).

If δ2 ≥ 0,we can easily show that |λ| < 1. If δ2 < 0,we see that theminimizer
of (56) can be attained only at the end points of [0, 1]. If it is attained at g = 0,
it implies that

Re

( −κ

κ − λ

)
+ 1 ≤ 0.

Then, we can get γ (1− a) ≥ (a − 1)2 + b2. Obviously, a < 1. Furthermore,
we get that γ − 1 + (2 − γ )a ≥ a2 + b2. Then, it follows that −1 < a < 1.
Thus, we obtain that |λ| < 1. On the other hand, if the minimizer of (56) is
attained at g = 1, it means that

Re

(
1

−λ

)
+ 1 ≤ 0.

Thus, we have a
a2+b2

≥ 1. Furthermore, we obtain that 0 < a < 1. Thus,
combining these two inequalities, we get |λ| < 1.

The proof is complete. �
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Remark 5.1 From the proof of Theorem 5.1, we know that if 1 is an eigenvalue of
M(γ ), then f (1) = 0 where f (λ) is defined in (45). It implies that ξ1 + ξ2 = 1. That
is, 1 is an eigenvalue of the matrix (I − F − G + 2FG).

Theorem5.1 enables us to study the spectral property of thematrixM(γ ).Moreover,
it will be shown in the following theorem that if 1 is an eigenvalue of M(γ ), then it
has a complete set of eigenvectors. The proof is partially inspired by Lemma 6 in [32].

Theorem 5.2 Let F and G be two symmetric matrices in R
m×m satisfying 0 � F � I

and 0 � G � I . If 1 is an eigenvalue of the matrix M(γ ) defined in (41), then the
algebraic multiplicity of 1 for M(γ ) equals its geometric multiplicity.

Proof It follows from the definition of M(γ ) in (41) that

det(λI − M(γ ))

= (−1)mdet

(
GF−G − 1

λγ+λ−1 (λI − G)
[
(λ − 1)I + γ F

]
λI−G

0 (λγ + λ − 1)I

)

= det
[
λ2 I − λI + γ (F + G − 2GF) λ + (γ − 1)GF(λ − 1)

]
. (57)

Since 1 is an eigenvalue of the matrix M(γ ), it is also an eigenvalue of the matrix
(I − F − G + 2FG). Then, invoking Lemma 3.12, we know that there exists an
orthogonal matrix Q ∈ R

m×m such that (17) holds. Consequently, we have

Q�(F + G − 2GF)Q =
(
0 0
0 F̂ + Ĝ − 2Ĝ F̂

)
and Q�(GF)Q =

(
D2 0
0 Ĝ F̂

)
,

in which the first equality is due to 2D − 2D2 = 0. Then, it yields

Q� (λ2 I − λI + γ (F + G − 2GF) λ + (γ − 1)GF(λ − 1)
)
Q

=
(

λ(λ − 1)I + (γ − 1)D2(λ − 1) 0
0 (λ2 − λ)Im− + γ (F̂ + Ĝ − 2Ĝ F̂)λ + (γ − 1)Ĝ F̂(λ − 1)

)
.

Taking the determinant on both sides in the above equation, we get

det
[
λ(λ − 1)I + γ (F + G − 2GF) λ + (γ − 1)GF(λ − 1)

]
= (λ − 1)

[
�

i=1

(
λ + (γ − 1)D2

i i

)]
q(λ)

with q(λ) := det
[
(λ2 − λ)Im− + γ

(
F̂ + Ĝ − 2Ĝ F̂

)
λ + (γ − 1)Ĝ F̂(λ − 1)

]
.

Invoking Lemma 3.12, we have

0 ≺ F̂ + Ĝ − 2Ĝ F̂ � Im−. (58)

We can actually conclude that (λ − 1) � q(λ). Let us prove it by contradiction. If

(λ − 1)|q(λ), then it implies that q(1) = 0, i.e., det
[
γ
(
F̂ + Ĝ − 2Ĝ F̂

)]
= 0. This
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contradicts with (58). Moreover, note that

λ + (γ − 1)D2
i i =
{

λ, if Dii = 0,
λ + γ − 1, if Dii = 1.

Therefore, (λ − 1) �
{[�

i=1(λ + (γ − 1)D2
i i )]q(λ)

}
. It implies that the algebraic

multiplicity of 1 for M(γ ) is  defined in (14). On the other hand, the geometric
multiplicity of 1 for M(γ ) is identical with the following quality:

2m − Rank

(
I − GF −G + GF

−γ F + γGF γ (F + G − GF)

)

= 2m − Rank

(
I − GF −G + GF

−F + GF F + G − GF

)

= 2m − Rank

(
I − GF −G + GF
I − F F

)
= 2m − Rank

(
I − G −G + GF

I F

)

= 2m − Rank

(−G + GF I − G
F I

)
= 2m−Rank

(−G−F+2GF I − G
0 I

)

= m − Rank(−G − F + 2GF).

Invoking Lemma 3.6, we conclude that the geometric multiplicity of eigenvalue 1 for
M(γ ) is also . The proof is complete. �
Remark 5.2 Note that, if 1 is an eigenvalue of the matrix (I − F − G + 2FG), then
0 is an eigenvalue of the matrix (F + G − 2GF) because of Lemma 3.7. From the
proof of Theorem 5.2 (see (57)), we know that 1 is an eigenvalue of M(γ ) if 1 is an
eigenvalue of the matrix (I − F −G + 2FG). Therefore, because of Remark 5.1, we
know that 1 is an eigenvalue of M(γ ) if and only if 1 is an eigenvalue of the matrix
(I − F − G + 2FG).

Now, we proceed to the spectral analysis for the iterative matrix T (γ ) defined in
(29). This is the essential pillar for proving the convergence of the scheme (19) with
γ ∈]0, 2[. A lemma is proved first.

Lemma 5.1 Assumptions 1–2 hold; the matrices Q̂ and P̂ are defined in (23); γ ∈
]0, 2[; the matrix T (γ ) is defined in (27). Then, we have |λT (γ )| < 1 or λT (γ ) = 1.
Furthermore, if 1 is an eigenvalue of T (γ ), then it is complete.

Proof Setting G = BQ̂−1B� and F = AP̂−1A� in M(γ ) (see (41)), and invoking
the definition of T̃ (γ ) in (30), we have

M(γ ) = T̃ (γ ).

Thus, it holds eig(M(γ )) = eig(T̃ (γ )). Indeed, according to (31) , we have

eig(T (γ )) = eig(M(γ )). (59)
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It follows from Theorem 5.1 that |λT (γ )| < 1 or λT (γ ) = 1.
If 1 is an eigenvalue of the matrix T (γ ), using Theorem 5.2 and (59), we know that

it is also an eigenvalue of M(γ ) and its algebraic and geometric multiplicities are the
same for T (γ ). The proof is complete. �

Now,we are at the stage to prove the convergence of the scheme (19)with γ ∈]0, 2[.

Theorem 5.3 Assumptions 1–2 hold. Let {(xk, yk, zk)} be the sequence generated by
the scheme (19), i.e., the application of the ADMM scheme (3) with γ ∈]0, 2[ to the
quadratic programming problem (6). Then, the sequence {(xk, yk, zk)} converges to
a KKT point of (6).

Proof The proof is similar as Theorem 3 in [32]; thus we omit it here. �

5.2 Numerical Verification of the Convergence

In this section, we construct a simple particular case of problem (6) and verify numer-
ically the convergence of (19) with γ ∈]0, 2[. In particular, as well observed in the
literature, e.g., [9–15], it is advantageous to employ larger value of γ closer to 2 to
accelerate the convergence in the scheme (20). The codes were written by MATLAB
7.8 (R2009a) and were run on a X1 Carbon notebook with the Intel Core i7-4600U
CPU at 2.1 GHz and 8 GB of memory.

Let us set f = g = b = 0 in (6); the resulting problem has a unique solution
x∗ = y∗ = 0. The matrix P and Q in (6) are generated by

P1 = randn(n1, n1); P = P1′ ∗ P1; a = eigs(P, 1,′ sm′);
P = P − (a − (1e − 4)) ∗ eye(n1)

and

Q1 = randn(n2, n2); Q = Q1′ ∗ Q1; b = eigs(Q, 1,′ sm′);
Q = Q − (b − (1e − 4)) ∗ eye(n1),

respectively. Furthermore, the matrices A ∈ R
m×n1 and B ∈ R

m×n2 in (6) are gener-
ated independently, and their elements are i.i.d. uniformly distributed in the interval
[0, 1]. Note that both P and Q are symmetric positive-semidefinite matrices; and both
P and Q are seriously ill conditioned. To implement the scheme (19), let us fix β = 1,
y0 = randn(n2, 1), z0 = randn(m, 1), and the stopping criterion is (see [2])

err := max{‖B(yk − yk+1)‖2, ‖zk − zk+1‖2} ≤ 10−6. (60)

We test different scenarios of this example where m = n1 = n2 = 50, 100, 200,
500, respectively. The parameter γ varies from 0.2 to 1.8with an equal distance of 0.2.

Moreover, the step size proposed by Glowinski γ = 1.618 ≈
√
5+1
2 is compared as a

benchmark and several values larger than 1.618 are tested, i.e., γ = 1.65, 1.7, 1.75. In
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Table 1,we report the error on xk (measured by‖x̄−x∗‖2), the error on yk (measured by
‖ȳ − y∗‖2), the number of iteration (“Itr.”) and the CPU time in seconds (“Time(s)”).
Here, x̄ and ȳ represent the last iterate satisfying the criterion (60). The condition
numbers of P and Q (“Cond(P)” and “Cond(Q)” respectively) are also included in
Table 1. Results in this table verify the convergence of (19) with γ ∈]0, 2[ and the
acceleration with γ close to 2. In particular, it is shown that the values of γ > 1
significantly speed up the convergence compared to γ = 1, i.e., the original ADMM,
and that some values larger than 1.618 also result in faster convergence considerately.
Hence, it is verified that it is worth considering larger values for γ in Glowinski’s
ADMM scheme (3).

6 Global Linear Convergence

In addition to the main purpose of establishing the convergence of the scheme (19)
with γ ∈]0, 2[ and answeringGlowinski’s open question partially, wewill show in this
section the global linear convergence of scheme (19) with γ ∈]0, 2[ under a condition.
This is a supplementary result to the main convergence result in Section 5.

6.1 Review of Existing Results

The linear convergence of the ADMM (3) with the special case of γ = 1 has been
discussed in the quadratic programming context in [39,40] under different conditions.
Let us briefly review them. In [40], the local linear convergence of a generalized version
of the ADMM proposed in [16], which reduces to the original ADMM (3) when the
parameter is taken as 1, is established for the quadratic programming problem (6)
under some local error bound conditions. In [39], the following convex quadratic
programming problem is considered:

minx 1
2 x

�Qx + c�x + g(y)
s.t . Ax = b, x = y,

with g(y) =
{

0, if y ≥ 0,
+∞, if y � 0.

(61)

Then, the following ADMM scheme is suggested in [39]:

xk+1 = argminAx=bL
′
β(x, yk, zk),

yk+1 = argminL′
β(xk+1, y, zk),

zk+1 = zk − β(xk+1 − yk+1), (62)

where

L′
β(x, y, z) = 1

2
x�Qx + c�x + g(y) − z�(x − y) + β

2
‖x − y‖2.

Note that the equation Ax = b is considered as a constraint in the x-subproblem of
(61). Then, based on the typical spectral analysis for a homogeneous linear equation
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Table 1 Convergence of the ADMM

m n1 n2 γ ‖x̄ − x∗‖2 ‖ȳ − y∗‖2 Itr. Time(s) Condition numbers

50 50 50 0.2 5.005e−6 3.835e−6 1361 0.03 Cond(P):1.6358e+6

0.4 2.274e−6 1.648e−6 728 0.06 Cond(Q):2.0175e+6

0.6 1.644e−6 1.398e−6 623 0.03

0.8 1.216e−6 1.067e−6 473 0.03

1 9.557e−7 8.504e−7 396 0.04

1.2 7.870e−7 6.766e−7 343 0.02

1.4 6.710e−7 5.875e−7 324 0.00

1.6 5.921e−7 5.222e−7 277 0.03

1.618 5.757e−7 5.006e−7 263 0.03

1.65 5.681e−7 4.863e−7 218 0.00

1.7 5.659e−7 4.757e−7 221 0.03

1.75 5.205e−7 4.114e−7 198 0.02

1.8 4.828e−7 4.689e−7 192 0.00

100 100 100 0.2 3.258e−6 3.457e−6 1946 0.12 Cond(P):3.540e+6

0.4 1.530e−6 1.755e−6 921 0.06 Cond(Q):3.7540e+6

0.6 1.084e−6 1.138e−6 688 0.09

0.8 7.921e−7 8.697e−7 529 0.08

1 6.383e−7 6.742e−7 440 0.06

1.2 4.640e−7 5.495e−7 317 0.06

1.4 4.421e−7 4.845e−7 366 0.06

1.6 3.861e−7 4.268e−7 327 0.03

1.618 3.817e−7 4.225e−7 270 0.06

1.65 3.795e−7 3.887e−7 227 0.03

1.7 3.444e−7 3.834e−7 223 0.03

1.75 2.937e−7 3.323e−7 210 0.03

1.8 3.427e−7 3.724e−7 234 0.06

200 200 200 0.2 2.278e−6 2.299e−6 1838 0.28 Cond(P):7.5130e+6

0.4 1.316e−6 1.241e−6 1027 0.19 Cond(Q):7.9452e+6

0.6 8.600e−7 7.272e−7 877 0.16

0.8 6.435e−7 5.618e−7 644 0.16

1 5.094e−7 4.431e−7 604 0.12

1.2 4.248e−7 3.887e−7 492 0.12

1.4 3.821e−7 3.608e−7 453 0.12

1.6 3.674e−7 2.993e−7 380 0.18

1.618 3.894e−7 3.221e−7 378 0.12

1.65 5.606e−7 4.825e−7 356 0.12

1.7 2.360e−7 2.208e−7 288 0.18

1.75 3.091e−7 2.706e−7 298 0.12

1.8 3.858e−7 3.767e−7 276 0.12
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Table 1 continued

m n1 n2 γ ‖x̄ − x∗‖2 ‖ȳ − y∗‖2 Itr. Time(s) Condition numbers

500 500 500 0.2 1.529e−6 1.597e−6 2396 2.54 Cond(P):2.0165e+7

0.4 7.664e−7 8.019e−7 1300 1.74 Cond(Q):1.9426e+7

0.6 5.136e−7 5.423e−7 890 1.59

0.8 3.880e−7 4.253e−7 653 1.65

1 2.943e−7 2.976e−7 699 1.72

1.2 3.960e−7 4.025e−7 691 1.43

1.4 2.476e−7 2.606e−7 619 1.47

1.6 4.857e−7 5.089e−7 668 1.48

1.618 4.977e−7 5.215e−7 662 1.57

1.65 5.111e−7 5.356e−7 640 1.90

1.7 5.317e−7 5.573e−7 674 1.66

1.75 5.565e−7 5.883e−7 657 1.32

1.8 5.711e−7 5.987e−7 575 1.40

characterizing the corresponding matrix recursion form, the local linear convergence
is established for the scheme (62). It is worthwhile to mention that the iterative matrix
considered in the homogeneous linear equation varies iteratively and as analyzed
in [39], four regimes occur. Assuming the convergence (e.g., by results in [2]), the
uniqueness of solution, and the strict complementarity condition (See Theorem 6.4 in
[39]), it is proved in [39] that the iterative matrices finally become fixed with a spectral
radius less than 1, and hence, the local linear convergence is derived therein for (61).

6.2 Global Linear Convergence Under a Tight Condition

In this section, we establish the global linear convergence of the scheme (20) with
γ ∈]0, 2[ under a new assumption different from those in [39,40]. Recall the iterative
matrix T (γ ) defined in (27). If ρ(T (γ )) < 1, then the linear convergence of the
sequence {vk} generated by (26)–(27) follows immediately. Hence, the new condition
to be presented is to ensure the property ρ(T (γ )) < 1, and we shall show that this
condition is tight.

Theorem 6.1 Assumptions 1–2 hold. Assume that

N (BQ̂−1B� − I )
⋂

N (AP̂−1A� − I ) = {0} and

N (BQ̂−1B�)
⋂

N (AP̂−1A�) = {0}, (63)

with Q̂ and P̂ defined in (23). Then, the sequence {(xk, yk, zk)} generated by the
scheme (19) with γ ∈]0, 2[ converges linearly to a KKT point of (6).
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Proof Setting G = BQ̂−1B� and F = AP̂−1A� in M(γ ) (see (41)), and combining
the proof in Lemma 5.1, we know that σ(T (γ )) = σ(M(γ )). Invoking Lemma 3.8
and Remark 5.2, we have

1 /∈ σ(M(γ )) ⇔ 1 /∈ σ(I + 2GF − F − G) ⇔ (63).

Consequently, ρ(M(γ )) < 1 when (63) is satisfied. Then, there is a matrix norm ‖·‖G
such that ρ(M(γ )) ≤ ‖M(γ )‖G < ρ(M(γ )) + ε ≤ 1. Thus, the sequence {(yk, μk)}
converges linearly to a point {(y∗, μ∗)}. It implies that the sequence {(yk, zk)} con-
verges linearly to the point {(y∗, z∗)} with z∗ = βμ∗ as well. Define x∗ like (35), and
recall (21) and (35). We obtain that

‖xk+1 − x∗‖ = ‖P̂−1
[
A�(μk − μ∗) − A�B(yk − y∗)

]
‖ ≤ ‖P̂−1‖(

‖A‖‖μk − μ∗‖ + ‖A�B‖‖yk − y∗‖
)

.

Thus, the sequence {xk} converges linearly and the linear convergence of the sequence
{(xk, yk, zk)} follows as well. The proof is complete. �

Remark 6.1 The condition (63) for ensuring the linear convergence of (19) is indeed
tight. To see it, notice that (63) implies that for either the eigenvalue 1 or 0, thematrices
F and G do not have any common eigenvector. If the condition (63) does not hold,
this means that there exists at least one common eigenvector associated with either 1
or 0 for the matrices F and G. Hence, 1 is an eigenvalue of the iterative matrix T (γ )

and this invalidates the linear convergence of the sequence of {vk} defined in (26).

Remark 6.2 Note that 0 ≤ λBQ̂−1B� ≤ 1 and 0 ≤ λAP̂−1A� ≤ 1. Thus, it is easy to
verify that the conditions 0 < λBQ̂−1B� < 1 and 0 < λAP̂−1A� < 1 suffice to ensure

the condition (63) and hence the linear convergence of the sequence {(xk, yk, zk)}
generated by the scheme (19).

Remark 6.3 The linear convergence rate result in Theorem 6.1 differs from those in
[39,40] in the following aspects. (1) The linear convergence rate in Theorem 6.1 is
global, while those in [39,40] are local. (2) The condition (63) is different from those
in [39,40]; and it is tight. (3) Here we consider the scheme (19) with γ ∈]0, 2[ and the
targeted problem is (6), while in [39] only the special case γ = 1 is considered, and
its targeted problem is (61); and in [40] the generalized ADMM in [16] is considered.
Moreover, the conditions in (63) depend only on the matrices P , Q, A and B in
the problem (6) per se; they do not involve any local information near the solution
point such as the local error bound in [40] or the identification of the regimes of the
corresponding iterative matrix in [39]. Indeed, the conditions (63) are equivalent to
the nonsingularity of the coefficient matrix in the KKT system of the problem (6).
Some necessary and sufficient conditions can be found in (See Theorem 3.1 in [41]).
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Fig. 1 Linear convergence of the ADMM for different γ

6.3 Numerical Verification of the Global Linear Convergence

In this subsection we verify numerically the global linear convergence of scheme (19)
with γ ∈]0, 2[ under the condition (63) by an example.
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Table 2 Linear convergence of the ADMM

m n1 n2 γ ‖x̄ − x∗‖2 ‖ȳ − y∗‖2 Itr. Time (s) Condition numbers

50 50 50 λmin(AP̂
−1A�) =4.9815e−5, λmax(AP̂−1A�) = 0.9995

λmin(BQ̂
−1B�) =4.7014e−5, λmax(BQ̂−1B�) =0.9996

0.2 3.376e−6 2.819e−6 1496 0.06 Cond(P):2.2940e+4

0.4 1.447e−6 1.563e−6 869 0.06 Cond(Q):1.4170e+5

0.6 1.023e−6 1.066e−6 627 0.03

0.8 9.064e−7 6.940e−7 486 0.03

1 7.419e−7 6.946e−7 404 0.04

1.2 6.272e−7 5.130e−7 351 0.04

1.4 5.129e−7 4.357e−7 291 0.04

1.6 4.467e−7 3.844e−7 274 0.04

1.618 3.949e−7 4.265e−7 256 0.04

1.65 4.417e−7 3.683e−7 256 0.04

1.7 4.301e−7 3.649e−7 251 0.04

1.75 4.230e−7 3.775e−7 232 0.03

1.8 4.866e−7 3.979e−7 227 0.03

100 100 100 λmin(AP̂
−1A�) =1.4930e−7, λmax(AP̂−1A�) =0.9998

λmin(BQ̂
−1B�) =3.0493e−5, λmax(BQ̂−1B�) =0.9993

0.2 3.765e−6 3.044e−6 1650 0.06 Cond(P):1.7514e+5

0.4 1.951e−6 1.557e−6 981 0.07 Cond(Q):4.6216e+4

0.6 1.272e−6 9.991e−7 666 0.09

0.8 9.583e−7 7.604e−7 527 0.03

1.0 6.413e−7 7.229e−7 386 0.03

1.2 5.757e−7 5.326e−7 348 0.03

1.4 4.195e−7 4.772e−7 295 0.03

1.6 4.064e−7 4.079e−7 264 0.03

1.618 4.131e−7 3.273e−7 253 0.03

1.65 4.426e−7 4.502e−7 251 0.03

1.7 4.202e−7 3.516e−7 274 0.00

1.75 4.459e−7 4.978e−7 234 0.03

1.8 4.441e−7 4.864e−7 227 0.03

The details of constructing the example is nearly the same as those in Section 5.2
except

P1 = randn(n1,n1); P = P1′ ∗ P1; and

Q1 = randn(n2,n2); Q = Q1′ ∗ Q1;.
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Fig. 2 Linear convergence of the ADMM for different initial points
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Table 3 Global convergence of
the ADMM with different initial
points

γ Initial. ‖x̄ − x∗‖2 ‖ȳ − y∗‖2 Itr. Time (s)

0.6 randn 1.142e−6 9.213e−7 657 0.05

randn*10 1.272e−6 1.041e−6 812 0.06

randn*100 1.270e−6 1.021e−6 942 0.06

rand 1.226e−6 1.077e−6 716 0.03

1.8 randn 4.272e−7 3.766e−7 244 0.03

randn*10 3.803e−7 3.040e−7 287 0.03

randn*100 2.983e−7 3.445e−7 310 0.03

rand 3.920e−7 3.277e−7 277 0.03

We set β = 1, and thus we just need to check the following conditions to ensure (63):

0 < λmin(AP̂
−1A�) and λmax(AP̂

−1A�) < 1; 0 < λmin(BQ̂
−1B�) and

λmax(BQ̂
−1B�) < 1,

with P̂ and Q̂ defined in (23). If the generated matrices P , Q, A and B are satisfied
with above conditions, it implies that neither 0 nor 1 is the common eigenvalues of
AP̂−1A� and BQ̂−1B�. Therefore, the condition (63) in Theorem 6.1 is ensured.
The implementation details of the scheme (19) are the same as those in Sect. 5.2,

We first test the performance with the initial point y0 = randn(n2, 1) and z0 =
randn(m, 1) for the scenarioswherem = n1 = n2 = 50, 100.A number of γ ’s values
varying from 0.2 to 1.8 with an equal distance of 0.2 are tested. Again, the value of
1.618 suggested by Glowinski is tested as a benchmark and several values larger than
1.618, i.e, γ = 1.65, 1.7, 1.75, are compared to show the possible acceleration with
larger values of γ . In Fig. 1, we plot the evolution of the errors to the exact solution
point, i.e., ‖vk − v∗‖2 with vk defined in (28)), with respect to iteration numbers. The
linear convergence of the scheme (19) is displayed in this figure for different choices
of γ ∈]0, 2[. The errors on xk (measured by ‖x̄ − x∗‖2), yk (measured by ‖ȳ− y∗‖2),
the number of iteration (“Itr.”)and the CPU time in seconds (“Time(s)”) are reported
in Table 2. Results in Table 2 demonstrate the global convergence of the scheme (19)
under the condition (63).

To further see the global feature of the linear convergence in Theorem 6.1, with
different initial points we focus on the case wherem = n1 = n2 = 100, and the values
of γ are 0.6 and 1.8, respectively. We report the numerical performance with several
different initial points.We generate the initial points (y0, z0) by different ways as listed
in Table 3. The evolution of the errors to the exact solution point, i.e., ‖vk −v∗‖2 with
vk defined in (26), with respect to iteration numbers is plotted for these different initial
points in Fig. 2. The curves in Fig. 2 clearly show the linear convergence of the scheme
(19) under the condition (63) with different initial points. The numerical results are
also summarized in Table 3.

123



Journal of Optimization Theory and Applications (2018) 179:163–196 195

7 Conclusions

In this paper, we prove the convergence of the alternating directionmethod ofmultipli-
ers (ADMM) with a factor γ ∈]0, 2[ for updating its dual variable when the objective
function is the sum of two quadratic functions. Glowinski’s open question in 1984
is thus partially answered. Because of the quadratic programming context under dis-
cussion, the spectral analysis plays a crucial role in the analysis. But our analysis is
featured by a nonsymmetric matrix involving the factor γ ∈]0, 2[, and hence, more
complicated analysis than the typical case of γ = 1 in the original ADMM is needed.
The setting under our discussion seems to be by now the most general one regarding
the answer to Glowinski’s open question. Answering this question completely for the
generic case where the objective function is the sum of two general convex functions
seems to need more advanced analytic tools, rather than just the spectral analysis in
numerical linear algebra. We hope the new analysis presented in the paper will favor
this ultimate goal. A by-product of our analysis is the global linear convergence rate of
theADMMwith γ ∈]0, 2[ for the quadratic programming case under a tight condition.
This result differs from existing results in the literature.
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