
2014

360 MIN TAO

The special case of (1.1) with m = 2 has been well studied in the literature, and the
most influential methods for this special case might be the alternating direction method of
multiplier (ADMM) [11, 12, 13] and the proximal-based decomposition method (PCPM) [4].
Compared to the rich literature for the case m = 2 [11, 12, 13, 4], the available work on
the general case of (1.1) with m ≥ 3 is significantly limited despite that the general case
captures an even broader spectrum of applications in various fields.

Although the classical augmented Lagrangian method (ALM) proposed in [9, 17] can
be applied to solve (1.1), a direct application of ALM will treat (1.1) as a general convex
programming problem, and all the individual variables xi’s are dealt with in a single mini-
mization problem. Thus, the nice separable structure in the objective function which might
be very beneficial for algorithmic design is completely ignored. With the aim of taking
advantage of the separable structure in the objective function, a predominant strategy is to
decompose the augmented Lagrangian function of (1.1) into m subproblems such that the
ith subproblem only involves θi(xi). An instant idea is to extend the ADMM for (1.1) with
m = 2 to the general case m ≥ 3, and it yields the following ADMM-like splitting scheme:

xk+1
1 = argmin

{
θ1(x1)− (λk)⊤pk1(x1) +

1
2∥p

k
1(x1)∥2H

∣∣ x1 ∈ X1

}
;

· · · · · · · · · · · ·
xk+1
i = argmin

{
θi(xi)− (λk)⊤pki (xi) +

1
2∥p

k
i (xi)∥2H

∣∣ xi ∈ Xi

}
;

· · · · · · · · · · · ·
xk+1
m = argmin

{
θm(xm)− (λk)⊤pkm(xm) + 1

2∥p
k
m(xm)∥2H

∣∣ xm ∈ Xm

}
;

λk+1 = λk −H(
∑m

j=1 Ajx
k+1
j − b),

(1.2)

where

pki (xi) =
i−1∑
j=1

Ajx
k+1
j +Aixi +

m∑
j=i+1

Ajx
k
j − b, i = 1, . . . ,m,

and superscript ⊤ is the transpose operator, and H ≻ 0 is a penalty matrix. The benefit
of introducing matrix penalty instead of constant penalty is to permit a flexible strategy
of enforcing different level of penalty. However, the convergence of the direct extension of
ADMM (1.2) is still open. Recently, the lack of convergence of (1.2) has inspired some efforts
in the prediction-correction fashion for solving (1.1), whose main idea is to generate the new
iterate via correcting the output of (1.2), see e.g. [7].

Note that the subproblems arising in (1.2) need to be solved sequentially, i.e., in order
to compute xk+1

i , one must first compute xk+1
1 , xk+1

2 , . . . , xk+1
i−1 . This creates an obstacle to

parallelization. With the advent of the big data era, an important and interesting problem
is to develop parallel splitting methods for solving (1.1) where the resulting subproblems
are tailored completely for parallel computation. By decomposing the corresponding aug-
mented Lagrangian function of (1.1) in a parallel manner, we can easily derive the following
procedure for obtaining the xk+1

i ’s:

xk+1
1 = argmin

{
θ1(x1)− (λk)⊤qk1 (x1) +

β
2 ∥q

k
1 (x1)∥2

∣∣ x1 ∈ X1

}
;

· · · · · · · · · · · ·
xk+1
i = argmin

{
θi(xi)− (λk)⊤qki (xi) +

β
2 ∥q

k
i (xi)∥2

∣∣ xi ∈ Xi

}
;

· · · · · · · · · · · ·
xk+1
m = argmin

{
θm(xm)− (λk)⊤qkm(xm) + β

2 ∥q
k
m(xm)∥2

∣∣ xm ∈ Xm

}
;

λk+1 = λk − β(
∑m

j=1 Ajx
k+1
j − b),

(1.3)

PARALLEL SPLITTING METHODS FOR SEPARABLE CONVEX PROGRAMMING 361

where

qki (xi) =
m∑

j=1,j ̸=i

Ajx
k
j +Aixi − b. i = 1, . . . ,m.

However, compared to the adequate literature of alternating splitting augmented-Lagrangian-
based methods for (1.1) (especially whenm = 2), numerical development on parallel splitting
augmented-Lagrangian-based methods for (1.1), even for m = 2, is in its infancy. For exist-
ing parallel splitting augmented-Lagrangian-based methods for (1.1), we refer to [4, 6, 19]
for the case m = 2, 3. More recently, in [5], a parallel splitting method for (1.1) with general
m was developed in the prediction-correction fashion. This parallel splitting method dif-
fers from the prediction-correction method in [7], in that the predictor is generated by the
parallel-oriented scheme (1.3) rather than the alternating-oriented scheme (1.2), and that
the structure of correction step is much easier than that of [7]. Note that all the splitting
methods in [7, 6, 19, 5] require correction step to ensure convergence. The correction step,
however, may cause critical difficulties for some concrete applications of (1.1). As shown
in the numerical example of recovering sparse and low-rank matrices with incomplete and
noisy observation in [18], the correction step may ruin the low-rank characteristic of recov-
ered components obtained by the prediction step and end up with high-rank iterates after
implementing some correction steps. Motivated by these applications, a natural question
thus arises: Is it possible to develop splitting methods for solving the general case of (1.1)
without any correction step, while the decomposed subproblems are completely tailored for
parallel computation?

As our first contribution, we answer this question affirmatively by proposing four paral-
lel splitting methods for solving (1.1) that do not require a correction step. Note that the
method in [8] for (1.1) also requires no correction step, but its resulting subproblems at each
iteration are not eligible for completely parallel computation. Our second contribution is to
establish the global convergence and to show the O(1t) convergence rate in an ergodic sense
of the proposed methods. The results provide some theoretical justification of the witnessed
empirical efficiency.

The rest of this paper is organized as follows. In Section 2, we provide some useful pre-
liminaries for later analysis. In Section 3, four distinct versions of parallel splitting methods
are presented. In Section 4, the convergence analysis for these methods are provided. Then,
we show that the convergence rate is O(1t) in an ergodic sense in Section 5. In order to
verify the efficiency of our proposed methods, we report the numerical performance for the
matrix decomposition and video surveillance problems. Numerical comparisons with some
existing efficient methods are reported in Section 6. Finally, some conclusions are drawn in
Section 7.

2 Preliminaries

In this section, we summarize some basic definitions and related properties that will be used
later in our analysis.

362 MIN TAO

2.1 Variational Characterization

Let W := X1 × X2 × · · · × Xm × Rl. By deriving its optimality condition, it is easy to see
that (1.1) is equivalent to finding w∗ = (x∗

1, x
∗
2, ..., x

∗
m, λ∗) ∈ W such that

θ1(x1)− θ1(x
∗
1) + (x1 − x∗

1)
⊤(−A⊤

1 λ
∗) ≥ 0,

θ2(x2)− θ2(x
∗
2) + (x2 − x∗

2)
⊤(−A⊤

2 λ
∗) ≥ 0,

· · · · · · · · · · · ·
θm(xm)− θm(x∗

m) + (xm − x∗
m)⊤(−A⊤

mλ∗) ≥ 0,∑m
i=1 Aix

∗
i − b = 0,

∀ w = (x1, x2, . . . , xm, λ) ∈ W,

or, in a more compact form:

VI(W, F, θ) θ(u)− θ(u∗) + (w − w∗)⊤F (w∗) ≥ 0, ∀ w ∈ W, (2.1a)

where

u =


x1

x2

...
xm

 , θ(u) =

m∑
i=1

θi(xi), w =


x1

x2

...
xm

λ

 and F (w) =


−A⊤

1 λ
−A⊤

2 λ
...

−A⊤
mλ∑m

i=1 Aixi − b

 .

(2.1b)

Note that u collects all the primal variables in (1.1) and it is a sub-vector of w. We have
the following lemma regarding F (w) defined above. We omit its proof since it is trivial.

Lemma 2.1. The mapping F (w) defined in (2.1b) satisfies

(w′ − w)⊤(F (w′)− F (w)) = 0, ∀w′, w ∈ Rn+l.

Under the assumption that the solution set of (1.1) is nonempty, the solution set of
VI(W, F, θ), which denotes by W∗, is also nonempty and convex (see Theorem 2.3.5 in [10]).
Moreover, the following theorem provides a description of W∗, and it is inspired by Theorem
2.3.5 in [10].

Theorem 2.2. The solution set of VI(W, F, θ) is convex and it can be characterized as

W∗ =
∩

w∈W

{
w̃ ∈ W : θ(u)− θ(ũ) + (w − w̃)⊤F (w) ≥ 0

}
. (2.2)

Based on Theorem 2.2, we present the definition of ϵ-approximate solution in the follow-
ing.

Definition 2.3. w̃ ∈ W is an ϵ-approximate solution of VI(W, F, θ) if it satisfies

θ(ũ)− θ(u) + (w̃ − w)⊤F (w) ≤ ϵ,∀w ∈ W.

The identity summarized in the following lemma is useful in the convergence analysis.
We omit the proof which is very elementary.

Lemma 2.4. Let D ∈ Rn×n be symmetric and positive definite. Then, it holds that

(a− b)⊤D(c− d) =
1

2

(
∥a− d∥2D − ∥a− c∥2D

)
+

1

2

(
∥c− b∥2D − ∥d− b∥2D

)
∀ a, b, c, d ∈ Rn,

where ∥x∥2D represents x⊤Dx for any vector x ∈ Rn.

PARALLEL SPLITTING METHODS FOR SEPARABLE CONVEX PROGRAMMING 363

2.2 Some Notations

We define some matrices which will simplify our notations significantly in the later analysis.
For m ≥ 3, a block diagonal matrix is defined as

Gr = diag{r1A⊤
1 HA1, r2A

⊤
2 HA2, . . . , rmA⊤

mHAm,H−1}, (2.3)

where r = (r1, . . . , rm) ∈ Rm
+ . Note that the matrix Gr defined in (2.3) is positive definite

under the assumption that Ai’s (i = 1, . . . ,m) are of full column rank and H is positive
definite. We use e to denote the vector with all entries equal to 1. More specifically,

Ge = diag{A⊤
1 HA1, A

⊤
2 HA2, . . . , A

⊤
mHAm,H−1}. (2.4)

Four more matrices will be applied in the coming analysis:

M =


r1A

⊤
1 HA1 0 · · · 0
...

. . .
. . .

...
0 · · · rmA⊤

mHAm 0
−A1 · · · −Am H−1


p×p

,

Q =


I · · · 0 0
...

. . .
...

...
0 · · · I 0

−HA1 · · · −HAm I


p×p

, (2.5)

and

N =


A⊤

1 HA1 0 · · · A⊤
1

...
. . .

. . .
...

0 · · · A⊤
mHAm A⊤

m

0 · · · 0 ηH−1


p×p

,

N−⊤Ge =


I 0 · · · 0
0 I · · · 0
...

...
. . .

...
− 1

ηHA1 · · · − 1
ηHAm

1
η I


p×p

, (2.6)

where η is a positive parameter and p = n+ l. The matrices Ai (i = 1, . . . ,m) are assumed
to be of full column rank. Thus, all the matrices A⊤

i HAi’s are nonsingular. The matrix N
defined in (2.6) is also nonsingular block upper-triangular, and hence N−⊤Ge is well defined.
Note the following relation between these matrices:

M = Gr ·Q, Ge = N⊤ · (N−⊤Ge). (2.7)

Finally, we summarize some facts regarding the matrices defined in (2.3) - (2.6) in the
following.

Lemma 2.5. Let the matrix Ξ ∈ R(m+1)×(m+1) be defined as

Ξ =


r1 − 1 −1 · · · −1 0
−1 r2 − 1 · · · −1 0
...

...
. . .

...
...

−1 −1 · · · rm − 1 0
0 0 · · · 0 1

 .

364 MIN TAO

Then Ξ is positive definite if and only if

m∑
i=1

1

ri
< 1. (2.8)

Proof. Note the following identity:

Ξ = U · Λ · U⊤,

where

U =


1 0 · · · 0 1
0 1 · · · 0 1
...

...
. . .

...
...

0 0 · · · 1 1
0 0 · · · 0 1

 and Λ =


r1 0 · · · 0 −1
0 r2 · · · 0 −1
...

...
. . .

...
...

0 0 · · · rm −1
−1 −1 · · · −1 1

 .

Obviously, the ith (i = 1, . . . ,m) order sequential minor of matrix Λ are positive. And the
(m+ 1)th order sequential minor is equal to

det(Λ) = (
m∏
i=1

ri)(1−
m∑
i=1

1

ri
).

Since ri > 0 (i = 1, . . . ,m), det(Λ) > 0 if and only if (1 −
∑m

i=1
1
ri
) > 0. Therefore, Λ is

positive definite if and only if
∑m

i=1
1
ri

< 1, i.e., condition (2.8) holds. Because the matrix
U is nonsingular, the matrix Ξ is positive definite if and only if the matrix Λ is positive
definite. Hence, the positive definiteness of the matrix Ξ is ensured by the condition (2.8).

�

Remark 2.6. If ri ≡ r (i = 1, . . . ,m), the condition (2.8) is reduced to r > m.

Lemma 2.7. Let the matrices Ge, M , Q and N be defined in (2.4), (2.5) and (2.6),
respectively. Then,
1) The matrix

S1 = M +M⊤ −Q⊤GrQ (2.9)

is positive definite if and only if the condition (2.8) holds;
2) The matrix

S2 = N +N⊤ −Ge (2.10)

is positive definite if and only if η > m+1
2

Proof. For the assertion 1), we notice that

S1 = M +M⊤ −Q⊤GrQ

= diag{r1A⊤
1 HA1, r2A

⊤
2 HA2, . . . , rmA⊤

mHAm,H−1} −


A⊤

1
...

A⊤
m

0

H(A1, . . . , Am, 0)

PARALLEL SPLITTING METHODS FOR SEPARABLE CONVEX PROGRAMMING 365

= A⊤ ·


r1Il 0l · · · 0l 0l
0l r2Il · · · 0 0l
...

...
. . .

...
...

0l 0l · · · rmIl 0l
0l 0l · · · 0l Il

 · A − A⊤ ·


Il Il · · · Il 0l
Il Il · · · Il 0l
...

...
. . .

...
...

Il Il · · · Il 0l
0l 0l · · · 0l 0l

 · A

= A⊤ ·


(r1 − 1)Il −Il · · · −Il 0l

−Il (r2 − 1)Il · · · −Il 0l
...

...
. . .

...
...

−Il −Il · · · −Il 0l
0l 0l · · · 0l Il

 · A

= A⊤ · (Ξ⊗ Il) · A,

where A = diag{H1/2A1, . . . ,H
1/2Am,H−1/2}. The matrix A is of full column rank, and

Ξ ⊗ Il has the same eigenvalues as the matrix Ξ. Thus, the matrix S1 is positive definite
if and only if the matrix Ξ is positive definite. In view of Lemma 2.5, the first assertion
follows immediately.

For the assertion 2), we note that

S2 = N +N⊤ −Ge

=



A⊤
1 HA1 0 · · · 0 A⊤

1

0 A⊤
2 HA2

. . . 0 A⊤
2

... . . .
. . .

...
...

0 · · · . . . A⊤
mHAm A⊤

m

A1 A2 · · · Am (2η − 1)H−1


= A⊤ · (Υ⊗ Il) · A,

where

Υ =


1 0 · · · 0 1
0 1 · · · 0 1
...

...
. . .

...
...

0 0 · · · 1 1
1 1 · · · 1 2η − 1


(m+1)×(m+1)

.

Thus, the positive definiteness of S2 is equivalent to the positive definiteness of the matrix
Υ, and it is equivalent to η > (m+ 1)/2. �

3 The New Parallel Methods for Solving (1.1)

In this section, we present four different versions of parallel splitting methods for (1.1) and
prove some elementary properties for the coming convergence analysis.

3.1 Algorithm 1

Let us revisit the classical ALM, so that the relationship of the proposed algorithm with
ALM will be clear later. When the classical ALM is applied to (1.1), it yields the following

366 MIN TAO

scheme:



 xk+1
1
...

xk+1
m

 = argmin{xi∈Xi,i=1,...,m}{
∑m

i=1 θi(xi)− ⟨λk,
∑m

i=1 Aixi⟩

+1
2∥

∑m
i=1 Aixi − b∥2H},

λk+1 = λk −H(
∑m

j=1 Ajx
k+1
j − b).

(3.1)

Note that the subproblem involving (x1, x2, . . . , xm) in (3.1) requires an inner minimization
to obtain an approximate solution. Hence, the direct application of ALM may ignore the nice
separable structure of problem (1.1). However, it is possible to utilize the properties of each
θi individually when we apply the classical proximal point algorithm (PPA) to regularize
the subproblem involving (x1, x2, . . . , xm), i.e.,



 xk+1
1
...

xk+1
m

 = argmin{xi∈Xi,i=1,...,m}
{∑m

i=1 θi(xi)− ⟨λk,
∑m

i=1 Aixi⟩

+1
2∥

∑m
i=1 Aixi − b∥2H + 1

2

∥∥∥∥∥∥∥
 x1

...
xm

−

 xk
1
...

xk
m


∥∥∥∥∥∥∥
2

R

 ,

λk+1 = λk −H(
∑m

j=1 Ajx
k+1
j − b),

(3.2)

where R ≻ 0 is a matrix to be determined later. Usually, the above scheme is referred to as
the proximal-like augmented Lagrangian method (PL-ALM). By choosing matrix R appro-
priately, the first subproblem in (3.2) could be decomposed into m dependent subproblems
without overlapping variables. Indeed, note that

1
2∥

m∑
i=1

Aixi − b∥2H = 1
2∥

m∑
i=1

Aix
k
i − b∥2H +

⟨ A⊤
1
...

A⊤
m

H(
m∑
i=1

Aix
k
i − b),

 x1 − xk
1

...
xm − xk

m

⟩

+ 1
2

∥∥∥∥∥∥∥
 x1 − xk

1
...

xm − xk
m


∥∥∥∥∥∥∥
2

Υ

,

where

Υ =

 A⊤
1
...

A⊤
m

H(A1, . . . , Am). (3.3)

PARALLEL SPLITTING METHODS FOR SEPARABLE CONVEX PROGRAMMING 367

By setting R = Gr − Υ (Gr defined in (2.3) and r = (r1, . . . , rm) is chosen to satisfy the
condition R ≻ 0) in the first subproblem of (3.2), we can derive the following procedure:

 xk+1
1
...

xk+1
m

 = argmin{xi∈Xi,i=1,...,m}
{∑m

i=1 θi(xi)− ⟨λk,
∑m

i=1 Aixi⟩

+

⟨ A⊤
1
...

A⊤
m

H(
∑m

i=1 Aix
k
i − b),

 x1 − xk
1

...
xm − xk

m

⟩
+ 1

2

∥∥∥∥∥∥∥
 x1 − xk

1
...

xm − xk
m


∥∥∥∥∥∥∥
2

Gr

 ,

λk+1 = λk −H(
∑m

j=1 Ajx
k+1
j − b).

In view of the definition (2.3) of the matrix Gr, the above scheme is equivalent to

xk+1
1 = argminx1∈X1

{
θ1(x1)− ⟨(λk −H(

∑m
i=1 Aix

k
i − b)), A1x1⟩

+ r1
2

∥∥A1(x1 − xk
1)
∥∥2
H

}
,

· · · · · · · · · · · ·
xk+1
m = argminxm∈Xm

{
θm(xm)− ⟨(λk −H(

∑m
i=1 Aix

k
i − b)), Amxm⟩

+ rm
2

∥∥Am(xm − xk
m)

∥∥2
H

}
,

λk+1 = λk −H(
∑m

j=1 Ajx
k+1
j − b).

In this way, the subproblem involving (x1, x2, . . . , xm) in (3.1) is decomposed into m inde-
pendent subproblems and thus each subproblem can be solved in a parallel manner. The
resulted method, denoted as Algorithm 1a, for (1.1) generates the new iterate wk+1 =
(xk+1

1 , xk+1
2 , . . . , xk+1

m , λk+1) as follows.

Algorithm 1a: The (k + 1)th iteration of the new parallel splitting method
Step 1. Update multiplier:

λ̂k = λk −H
(∑m

i=1 Aix
k
i − b

)
. (3.4)

Step 2. Solve the following m subproblems (in parallel):

xk+1
i := argmin{θi(xi)− (λ̂k)⊤Aixi +

ri
2
∥Ai(xi − xk

i)∥2H
∣∣ xi ∈ Xi}, i = 1, 2, . . . ,m.

(3.5)

Step 3. Update multiplier

λk+1 = λk −H
(∑m

i=1 Aix
k+1
i − b

)
.

Remark 3.1. Algorithm 1a requires no correction step and all the subproblems in (3.5)
are tailored for parallel computation. Compared to (1.2) and (1.3), each subproblem in
(3.5) involves one function component θi(xi) only and it is possible to take advantage of the
structure of θi(xi). In addition, if Ai is of full column rank, then the ith subproblem in (3.5)
is strongly convex and thus a unique solution is guaranteed.

368 MIN TAO

As observed in (3.5), the efficiency of Algorithm 1a heavily depends upon the efficient
solvability of the subproblem involving xi (i = 1, . . . ,m), i.e.

min
xi∈Xi

θi(xi) +
ai
2
∥Aixi − y∥2, i = 1, . . . ,m, (3.6)

where the positive scalar ai and vector y are given. When the linear operator Ai is not the
identity, the above subproblem may not preserve a closed-form solution. In fact, another
splitting parallel method can be developed assuming that each subproblem (3.6) preserves
a closed-form solution with Ai = I. The resulted method, denoted as Algorithm 1b, is
also derived from PL-ALM (3.2) by setting the matrix R to be diag{δ1In1

, . . . , δmInm
}−Υ,

where Υ is defined in (3.3). Note that Algorithm 1b inherits the advantage of Algorithm 1a,
i.e., it can be implemented in a parallel manner. We indicate that the difference between
Algorithm 1a and Algorithm 1b is the different setting of the matrix R in (3.2). However,
Algorithm 1b will be more flexible to deal with the more general matrices Ai and more
widely used in practice than Algorithm 1a when the given θi (i = 1, . . . ,m) are of certain
special structures. The proximal parameters δi’s in Algorithm 1b are assumed to satisfy

m∑
i=1

ρ(A⊤
i HAi)

δi
< 1,

where ρ(·) denotes the spectral radius. Then, Algorithm 1b for (1.1) generates the new
iterate wk+1 = (xk+1

1 , xk+1
2 , . . . , xk+1

m , λk+1) as follows.

Algorithm 1b: The (k + 1)th iteration of the new parallel splitting method
Step 1. Update multiplier:

λ̂k = λk −H
(∑m

i=1 Aix
k
i − b

)
,

Step 2. Solve the following m subproblems (in parallel):

xk+1
i := argmin{θi(xi)− (λ̂k)⊤Aixi +

δi
2
∥xi − xk

i ∥2
∣∣ xi ∈ Xi}, i = 1, 2, . . . ,m.

(3.7)

Step 3. Update multiplier

λk+1 = λk −H
(∑m

i=1 Aix
k+1
i − b

)
.

Remark 3.2. Algorithm 1b can be viewed as an extension of the proximal-based decom-
position method (PCPM) for (1.1) with m = 2 to m ≥ 3 . The PCPM generates the new
iterate with the given (xk

1 , x
k
2 , λ

k) as follows:
λ̂k = λk − β(A1x

k
1 +A2x

k
2);

xk+1
1 = argminx1∈X1{f1(x1)− ⟨λ̂k, A1x1⟩+ 1

2β ∥x1 − xk
1∥2};

xk+1
2 = argminx2∈X2{f2(x2)− ⟨λ̂k, A2x2⟩+ 1

2β ∥x2 − xk
2∥2};

λk+1 = λk − β(A1x
k+1
1 +A2x

k+1
2),

where 0 < ϵ ≤ β ≤ min(1−ϵ
2∥A1∥ ,

1−ϵ
2∥A2∥).

PARALLEL SPLITTING METHODS FOR SEPARABLE CONVEX PROGRAMMING 369

The convergence analysis for Algorithm 1b can be developed in a similar way to Al-
gorithm 1a. Hence, we focus on Algorithm 1a and omit the details for Algorithm 1b for
succinctness. For convenience of further analysis, we use the sequence {wk} generated by
the proposed Algorithm 1a to construct an auxiliary sequence via

ŵk =


x̂k
1

x̂k
2
...

x̂k
m

λ̂k

 =


xk+1
1

xk+1
2
...

xk+1
m

λk −H
(∑m

i=1 Aix
k
i − b

)

 . (3.8)

With the notation Q defined in (2.5), we can get

wk+1 = wk −Q(wk − ŵk). (3.9)

Recall the characterization of W∗ in (2.2), the following theorem reflects the discrepancy
of ŵk from a solution point in W∗.

Theorem 3.3. Let {wk} be generated by Algorithm 1a and {ŵk} be given in (3.8). Then,
we have

ŵk ∈ W, θ(u)− θ(ûk) + (w − ŵk)⊤F (ŵk) + (w − ŵk)⊤GrQ(ŵk − wk) ≥ 0, ∀ w ∈ W,

(3.10)

where Gr and Q are defined in (2.3) and (2.5), respectively.

Proof. First, it follows from (3.4) and the fact xk+1
i = x̂k

i (i = 1, . . . ,m) that

(λ− λ̂k)⊤{(A1x̂
k
1 + · · ·+Amx̂k

m − b)−
m∑
i=1

Ai(x̂
k
i − xk

i) +H−1(λ̂k − λk)} ≥ 0.

On the other hand, according to the optimality condition of the xi-subproblem

x̂k
i ∈ Xi, θ(xi)− θ(x̂k

i)+ (xi − x̂k
i)

⊤(−A⊤
i λ̂

k)+ (xi − x̂k
i)

⊤riA
⊤
i HAi(x̂

k
i −xk

i) ≥ 0, ∀xi ∈ Xi.

Consequently, it follows from the above two inequalities that

θ(x1)− θ(x̂k
1) + (x1 − x̂k

1)
⊤(−A⊤

1 λ̂
k) + (x1 − x̂k

1)
⊤r1A

⊤
1 HA1(x̂

k
1 − xk

1) ≥ 0,

θ(x2)− θ(x̂k
2) + (x2 − x̂k

2)
⊤(−A⊤

2 λ̂
k) + (x2 − x̂k

2)
⊤r2A

⊤
2 HA2(x̂

k
2 − xk

2) ≥ 0,
.

θ(xm)− θ(x̂k
m) + (xm − x̂k

m)⊤(−A⊤
mλ̂k) + (xm − x̂k

m)⊤rmA⊤
mHAm(x̂k

m − xk
m) ≥ 0,

(λ− λ̂k)⊤
{
A1x̂

k
1 +A2x̂

k
2 + · · ·+Amx̂k

m − b−H−1(λk − λ̂k)−
∑m

i=1 Ai(x̂
k
i − xk

i)
}
≥ 0.

∀w ∈ W.

Adding all these inequalities together and using the definitions of F in (2.1b), and M in
(2.5), it leads that

ŵk ∈ W, θ(u)− θ(ûk) + (w − ŵk)⊤F (ŵk) + (w − ŵk)⊤M(ŵk − wk) ≥ 0, ∀ w ∈ W.

Recall that M = GrQ (see (2.7)), the assertion (3.10) follows immediately. �

370 MIN TAO

Lemma 3.4. Let {wk} be generated by Algorithm 1a and {ŵk} be given in (3.8). Then, we
have

∥wk − ŵk∥2Gr
− ∥wk+1 − ŵk∥2Gr

= ∥wk − ŵk∥2S1
,

where Gr and S1 are defined in (2.3) and (2.9), respectively.

Proof. First, combining (3.9), we have

∥wk − w∥2Gr
− ∥wk+1 − w∥2Gr

= ∥wk − w∥2Gr
− ∥wk −Q(wk − ŵk)− w∥2Gr

= 2(wk − w)⊤GrQ(wk − ŵk)− ∥Q(wk − ŵk)∥2Gr

= 2(wk − w)⊤M(wk − ŵk)− ∥Q(wk − ŵk)∥2Gr
. (3.11)

The last equality follows from the fact M = GrQ. Then, setting w = ŵk in (3.11), we have

∥wk − ŵk∥2Gr
− ∥wk+1 − ŵk∥2Gr

= 2(wk − ŵk)⊤M(wk − ŵk)− ∥Q(wk − ŵk)∥2Gr

= (wk − ŵk)⊤(M +M⊤)(wk − ŵk)− ∥Q(wk − ŵk)∥2Gr

= ∥wk − ŵk∥2(M+M⊤−Q⊤GrQ)

= ∥wk − ŵk∥2S1
. (3.12)

The last equality follows from the definition of matrix S1 (see (2.9)). Thus the assertion
follows directly. �

Theorem 3.5. Let {wk} be generated by Algorithm 1a and {ŵk} be given in (3.8). Then,
we have

θ(u)− θ(ûk) + (w − ŵk)⊤F (ŵk) +
1

2
(∥w − wk∥2Gr

− ∥w − wk+1∥2Gr
)

≥ 1

2
∥ŵk − wk∥2S1

, ∀ w ∈ W, (3.13)

where Gr and S1 are defined in (2.3) and (2.9), respectively.

Proof. First, by using the relationship in (3.9), it follows from (3.10) that

ŵk ∈ W, θ(u)− θ(ûk) + (w − ŵk)⊤F (ŵk) + (w − ŵk)⊤Gr(w
k+1 − wk) ≥ 0, ∀ w ∈ W.

(3.14)

In view of Lemma 2.4, we have

(w − ŵk)⊤Gr(w
k+1 − wk) =

1

2

(
∥w − wk∥2Gr

− ∥w − wk+1∥2Gr

)
+

1

2

(
∥ŵk − wk+1∥2Gr

− ∥ŵk − wk∥2Gr

)
.

Substituting the above identity into (3.14), we have

ŵk ∈ W, θ(u)− θ(ûk) + (w − ŵk)⊤F (ŵk) +
1

2

(
∥w − wk∥2Gr

− ∥w − wk+1∥2Gr

)
≥ 1

2

(
∥ŵk − wk∥2Gr

− ∥ŵk − wk+1∥2Gr

)
=

1

2
∥wk − ŵk∥2S1

, ∀ w ∈ W.

The last equality follows from (3.12). Hence, the assertion (3.13) follows immediately. �

PARALLEL SPLITTING METHODS FOR SEPARABLE CONVEX PROGRAMMING 371

3.2 Algorithm 2

In this section, we present another two parallel splitting methods for (1.1). In order to
alleviate the difficulty of setting m parameters in Algorithm 1a, we propose another parallel
algorithm, denoted as Algorithm 2a, by setting ri = 1 (i = 1, . . . ,m) in Algorithm 1a.
However, another parameter η in the multiplier updating (see (3.16)) step is introduced. As
specified in Algorithm 1a, H is also a positive definite matrix. The stepsize should satisfy
η > m+1

2 . Then, the resulted parallel splitting method for (1.1) generates the new iterate

wk+1 = (xk+1
1 , xk+1

2 , . . . , xk+1
m , λk+1) as follows.

Algorithm 2a: The (k + 1)th iteration of the new parallel splitting method
Step 1.1 Solve the following m subproblems (in parallel):

x̃k
i := argmin{θi(xi)− (λk)⊤Aixi +

1

2
∥Ai(xi − xk

i)∥2H
∣∣ xi ∈ Xi}, i = 1, 2, . . . ,m,

(3.15)

Step 1.2 Update multiplier

λ̃k = λk − 1

η
H(

m∑
i=1

Aix̃
k
i − b). (3.16)

Step 2. Generate new iterate

wk+1 = wk − α ·N−TGe(w
k − w̃k), (3.17)

where α ∈ (0, 1] and the matrix N−TGe is defined in (2.6).

Remark 3.6. If we set stepsize α = 1 in correction step (3.17), then

wk+1 = wk −N−TGe(w
k − w̃k). (3.18)

Recall the definition of matrix N−TGe (see (2.6)), thus xk+1
i = x̃k

i (i = 1, . . . ,m), and

λk+1 = λk −
[1
η
(λk − λ̃k)− 1

η
H
∑m

i=1 Ai(x
k
i − xk+1

i)
]
.

Substitute (3.16) into the above equality, we obtain the following formula to update multi-
plier λk+1 without computing λ̃k:

λk+1 = λk − 1

η2
H(

m∑
i=1

Aix
k+1
i − b) +

1

η
H

m∑
i=1

Ai(x
k
i − xk+1

i).

Remark 3.7. The subproblems of x̃k
i ’s are also solved in a parallel style.

Remark 3.8. In contrast to Algorithm 1a, the proximal parameters ri (i = 1, . . . ,m) are
replaced with a unique parameter η in Algorithm 2a, which is assigned to a more relaxed
range.

Analogous to Algorithm 1b, Algorithm 2b is developed in the context of dealing with
more general linear operator Ai in contrast to Algorithm 2a. The involved proximal param-
eters µi’s in Algorithm 2b are assumed to satisfy the following conditions:

µi ≥ ρ(A⊤
i HAi), i = 1, . . . ,m.

372 MIN TAO

Then, the resulted Algorithm 2b for (1.1) generates the new iterate wk+1 = (xk+1
1 , xk+1

2 , . . . ,
xk+1
m , λk+1) as follows.

Algorithm 2b: The (k + 1)th iteration of the new parallel splitting method
Step 1.1 Solve the following m subproblems (in parallel):

x̃k
i := argmin{θi(xi)− (λk)⊤Aixi +

µi

2
∥xi − xk

i ∥2
∣∣ xi ∈ Xi}, i = 1, 2, . . . ,m,

Step 1.2 Update multiplier

λ̃k = λk − 1

η
H(

m∑
i=1

Aix̃
k
i − b).

Step 2. Generate new iterate

wk+1 = wk − α ·N−TGe(w
k − w̃k),

where α ∈ (0, 1] and the matrix N−TGe is defined in (2.6).

The convergence analysis of Algorithm 2b can also be established by following the way
adopted by Algorithm 2a. For succinctness, we omit the routine analysis for Algorithm 2b
in the following. In the following analysis, the sequence {w̃k} generated by the proposed
Algorithm 2a will be involved.

Lemma 3.9. Let the sequences {wk} and {w̃k} be generated by Algorithm 2a. Then, we
have

w̃k ∈ W, θ(u)− θ(ũk) + (w − w̃k)⊤F (w̃k) + (w − w̃k)⊤N(w̃k − wk) ≥ 0, ∀ w ∈ W,

(3.19)

where N is defined in (2.6).

Proof. First, it follows from (3.16) that

(λ− λ̃k)⊤{(A1x̃
k
1 + . . .+Amx̃k

m − b) +H−1(λ̃k − λk)} ≥ 0.

On the other hand, according to the optimality condition of the xi-subproblem of (3.15)

θ(xi)− θ(x̃k
i) + (xi − x̃k

i)
⊤(−A⊤

i λ̃
k) + (xi − x̃k

i)
⊤A⊤

i [HAi(x̃
k
i − xk

i) + (λ̃k − λk)] ≥ 0.

Consequently, it follows from the above two inequalities:

θ(x1)− θ(x̃k
1) + (x1 − x̃k

1)
⊤(−A⊤

1 λ̃
k) + (x1 − x̃k

1)
⊤A⊤

1 [HA1(x̃
k
1 − xk

1) + (λ̃k − λk)] ≥ 0,

θ(x2)− θ(x̃k
2) + (x2 − x̃k

2)
⊤(−A⊤

2 λ̃
k) + (x2 − x̃k

2)
⊤A⊤

2 [HA2(x̃
k
2 − xk

2) + (λ̃k − λk)] ≥ 0,
.

θ(xm)− θ(x̃k
m)+(xm − x̃k

m)⊤(−A⊤
mλ̃k)+(xm − x̃k

m)⊤A⊤
m[HAm(x̃k

m − xk
m) + (λ̃k − λk)]

≥ 0,

(λ− λ̃k)⊤
{
A1x̃

k
1 +A2x̃

k
2 + · · ·+Amx̃k

m − b− ηH−1(λk − λ̃k)
}
≥ 0,

∀w ∈ W.

Adding all these inequalities together and using the definitions of F in (2.1b), and N in
(2.6), the assertion (3.19) follows immediately. �

PARALLEL SPLITTING METHODS FOR SEPARABLE CONVEX PROGRAMMING 373

Lemma 3.10. Let the sequences {wk} and {w̃k} be generated by Algorithm 2a. Then, we
have

∥wk − w̃k∥2P − ∥wk+1 − w̃k∥2P = α(1− α)∥wk − w̃k∥2Ge
+ α∥wk − w̃k∥S2 , (3.20)

where

P = NG−1
e N⊤ (3.21)

is a symmetric and positive definite matrix.

Proof. First, from (3.18) and (3.21), we have

wk+1 = wk − αP−1N(wk − w̃k), α ∈ (0, 1]. (3.22)

Consequently,

∥wk − w∥2P − ∥wk+1 − w∥2P
= ∥wk − w∥2P − ∥wk − αP−1N(wk − w̃k)− w∥2P
= 2α(wk − w)⊤N(wk − w̃k)− α2∥P−1N(wk − w̃k)∥2P . (3.23)

Then, taking w = w̃k in (3.23), we have

∥wk − w̃k∥2P − ∥wk+1 − w̃k∥2P
= α(wk − w̃k)⊤(N +N⊤)(wk − w̃k)− α2∥wk − w̃k∥2N⊤P−1N

= α(wk − w̃k)⊤(N +N⊤)(wk − w̃k)− α2∥wk − w̃k∥2N⊤P−1N

= α(wk − w̃)⊤(Ge + S2)(w
k − w̃k)− α2∥wk − w̃k∥2Ge

= α(1− α)∥wk − w̃k∥2Ge
+ α∥wk − w̃k∥S2

The third equality follows from the definition of matrix S2 (see (2.10)) and the fact Ge =
N⊤P−1N (see (3.21)). �

Theorem 3.11. Let the sequences {wk} and {w̃k} be generated by Algorithm 2a. Then, we
have

α
(
θ(u)− θ(ũk) + (w − w̃k)⊤F (w̃k)

)
+

1

2
(∥w − wk∥2P − ∥w − wk+1∥2P)

≥ 1

2
{α(1− α)∥wk − w̃k∥2Ge

+ α∥wk − w̃k∥S2}, ∀ w ∈ W, (3.24)

where the stepsize α > 0.

Proof. First, by using the relationship in (3.22), we get

N(w̃k − wk) =
1

α
P (wk+1 − wk).

Substituting it into (3.19), we obtain

w̃k ∈ W, α
(
θ(u)−θ(ũk)+(w−w̃k)⊤F (w̃k)

)
+(w−w̃k)⊤P (wk+1−wk) ≥ 0, ∀ w ∈ W. (3.25)

374 MIN TAO

In view of Lemma 2.4, we have

(w − w̃k)⊤P (wk+1 − wk) =
1

2

(
∥w − wk∥2P − ∥w − wk+1∥2P

)
+

1

2

(
∥w̃k − wk+1∥2P − ∥w̃k − wk∥2P

)
.

Substituting the above identity into (3.25), we have

w̃k ∈ W, α
(
θ(u)− θ(ũk) + (w − w̃k)⊤F (w̃k)

)
+

1

2

(
∥w − wk∥2P − ∥w − wk+1∥2P

)
≥ 1

2

(
∥w̃k − wk∥2P − ∥w̃k − wk+1∥2P

)
,

=
1

2
{α(1− α)∥wk − w̃k∥2Ge

+ α∥wk − w̃k∥S2}.

The last equality follows from (3.20). Hence, the assertion (3.24) follows immediately. �

4 Convergence Analysis

The following theorem implies the fact that the sequence {wk} generated by Algorithm
1a is Fejèr monotone with respect to the solution set of (1.1). Hence, the convergence of
Algorithm 1a can be easily derived.

Theorem 4.1. Let {wk} be the sequence generated by Algorithm 1a and {ŵk} be given in
(3.8). Then, for any w∗ ∈ W∗, we have

∥wk+1 − w∗∥2Gr
≤ ∥wk − w∗∥2Gr

− ∥wk − ŵk∥2S1
, ∀w∗ ∈ W∗, (4.1)

where Gr and S1 are defined in (2.3) and (2.9), respectively.

Proof. By setting w = w∗ in (3.13), we obtain that

∥wk+1 − w∗∥2Gr
≤ ∥wk − w∗∥2Gr

− ∥wk − ŵk∥2s1 − {θ(ûk)− θ(u∗) + (ŵk − w∗)⊤F (ŵk)}.

Setting u = ûk in (2.1a), we get

0 ≤ θ(ûk)− θ(u∗) + (ŵk − w∗)⊤F (ŵk).

Adding the above two inequalities, the assertion (4.1) follows immediately. �

Now, we are ready to derive the convergence of the proposed Algorithm 1a in the following
theorem.

Theorem 4.2. Assume that the parameters ri’s satisfy (2.8). Then the sequence {wk}
generated by Algorithm 1a converges to a solution point of VI(W, F, θ).

Proof. First, it follows from inequality (4.1) that the sequence {wk} is bounded. Moreover,

∞∑
k=0

∥wk − ŵk∥2S1
≤ ∥w0 − w∗∥2Gr

, ∀ w∗ ∈ W∗.

In view of the conclusion 2) of Lemma 2.7, the positive definiteness of S1 is ensured by the
assumption

∑m
i=1

1
ri

< 1. Thus, the above inequality implies that

lim
k→∞

∥xk
i − x̂k

i ∥ = 0, i = 1, . . . ,m, and lim
k→∞

∥λk − λ̂k∥ = 0.

PARALLEL SPLITTING METHODS FOR SEPARABLE CONVEX PROGRAMMING 375

Hence,

lim
k→∞

∥wk − ŵk∥ = 0. (4.2)

Hence, the sequence {ŵk} is also bounded, and has at least one cluster point.
Let w∞ be a cluster point of the sequence {ŵk} and {ŵkj} be a subsequence converging

to w∞. It follows from Theorem 3.3 that

ŵk ∈ W, θ(u)− θ(ûk) + (w − ŵk)⊤F (ŵk) + (w − ŵk)⊤GrQ(ŵk − wk) ≥ 0, ∀ w ∈ W.

Consequently,

ŵk ∈ W, θ(u)−θ(ûkj)+(w− ŵkj)⊤F (ŵkj)+(w− ŵkj)⊤GrQ(ŵkj −wkj) ≥ 0, ∀ w ∈ W.

Taking the limit over j in the above inequality, and considering the continuousness of a
convex function in its domain and (4.2), we have

θ(u)− θ(u∞) + (w − w∞)⊤F (w∞) ≥ 0,∀ w ∈ W.

According to Theorem 2.2, w∞ is a solution of VI(W, F, θ). Finally, from (4.2),

wkj → w∞.

Hence, (4.1) implies the sequence {wk} has the only cluster point {w∞}. �

Analogous to Theorem 4.1, the following theorem implies the fact that the sequence
{wk} generated by Algorithm 2a is Fejèr monotone with respect to the solution set of (1.1).

Theorem 4.3. Let the sequences {wk} and {w̃k} be generated by Algorithm 2a. Then, for
any w∗ ∈ W∗, we have

∥wk+1 − w∗∥2P ≤ ∥wk − w∗∥2P − α(1− α)∥wk − w̃k∥2Ge
− α∥wk − w̃k∥2S2

, ∀w∗ ∈ W∗.

(4.3)

Proof. By setting w = w∗ in (3.24), we obtain that

∥wk+1 − w∗∥2P ≤ ∥wk − w∗∥2P − {α(1− α)∥wk − w̃k∥2Ge
+ α∥wk − w̃k∥S2}

−α(θ(ũk)− θ(u∗) + (w̃k − w∗)⊤F (w̃k)), ∀ w ∈ W.

Note that

0 ≤ θ(ũk)− θ(u∗) + (w̃k − w∗)⊤F (w̃k).

Adding the above two inequalities, the assertion (4.3) follows immediately. �

Finally, we are in the stage to derive the convergence of the proposed Algorithm 2a in
the following theorem.

Theorem 4.4. Assume that η > m+1
2 . Then, the sequence {wk} generated by Algorithm 2a

converges to a solution point of VI(W, F, θ).

Proof. The proof is similar to Theorem 4.2, and thus is omitted. �

376 MIN TAO

5 Convergence Rate

In this section, our purpose is to show that after t iterations of the proposed algorithms, we
can find a w̃ ∈ W such that (2.3) is satisfied with ϵ ∼ O(1/t). Thus the O(1/t) convergence
rate of the methods is established. In the following, we delineate the convergence rate for
Algorithms 1a and 2a individually in two subsections.

5.1 The O(1t) Convergence Rate for Algorithm 1a

Corollary 5.1. Let the sequence {wk} be generated by Algorithm 1a and {ŵk} be defined
in (3.8). Then, we have

θ(u)− θ(ûk) + (w − ŵk)⊤F (w) +
1

2
(∥w − wk∥2Gr

− ∥w − wk+1∥2Gr
) ≥ 0, ∀ w ∈ W.

(5.1)

Proof. From inequality (3.13), we get

θ(u)− θ(ûk) + (w − ŵk)⊤F (ŵk) +
1

2
(∥w − wk∥2Gr

− ∥w − wk+1∥2Gr
) ≥ 0.

Hence, by using the monotonicity of operator F , we obtain

θ(u)− θ(ûk) + (w − ŵk)⊤F (w) +
1

2
(∥w − wk∥2Gr

− ∥w − wk+1∥2Gr
) ≥ 0, ∀ w ∈ W.

The conclusion is verified. �

Theorem 5.2. Let {wk} be the sequence generated by Algorithm 1a and {ŵk} be given in
(3.8). For any integer t > 0, let

ŵt :=
1

t+ 1

T∑
k=0

ŵk. (5.2)

Then, we have ŵt ∈ W and(
θ(ût)− θ(u)

)
+ (ŵt − w)⊤F (w) ≤ 1

2(t+ 1)
∥w − w0∥2Gr

∀ w ∈ W.

For any given compact set D ⊂ W, let d1 := sup{∥w − w0∥2Gr
| w ∈ D}. Then, after t

iterations of Algorithm 1a, we find a certain point ŵt that satisfies

sup
w∈D

{θ(ût)− θ(u) + (ŵt − w)⊤F (w)} ≤ d1
2(t+ 1)

,

i.e., ŵt is a solution point of VI(W, F, θ) with the accuracy of O(1t).

Proof. First, because x̂k
i = xk+1

i (i = 1, . . . ,m), it holds that ŵk ∈ W for all k ≥ 0. Thus,
together with convexity of Xi (i = 1, . . . ,m), the definition in (5.2) implies that ŵt ∈ W.
Second, summing the inequalities (5.1) over k = 0, 1, . . . , t, we obtain

(t+ 1)θ(u)−
T∑

k=0

θ(ûk) +
(
(t+ 1)w −

T∑
k=0

ŵk)⊤F (w) +
1

2
∥w − w0∥2Gr

≥ 0, ∀ w ∈ W.

PARALLEL SPLITTING METHODS FOR SEPARABLE CONVEX PROGRAMMING 377

Combining the notation of ŵt, it can be written as

1

t+ 1

T∑
k=0

θ(ûk)− θ(u) + (ŵt − w)⊤F (w) ≤ 1

2(t+ 1)
∥w − w0∥2Gr

, ∀ w ∈ W. (5.3)

Since θ(u) is convex and

ût =
1

t+ 1

T∑
k=0

ûk,

we have θ(ût) ≤ 1
t+1

∑T
k=0 θ(û

k). Substituting it in inequality (5.3), the assertion of this
theorem follows directly. �

Theorem 5.2 implies that for any given ϵ > 0, after at most

t = ⌈d1
2ϵ

− 1⌉

iterations, we have
θ(ût) + (ŵt − w)⊤F (w) ≤ ϵ,∀w ∈ D.

Thus, the O(1t) convergence rate of Algorithm 1a is established in an ergodic sense.

5.2 The O(1t) Convergence Rate for Algorithm 2a

Now we start to prove some properties of the sequence {w̃k} generated by Algorithm 2a.

Corollary 5.3. Let the sequences {wk} and {w̃k} be generated by Algorithm 2a. Then, we
have

α(θ(u)− θ(ũk) + (w − w̃k)⊤F (w)) +
1

2

(
∥w − wk∥2P − ∥w − wk+1∥2P

)
≥ 0, ∀ w ∈ W,

where α ∈ (0, 1].

Proof. The proof is similar to Corollary 5.1, thus is omitted. �

Theorem 5.4. Let the sequences {wk} and {w̃k} be generated by Algorithm 2a. For any
integer t > 0, let

w̃t :=
1

t+ 1

T∑
k=0

w̃k.

Then, we have w̃t ∈ W and(
θ(ũt)− θ(u)

)
+ (w̃t − w)⊤F (w) ≤ 1

2α(t+ 1)
∥w − w0∥2P ∀w ∈ W.

For any given compact set D ⊂ W, let d2 := sup{∥w − w0∥2P | w ∈ D}. Then, after t
iterations of Algorithm 2a, we find a certain point w̃t that satisfies

sup
w∈D

{θ(ũt)− θ(u) + (w̃t − w)⊤F (w)} ≤ d2
2α(t+ 1)

,

i.e., w̃t is a solution point of VI(W, F, θ) with the accuracy of O(1t).

378 MIN TAO

Proof. The proof is analogous to Theorem 5.2, thus is omitted. �

In a similar way, we can establish the O(1t) convergence rate of Algorithm 2a in an
ergodic sense.

6 Numerical Implementation

In this section, we apply the proposed algorithms to solve some problem arising in matrix
decomposition and compare them with some existing splitting methods. Through numerical
comparison, we show the efficiency of the proposed algorithms. All the codes were written
in MATLAB 7.12 (R2011a) and were run on a ThinkPad notebook with the Intel Core
i5-2140M CPU at 2.3 GHz and 4 GB of memory.

We focus on the specific model of recovering low-rank and sparse components of matrices
from incomplete and noisy observations, which was recently proposed in [18] based on the
pioneering work [2, 3]. By comparing the proposed algorithms with the methods in [5]
(denoted by HYZ), and VASALM [18], the advantages of the proposed methods will be
evident.

6.1 Synthetic Simulations

We consider the following constrained model for the matrix decomposition problem [18]:

minA,E ∥A∥∗ + τ∥E∥1
s.t. ∥PΩ(C −A− E)∥F ≤ δ,

(6.1)

where C ∈ Rm×n is the given matrix (data) and ∥ · ∥∗ is the nuclear norm (i.e., sum of the
singular values) while the ∥ · ∥1 represents the sum of absolute values of all entries. Ω is
a subset of the index set of entries {1, 2, . . . ,m} × {1, 2, . . . , n} representing the observable
entries; PΩ : Rm×n → Rm×n denotes the incomplete observation information and it is
summarized by the orthogonal projection onto the span of matrices vanishing outside of Ω
so that the ijth entry of PΩ(X) is Xij if (i, j) ∈ Ω and zero otherwise; δ is related to the
Gaussian noise level and ∥ · ∥F is the standard Frobenius norm. By defining M = PΩ(C),
the inequality constraint in (6.1) can be rewritten as

∥PΩ(M −A− E)∥F ≤ δ.

Let B := {Z ∈ Rm×n|∥PΩ(Z)∥F ≤ δ} and introduce an auxiliary variable Z. Then, it is
easy to see that (6.1) can be reformulated as

minA,E,Z ∥A∥∗ + τ∥E∥1
s.t. A+ E + Z = M,

Z ∈ B,
(6.2)

see [18] for more details. Note (6.2) is a concrete application of (1.1) with m = 3, except
that the vector variables and coefficients in (1.1) are replaced by matrix variables and linear
operators in matrix spaces, respectively. As we have mentioned, the proposed methods and
theoretical analysis can be trivially extended to this extended model. More specifically, (6.2)
can be explained as a special case of (1.1) with the specification θ1(A) = ∥A∥∗, θ2(E) =
τ∥E∥1 and θ3(Z) = ιB(Z) where ιB(·) represents the indicator function defined on the closed
convex set B; A1, A2 and A3 in (1.1) are all the identity mapping and b := M . In all these

PARALLEL SPLITTING METHODS FOR SEPARABLE CONVEX PROGRAMMING 379

methods, we set the penalty matrix H = βI for a fair comparison, where I denotes identity
matrix.

For solving model (6.2), Algorithm 1a is equivalent to Algorithm 1b by setting δi = βri
(i = 1, . . . ,m). Moreover, Algorithm 2a is identical to Algorithm 2b with the choice of µi =
βI (i = 1, . . . ,m) in Algorithm 2b. Therefore, in the coming comparison, we unify Algorithm
1a (1b) as Algorithm 1, and so does Algorithm 2. As shown in [18], the subproblems in each
proposed algorithm are all simple enough to have closed-form solutions.

For completeness, in the following we illustrate each subproblem of Algorithm 1 in detail.
Note that for the resulting (A,E,Z)− subproblems are implemented in a parallel manner.
By setting ri ≡ r (i = 1, 2, 3), each subproblem of Algorithm 1 is given by the following:

• Update the multiplier Λ̂k = Λk − β(Ak + Ek + Zk −M).

• Solve the Z-subproblem and obtain its solution Zk+1 via

Zk+1
ij =

{
Nk

ij , if (i, j) ̸∈ Ω,
min{∥PΩ(Nk)∥F ,δ}

∥PΩ(Nk)∥F
Nk

ij if (i, j) ∈ Ω,

where Nk = 1
βr Λ̂

k + Zk.

• Solve the E-subproblem and obtain its solution Ek+1 via

Ek+1 = S τ
βr
(Ek +

Λ̂k

βr
),

where the operator Sc : Rm×n → Rm×n is the shrinkage operator defined by

(Sc(T))ij := sign(Tij) ·max {|Tij | − c, 0} , 1 ≤ i ≤ m, 1 ≤ j ≤ n,

with sign(·) being the sign function, c > 0 and the matrix T ∈ Rm×n.

• Solve the A-subproblem and obtain its solution Ak+1 via

Ak+1 = D 1
βr
(Λ̂k/βr +Ak).

Here, for c > 0, the operator D : Rm×n → Rm×n is defined by

Dc(T) := Udiag (Sc(Σ))V
⊤,

where UΣV ⊤ is the singular value decomposition (SVD) of matrix T .

As in [18], we let C = A∗ + E∗ + Z∗ be the data matrix, where A∗, E∗ and Z∗ are the
low-rank, the sparse components and the Gaussian noise, respectively. We generate A∗ by
A∗ = LR⊤, where L and R are independent m × r, and n × r matrices respectively whose
elements are i.i.d. Gaussian random variables with zero mean and unit variance. Hence,
the rank of A∗ is r. The index of observed entries, i.e. Ω, is determined at random. The
support Γ ⊂ Ω of the impulsive noise E∗ (sparse but large) is chosen uniformly at random,
and the non-zero entries of E∗ are i.i.d. uniformly in the interval [−500, 500]. Let sr, spr
and rr represent the ratios of sample (observed) entries (i.e., |Ω|/(m · n), where the symbol
|Ω| denotes the cardinality of Ω), the number of non-zero entries of E (i.e., ∥E∥0/(m · n)),
and the rank of A∗ (i.e., r/m), respectively.

380 MIN TAO

In our experiments, we choose m = n = 500, 1000, sr = 0.8, and set τ = 1/
√
m in (6.1).

Our numerical experiments focus on the special case σ = 0 (σ denotes Gaussian noise level).
The model parameter δ is therefore chosen as 0. As in [18], we stop HYZ by the stopping
criterion

RelChg :=
∥(Ak+1, Ek+1, Zk+1)− (Ak, Ek, Zk)∥F

∥(Ak, Ek, Zk)∥F + 1
≤ Tol, (6.3)

where Tol = 1e−4. Then, we run other methods until they achieve a more accurate solution
than HYZ in terms of the relative error of the low rank and the sparse components. For
other individual parameters required by these methods, we choose

β =

{
0.08 |Ω|

∥PΩ(C)∥1
, if spr = 0.05;

0.15 |Ω|
∥PΩ(C)∥1

, if spr = 0.1,

for both Algorithms 1 and 2, ri ≡ r = 3 in Algorithm 1, and set α = 1 and η = 2.01 in
Algorithm 2. In all the tested scenarios, the initial iterate is (A0, E0, Z0) = (0,0,0). We
use the recommended setting for VASALM and set γ = 1.7 in HYZ for achieving the best
performance. In our experiments, we executed the singular value decomposition (SVD) by
using PROPACK [15] to compute those singular values that are larger than a particular
threshold and their corresponding singular vectors in A-involved subproblem. We denote by
(Â, Ê) the iterate when the stopping criterion is satisfied.

Table 1 shows that the numerical results of Algorithms 1 and 2, HYZ and VASALM.
More specifically, we report the relative error of the recovered sparse component (ErrsSP :=
∥Ê−E∗∥F

∥E∗∥F
), the relative error of the recovered low-rank component (ErrsLR := ∥Â−A∗∥F

∥A∗∥F
),

the computing time in seconds (“Time (s)”) and the number of singular value decompositions
required by the A-related subproblems (“#SVD”). The computing time is recorded by
considering the possibility of parallel implementation, and so we include only the time of
the most time-consuming subproblem at each iteration for Algorithm 1 and 2.

According to the data in Table 1, as we expect, all these methods can exactly recover the
low rank matrix and sparse components from corruption and missing observations. Algo-
rithm 2 behaves almost in the same manner as Algorithm 1 in terms of the computation cost
and the solution accuracy. Compared with HYZ, the proposed methods are more attractive.
Both of them achieve a more accurate solution than HYZ while keeping computational time
low. Note that HYZ requires a correction step to ensure convergence. These correction
steps may ruin the low-rank characteristic. Hence, HYZ ends up with high-rank iterates
after implementing some correction steps. The inferior performance of HYZ mainly comes
from two terms: First, the correction step can only be realized after prediction step, hence
the method cannot be implemented in a parallel style completely. On the other hand, to
compute stepsize is always time consuming. However, VASALM cannot be implemented in
a parallel way while the new algorithms could.

To see the comparison clearly, we focus on the particular case where m = n = 500,
spr = 0.05, rr = 0.05, sr = 0.8 and σ = 0; and visualize the iterative processes of different
methods in Figure 1. More specifically, we plot the evolutions of the rank of the recovered
low rank part, and the relative error ErrsSP and ErrsLR with respect to CPU time.
Figure 1 shows that the rank of iterates generated by HYZ changes radically according to
iterations at the first stage; while the rank of iterates generated by any of Algorithms 1, 2
and VASALM is much more stable, i.e., not sensitive to the iterations. Therefore, the low-
rank feature is well preserved by Algorithm 1, 2 and VASALM; and this advantage is very
suitable for the application of some popular packages for partial SVD such as PROPACK.

PARALLEL SPLITTING METHODS FOR SEPARABLE CONVEX PROGRAMMING 381

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

CPU time (s)

Evolution of rank (Ak)

Algo. l
Algo. 2
HYZ
VASALM

0 5 10 15 20 25 30 35
10

−3

10
−2

10
−1

10
0

CPU time (s)

Errors of low−rank

Algo. 1
Algo. 2
HYZ
VASALM

0 5 10 15 20 25 30 35

10
−4

10
−3

10
−2

10
−1

10
0

CPU time (s)

Errors of sparse components

Algo. 1
Algo. 2
HYZ
VASALM

Figure 1: Evolution of rank (left), the relative error of the low-rank (middle) and the sparse
components (right) for Algorithm 1, 2, HYZ and VASALM.

Table 1: Recovery results of VASALM, Algorithms 1 and 2, HYZ for (6.1) with sr=80%
and σ = 0

On the other hand, the errors generated by HYZ’s iterations change more radically than
Algorithms 1 and 2. In conclusion, Algorithms 1 and 2 converge faster than HYZ, and even
competitive with VASALM in terms of computing time.

6.2 Background Extraction on a Noisy Video with Missing Data

We investigate the application of (6.1): extracting background from surveillance video with
missing and noisy data. To understand this concrete application, we first introduce some
preliminary background of this application and refer the readers to, e.g. [2], for more
details. More specifically, video consists of a sequence of frames, and mathematically it is a
natural candidate for low-rank modeling due to high correlation between frames. Each frame
consists of foreground and background. Since the background of video needs to be flexible
enough to accommodate changes in the scene, it is natural to model it as approximately
low rank. Foreground objects, such as cars or pedestrians, occupy a fraction of the image
pixels and hence can be treated as sparse errors. The basic task in video surveillance
is to separate the foreground from background. In our experiments, we test the airport
video downloadable at the website †, which is a sequence of 150 grayscale frames of size
144× 176 taken in an airport. The data matrix C in model (6.1) is formed by stacking each
frame into a column and C ∈ R20480×150. The tested video has 30% missing pixels. The
index of observed entries, i.e., Ω, is determined randomly by the MATLAB built-in function
randperm. The Gaussian noise is generated with a zero mean and its standard deviation is

σ = 10−3. Therefore, we take model parameter δ =
√
m+

√
8mσ. We use Algorithms 1,

†http://perception.i2r.a-star.edu.sg/bk model/bk index.html

382 MIN TAO

2 and HYZ, VASALM to extract moving objects from these corrupted videos. The setting

of each algorithm is the same as Section 6.1 except β = 0.01 |Ω|
∥PΩ(C)∥1

. We stop HYZ using

a more relaxed termination criterion, i.e., set Tol = σ in (6.3) as implemented in Section
6.1. Then, other algorithms continue to run until they achieve a much better solution than
HYZ in the term of the relative residual. The recovery results from Algorithms 1, 2 and
HYZ and VASALM are visually similar. Figure 2 shows the results via Algorithm 1 for the
50th, 100th and 125th frames of corrupted video, and recovered background and foreground
in the first, second and third columns, respectively. The recovery numerical results of each
algorithm are displayed in Table 2, including the number of iterations (It.), relative residual
(RelRes.), rank of background (rank(Â)) and computation time in seconds (Time(s)), and
the number of singular value decompositions (#SVD). As shown in Table 2, the recovered
rank of Algorithms 1, 2 and VASALM are the same, and much lower than HYZ. Moreover,
the CPU time of Algorithms 1 and 2 are significantly less than those for HYZ, and is very
comparable to VASALM. Therefore, our proposed methods may open up a new way to
handle video surveillance.

Figure 2: Background extraction from a noisy video with missing data

7 Conclusions

For solving the separable convex programming problem with linking linear constraints and
its objective function is formed as the sum of m individual functions without overlapping
variables, we present four distinct splitting algorithms whose m decomposed subproblems

PARALLEL SPLITTING METHODS FOR SEPARABLE CONVEX PROGRAMMING 383

Table 2: Recovery results for background extraction
It. RelRes. rank(Â) Time (s) #SVD

Algo. 1 100 1.86e-3 32 212.2 101
Algo. 2 129 1.88e-3 32 242.7 130
VA 100 1.87e-3 32 266.6 100
HYZ 182 1.89e-3 35 510.4 182

are completely tailored for parallel computation. Moreover, the new methods require no
correction step. The efficiency of the new algorithms are illustrated numerically by some
concrete applications arising in the area of matrix optimization and video processing.

Acknowledgements

I would like to thank Dr. Anthony Man-Cho So and Dr. Qing Ling for reading this paper
carefully and giving many helpful comments.

References

[1] N. Bose and K. Boo, High-resolution image reconstruction with multisensors. Int. J.
Imag. Syst. Tech. 9 (1998) 294–304.

[2] E.J. Candès, X. Li, Y. Ma and J. Wright, Robust principal component analysis, J.
ACM. 58 (2011) 1–37.

[3] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo and A.S. Willskyc, Rank-sparsity inco-
herence for matrix decomposition, SIAM J. Optim. 21 (2011) 572–596.

[4] G. Chen and M. Teboulle, A proximal based decomposition method for convex mini-
mization problems, Math. Program. 64 (1994) 81–101.

[5] D.R. Han, X.M. Yuan and W.X. Zhang, An augmented-Lagrangian-based parallel split-
ting method for linearly constrained separate convex programming with applications to
image processing, Math. Comp., to appear.

[6] B.S. He, Parallel splitting augmented Lagrangian methods for monotone structured
variational inequalities, Comput. Optim. Appl. 42 (2009) 195–212.

[7] B.S. He, M. Tao, M.H. Xu. and X.M. Yuan, An alternating directions based contrac-
tion method for generally separable linearly constrained convex programming problems,
Optimization, to appear.

[8] B.S. He, M. Tao and X.M. Yuan, A splitting method for separate convex programming
with linking linear constraints, Submitted (2010).

[9] M. Hestenes, Multiplier and gradient methods, J. Opti. Theory Appli. 4 (1969) 303–320.

[10] F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and Comple-
mentarity Problems, Volume I, Springer Series in Operations Research, Springer-Verlag,
New York, 2003.

[11] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational
problems via finite-element approximations, Comput. Math. Appl. 2 (1976) 17–40.

384 MIN TAO

[12] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag,
New York, Berlin, Heidelberg, Tokyo, 1984.

[13] R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods
in Nonlinear Mechanics, SIAM Studies in Applied Mathematics, SIAM, Philadelphia,
1989.

[14] K.C. Kiwiel, C.H. Rosa and A. Ruszczyński, Proximal decomposition via alternating
linearization, SIAM J. Opti. 9 (1999) 668–689.

[15] R.M. Larsen, Lanczos bidiagonalization with partial reorthogonalization. Department of
Computer Science, Aarhus University, Technical report, DAIMI PB-357, code available
at http://soi.stanfor.edu/ rmunk/PROPACK/ (1998)

[16] Y. Peng, A. Ganesh, J. Wright, W. Xu and Y. Ma, RASL: Robust alignment by sparse
and low-rank decomposition for linearly correlated images, IEEE T. Pattern Anal. 34
(2012) 2233–2246.

[17] M. Powell, A method for nonlinear constraints in minimization problems, in Reformu-
lation: Optimization, R. Fletcher (eds.), 1969, pp. 283–298.

[18] M. Tao and X.M. Yuan, Recovering low-rank and sparse components of matrices from
incomplete and noisy observations, SIAM J. Optim. 21 (2011) 57–81.

[19] M. Tao and X.M. Yuan, An inexact parallel splitting augmented Lagrangian methods
for monotone variational inequalities with separable structures, Comput. Optim. Appl.
52 (2012) 439–461.

[20] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu and K. Knight, Sparsity and smoothness
via the fused lasso, J. Royal Statist. Soc. 67 (2005) 91–108.

Manuscript received 10 July 2013
revised 10 October 22 2013

accepted for publication 22 October 2013

Min Tao
Department of Mathematics, Nanjing University
Nanjing, Jiangsu, China
E-mail address: taom@nju.edu.cn

