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Abstract. In this paper, we first propose a general inertial prozimal point algorithm (PPA) for
the mixed variational inequality (VI) problem. Based on our knowledge, without stronger assump-
tions, a convergence rate result is not known in the literature for inertial type PPAs. Under certain
conditions, we are able to establish the global convergence and nonasymptotic O(1/k) convergence
rate result (under a certain measure) of the proposed general inertial PPA. We then show that both
the linearized augmented Lagrangian method (ALM) and the linearized alternating direction method
of multipliers (ADMM) for structured convex optimization are applications of a general PPA, pro-
vided that the algorithmic parameters are properly chosen. Consequently, global convergence and
convergence rate results of the linearized ALM and ADMM follow directly from results existing in
the literature. In particular, by applying the proposed inertial PPA for mixed VI to structured
convex optimization, we obtain inertial versions of the linearized ALM and ADMM whose global
convergence is guaranteed. We also demonstrate the effect of the inertial extrapolation step via
experimental results on the compressive principal component pursuit problem.
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1. Introduction. Let T : ®" = R" be a set-valued maximal monotone operator.
The maximal monotone operator inclusion problem is to find w* € " such that

(1.1) 0 € T(w).

Due to the mathematical generality of maximal monotone operators, the problem
(1.1) is very inclusive and serves as a unified model for many problems of funda-
mental importance, for example, the fixed point problem, the variational inequality
(VI) problem, minimization of closed proper convex functions, and their extensions.
Therefore, it becomes extremely important in many cases to solve (1.1) in practical
and efficient ways.

The classical prozimal point algorithm (PPA), which converts the maximal mono-
tone operator inclusion problem into a fixed point problem of a firmly nonexpansive
mapping via resolvent operators, is one of the most influential approaches for solv-
ing (1.1) and has been studied extensively both in theory and in practice. The PPA
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was originally proposed by Martinet [32] based on the work of Moreau [33] and was
popularized by Rockafellar [41]. It turns out that the PPA is a very powerful algo-
rithmic tool and contains many well-known algorithms as special cases. In particular,
it was shown that the classical augmented Lagrangian method (ALM) for constrained
optimization [27, 39], the Douglas—Rachford operator splitting method [19], and the
alternating direction method of multipliers (ADMM) [23, 22] are all applications of
the PPA; see [40, 20]. Various inexact, relaxed, and accelerated variants of the PPA
were also very well studied in the literature; see, e.g., [41, 20, 24].

The PPA for minimizing a differentiable function f : R™ — R can be interpreted
as an implicit one-step discretization method for the ordinary differential equations

(1.2) w' 4+ Vf(w) =0,

where w : ® — R"™ is differentiable, w’ denotes its derivative, and Vf is the gradient
of f. Suppose that f is closed and convex and its minimum value is attained; then
every solution trajectory {w(t) : ¢ > 0} of the differential system (1.2) converges
to a minimizer of f as t goes to infinity. Similar conclusion can be drawn for (1.1)
by considering the evolution differential inclusion problem 0 € w'(t) + T(w(t)) al-
most everywhere on R, provided that the operator T satisfies certain conditions; see
e.g., [14].

The PPA is a one-step iterative method, i.e., each new iterate point does not de-
pend on any iterate points already generated other than the current one. To speed up
convergence, multistep methods have been proposed in the literature by discretizing
a second-order ordinary differential system of the form

(1.3) W’ +yw' 4+ V f(w) =0,

where v > 0. Studies in this direction can be traced back to at least [38], which
examined the system (1.3) in the context of optimization. In the two-dimensional case,
the system (1.3) characterizes roughly the motion of a heavy ball which rolls under its
own inertia over the graph of f until friction stops it at a stationary point of f. The
three terms in (1.3) denote, respectively, inertial force, friction force, and gravity force.
Therefore, the system (1.3) is usually referred to as the heavy-ball with friction (HBF)
system. It is easy to show that the energy function E(t) = 3|lw/(¢)]|*> + f(w(t)) is
always decreasing with time ¢ unless w’ vanishes, which implies that the HBF system is
dissipative. It was proved in [2] that if f is convex and its minimum value is attained,
then each solution trajectory {w(t) : t > 0} of (1.3) converges to a minimizer of f. In
theory the convergence of the solution trajectories of the HBF system to a stationary
point of f can be faster than those of the first-order system (1.2), while in practice
the second-order inertial term w” can be exploited to design faster algorithms [1, 5].
Motivated by the properties of (1.3), an implicit discretization method was proposed
in [2]. Specifically, given w*~! and w*, the next point w**! is determined via

k+1 k k—1 k+1 k
w —2w" 4+ w w —w
3 g + V) =0,

which results to an iterative algorithm of the form

(1.4) W = (T4 AV 7 0! +a(w® — b)),

where A = h?/(1+~h) and o = 1/(1+~h). Note that (1.4) is nothing but a proximal
point step applied to the extrapolated point w* + a(w* — w*~1), rather than w” as in

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/20/15 to 58.192.50.48. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2122 CAIHUA CHEN, SHIQIAN MA, AND JUNFENG YANG

the classical PPA. Thus the resulting iterative scheme (1.4) is a two-step method and
is usually referred to as an inertial PPA. Convergence properties of (1.4) were studied
in [2] under some assumptions on the parameters o and A. Subsequently, this inertial
technique was extended to solve the inclusion problem (1.1) of maximal monotone
operators in [4]. See also [34] for approximate inertial PPA and [3, 31, 30] for some
inertial type hybrid proximal algorithms. Recently, there has been increasing interest
in studying inertial type algorithms. Recent work includes inertial forward-backward
splitting methods for certain separable nonconvex optimization problems [37] and for
strongly convex problems [36, 6], inertial versions of the Douglas—Rachford operator
splitting method and the ADMM for the maximal monotone operator inclusion prob-
lem [12, 9], and the inertial forward-backward-forward method [11] based on Tseng’s
approach [42]. See also [28, 10, 8].

1.1. Contributions. In this paper, we focus on the mixed VI problem and
study inertial PPA under a more general setting. In particular, a weighting matrix
G in the proximal term is introduced. In our setting the matrix G is allowed to be
positive semidefinite, as long as it is positive definite in the null space of a certain
matrix. We establish its global convergence and a nonasymptotic O(1/k) convergence
rate result under certain conditions. To the best of our knowledge, without stronger
assumptions, the convergence rate result is not known in the literature for general
inertial type PPAs. This general setting allows us to propose inertial versions of the
linearized ALM and ADMM, which are practical variants of the well-known ALM and
ADMM that have recently found numerous applications [13]. Indeed, this is realized
by showing that both the linearized ALM and the linearized ADMM for structured
convex optimization are applications of a general PPA to the primal-dual optimality
conditions, as long as the parameters are properly chosen. Another aim of this paper
is to study the effect of the inertial extrapolation step via numerical experiments.
Finally, we connect inertial type algorithms with the popular accelerated methods
pioneered by Nesterov [35] and give some concluding remarks.

The main reason that we restrict our analysis to the mixed VI problem rather than
the apparently more general problem (1.1) is because it is very convenient to represent
the optimality conditions of linearly constrained separable convex optimization as
mixed VI. In fact, our analysis for Theorems 1 and 2 can be generalized to the maximal
monotone operator inclusion problem (1.1) without any difficulty.

1.2. Notation. We use the following notation. The standard inner product
and ¢o norm are denoted by (-,-) and || - ||, respectively. The sets of symmetric,
symmetric positive semidefinite, and symmetric positive definite matrices of order n
are, respectively, denoted by S", S, and S7 . For any matrix A € S and vectors
u,v € R, we let (u,v)4 := ul Av and |lul|a := /{u,u)a. The Frobenius norm is
denoted by || - ||#. The spectral radius of a square matrix M is denoted by p(M).

2. A general inertial PPA for mixed VI. Let W C R™ be a closed and
convex set, f : ®™ — R be a closed convex function, and F' : R — R™ be a monotone
mapping. In this paper, we consider the mixed VI problem: find w* € W such that
(2.1) O(w) — O(w*) + (w — w*, F(w*)) > 0 Vw € W.

Let G € S7 and two sequences of parameters {ay > 0: k = 0,1,2,...} and {\; >
0:%k=0,1,2,...} be given. We study a general inertial PPA of the following form:
given any w’ = w=! € R", for k =0,1,2, ..., find w**t! € W such that
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(2.2a) @* == wh + ap(w® —whh),
(2.2b)
O(w) — O(w" ) + (w — Wt F (k) £ A\ G (T — wF)) > 0V w e W.

We make the following assumptions.
Assumption 1. The set of solutions of (2.1), denoted by W*, is nonempty.
Assumption 2. The mapping F' is H-monotone in the sense that

(2.3) (u—v, F(u) — F(v)) > ||lu—v|% Yu,veR",

where H € S. Note that H = 0 if I is monotone, and H € ST, if F' is strongly
monotone.

Assumption 3. The sum of G and H, denoted by M, is positive definite, i.e.,
M:=G+HeSt,.

Under Assumptions 2 and 3, it can be shown that w**! is uniquely determined in
(2.2b). Therefore, the algorithm (2.2a)—(2.2b) is well defined. Clearly, the algorithm
reduces to the classical PPA if G € ST and oy, = 0 for all k. It is called inertial PPA
because «y; can be greater than 0. We will impose conditions on «ay, to ensure global
convergence of the general inertial PPA (2.2). Our convergence results are extensions
of those in [4].

THEOREM 1. Assume that Assumptions 1, 2, and 3 hold. Let {w*}3°, C R"
conform to algorithm (2.2a)—(2.2b). The parameters {ouy, \i}72, satisfy, for all k,
0 <ap <a for some o € [0,1) and A\, > X for some X\ > 0. If

1

o0
(2.4) ZakHwk —wh 1% < oo,
k=1

then the sequence {wk}z"zo converges to some point in W* as k — 0.

Proof. First, we show that for any w* € W*, limj_, ||[w¥ — w*||as exists. As a
result, {w*}2°  is bounded and must have a limit point. Then, we show that any limit
point of {w*}° ) must lie in W*. Finally, we establish the convergence of {w"}3°
to a point in W* as k — oo.

Let w* € W* be arbitrarily chosen and k& > 0. It follows from setting w = w* €
W* in (2.2b) and the H-monotonicity (2.3) of F' that

)\];1<wk+1 _ w*’wk—i—l o wk>G < o(w*) o H(wk“) o <wk+1 _ ’LU*,F(’LUk+1)>

< O(w*) — 0w ) — (W —w*, F(w"))

— [l —w
(2.5) < -t
Define ¢y, == [|w* — w*||% and recall that w* = w* + ay(w® — w*~1). Plugging the

identities

20wt —w*, W —wh) g = pppr — or + [T — WP,
e = or — ppo1 + [Jwt —w |G

+2<wk+1 o wk7 wk o wk71>G

2(wrtt —w*, wh —w
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into (2.5) and reorganizing, we obtain

Yk = Pr41 — Pk — Ak (P& — Pr—1)
< Tt — wF||Z + 20k (0F T — WP wh — wF e 4 aglwt — wh L
=22 w T — w1
= — Wt — 2" |1E + (af + ar)llw® — w T = 22 lw T — w1

[l — "I + 200 w* — wh TG = 22 lwt T — w0t

<
< k+1 _

(2.6) —lw @* G+ 20w — w0t
where the first inequality is due to (2.5) and the second follows from 0 < ay < 1.
Define

k—1H2

Vi = Q@ — QPk—1 and (5}€ = 2ak||wk —w G-

Then, the inequality (2.6) implies that vi11 < agvr + 0 < a[vg]y + O, where
[t]+ := max{t, 0} for t € R. Therefore, we have

k

(2.7) iialt < alyely 40k < F )y + ) ooy
=0

Note that by our assumption w® = w~!. This implies that vy = [vg]+ = 0 and §p = 0.

Therefore, it follows from (2.7) that

k=0

Here the second inequality is due to the assumption (2.4). Let v; := o) — Z?Zl [Vl4.
From (2.8) and ¢y, > 0, it follows that v; is bounded below. On the other hand,

k k k
Yo+l = a1 — [Veri]+ — Z[Vj]+ < Qg1 — Vil — Z[Vj]+ =K — Z[Vj]+ = Y%,
j=1 J=1 J=1
i.e., 7; is nonincreasing. As a result, {y;}72, converges as k — oo, and the limit
k e}
fim e = Jm |t 3ol | = Jim e+ 3l

exists. That is, limy_oo ||w* — w*||g exists for any w* € W*. Furthermore, it follows
from the second “<” of (2.6) and the definition of v and J; that

Wt — @ |7 4+ 2|t — w1} < ok — @rg1 + o (0k — Pr—1) + Ok
(2.9) < ¢k — k1 + alvr]y + Ok

By taking sum over k and noting that ¢ > 0, we obtain

(2.10) Z (JJwF+t — ™| + 20w — w* () < o1 + Z (a[vg]+ + 0k) < o0,
k=1 k=1
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where the second inequality follows from (2.8) and assumption (2.4). Since Ay > A > 0
for all k, it follows from (2.10) that

(2.11) lim [Jw® — w*||g = 0.
k— o0

Recall that M = G 4+ H. Thus, limj .« |[|[w® — w*||as exists. Since M is positive
definite, it follows that {w*}$°, is bounded and must have at least one limit point.
Again from (2.10) we have

lim [|w**! —@"||g = 0.
k— o0

Thus, the positive semidefiniteness of G implies that limy_,o, G(w**! —w¥) = 0. On
the other hand, for any fixed w € W, it follows from (2.2b) that

(2.12)  O(w) — O(w") + (w — w*, F(w*)) > N\ (W — w, G(w® — @F~1)).

Suppose that w* is any limit point of {wk}zozo and w® — w* as j — oco. Since W
is closed, w* € W. Furthermore, by taking the limit over k = k; — oo in (2.12) and
noting that G(w* — w*=1) — 0 and A\y_1 > A > 0, we obtain

O(w) — O(w*) + (w — w*, F(w*)) > 0.

Since w can vary arbitrarily in W, we conclude that w* € W*. That is, any limit
point of {w*}2° ; must also lie in W*.

Finally, we establish the uniqueness of limit points of {w" 1720 Suppose that wj
and w} are two limit points of {w*}° ) and lim;_, o w' = wi, lim; . wh = w3,
Assume that limy_, ||w* — w}||ps = v; for i = 1,2. By taking the limit over k =
i; — oo and k = k; — oo in the equality

lw® —will3, = lw* — w3l = lw] — w33, + 20w — w3, w) —w®)u,

we obtain vy —ve = —|lwi — w3, = |[w} — w3 ||%;. Thus, ||wi —w}||a = 0. Since M
is positive definite, this implies that w} = wj. Therefore, {w*}2 , converges to some
point in W* and the proof of the theorem is completed. O

We have the following remarks on the assumptions and results of Theorem 1.

Remark 1. In practice, it is not hard to select ay, dynamically based on historical
iterative information such that the condition (2.4) is satisfied.

Remark 2. If oy, = 0 for all k, then the condition (2.4) is obviously satisfied.
In this case, we reestablished the convergence of the classical PPA under the weaker
condition that G' € S, provided that A\x > A > 0 and H 4+ G € 7, e.g., when F is
strongly monotone, i.e., H € ST .

Remark 3. Suppose that H = 0 and G € S%, but G ¢ S . Then, the sequence
{w*}2° , may not be well defined since (2.2b) does not necessarily have a solution
in general. In the case that {w"}3°  is indeed well defined (which is possible), the
conclusion that limy, .« [|w* —w*||g exists for any w* € W* still holds under condition
(2.4). However, since G is only positive semidefinite, the boundedness of {w*}2°
cannot be guaranteed. If a limit point w* of {w*}$° ; does exist, then the conclusion
w* € W* still holds. Moreover, suppose that w} and w3 are any two limit points of
{w*}2° ; then it holds that Gw} = Gws.

In the following theorem, we remove the assumption (2.4) by assuming that the
sequence {oy}72, satisfies some additional easily implementable conditions. More-
over, we establish a nonasymptotic O(1/k) convergence rate result for the general
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inertial PPA (2.2). To the best of our knowledge, there is no convergence rate result
known in the literature without stronger assumptions for inertial type PPAs.
THEOREM 2. Assume that Assumptions 1, 2, and 3 hold. Suppose that the

parameters {ag, A\ }po, satisfy, for all k, 0 < ap, < app1 < a < % and N\ > A
for some X\ > 0. Let {w"*}3° ) be the sequence generated by algorithm (2.2a)~(2.2D).
Then, we have the following results:

1. {w*}22, converges to some point in W* as k — co.

2. For any w* € W* and positive integer k, it holds that

L + 1355 ) llu® - w
21 : Z+1 _ 2 < (
(213)  min ot - < ;

Proof. Let w* € W* be arbitrarily fixed and, for all k£ > 0, retain the notation
o = [0 —w*lz,

Yk = @1 — Pk — ok (P — pr—1) and Vg = @ — Pk_1.
It follows from the first “<” in (2.6) and Ax > 0 that

(2.14)
Y < —[lwf T — W)L+ 208 (WP — wF, WP — WP g + aglwb — Wb
< — [kt —wFE + o (T — wF |G+ 0 — 0 THE) + o lw® — 0T

—(1 = ap) | — WP G + 205 w® — W,

where the second “<” follows from the Cauchy—Schwartz inequality. Define

k—1H2

pk = P — pr—1 + 20w — w2

From 0 < ap < apy1 <a< l, the fact that ¢, > 0, and (2.14), we have
+ 3 P
[ikt1 = fk = Pha1 — Qhs19k + 2041 |0 — w2
— (¢ — arpr—1 + 2ap||w* — wFH|E)
P+ 2ap g [T — WG — 20 |w* — wF TG
—(1— ) [0h = w1 + 2ot — b
~(1 - 3a) [t — W

VAN VAN VAN VA
=

(2.15)

Thus, prr1 < pp for all & > 0. Note that w® = w™! by our assumption. It follows
from the definitions of uy, and ¢y that o = (1—ap)po < @o = [[w’—w*||%. Therefore,
we have

(2.16) —aprp—1 < ok — apr—1 < 9 — arpr—1 < ik < po < po-
Further taking into account (2.15), we obtain

k—1

(2.17) Vr < a1+ o < akﬁpo + o Z o’ < ak(po +
j=0

$0
1—a’
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The second-to-last “<” in (2.15) implies that (1 — 3a)||w* ™! —w*||% < py — pg41 for
k > 0. Together with (2.16) and (2.17), this implies
k
(218)  (1=3a) > [ —w! & < po—pri1 < potapy < a’““s@oﬂi—oa < 2,
j=0

where the second inequality is due to g < g and —apy < pg41, the next one follows
from (2.17), and the last one is due to o < 1/3. By taking the limit £ — oo, we
obtain

(2.19)

oo

oo oo
— _ 2(,000(
O = apllw® — wF A < o wh — wF % < = < 0.
>0 =3l I<ad 1< 2% =

N | =

The convergence of {wk}zozo to a solution point in W* follows from the proof of
Theorem 1.
It follows from (2.9) that, for i > 0, |w™ —@*||Z < p; — @it1 +a[v]+ +6;, from
which we obtain
k—1 k—1 k—1
(2.20) Z |lw™t — @ ||% < o — ok + aZ[yi]+ + Zm < o + aCs + 2C1,
i=0 i=1 i=1

where C is defined in (2.19) and Cs is defined as

20, - =
2 1—a_1—ai:15_1_:1[y]+

Here the first “>” follows from the definition of C; in (2.19) and the second one
follows from (2.8). Direct calculation shows that

2 2 2
2.21 2C; = |1 2 <(1
( ) o +aCsy +2C, [+<1_a+>1_30]<ﬁ0(+1_3a>9007

where the “<” follows from a < 1/3. The estimate (2.13) follows immediately from
(2.20) and (2.21). O

Remark 4. Note that w**! is obtained via a proximal point step from w*. Thus,
the equality w**! = @w" implies that w**! is already a solution of (2.1) (even if
G is only positive semidefinite; see (2.2b)). In this sense, the error estimate given
in (2.13) can be viewed as a convergence rate result of the general inertial PPA
(2.2). In particular, (2.13) implies that, to obtain an e-optimal solution in the
sense that [|wk*t! — w*||% < e, the upper bound of iterations required by (2.2) is
(1+2/(1 - 30)) [[u® — w* [3/e.

The convergence rate result (2.13) of the inertial PPA is in general weaker than
that of the classical PPA, where it can be proved that ||w*T! —w*||? = O(1/k); see,
e.g., [17, 18]. Thus one may ask whether the O(1/k) convergence rate (measured by
the residual ||w**+* —w"||%) is still valid for the general inertial PPA (2.2). We answer
this question affirmatively in the following theorem.

THEOREM 3. Assume that Assumptions 1, 2, and 3 hold. Suppose that the
parameters {ag, \i 152 satisfy, for all k, 0 < o, = a < 5 and Ay = X > 0. Let

Wl

{wk},;“;o be the sequence generated by algorithm (2.2a)-(2.2b). Then it holds, for any
k > 2, that

_ 4(1 4 7a)(1 +a? N
(2.22) = by < T o s,

S —20)1 - 3a)(k - 1)
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Proof. We prove this theorem by the following three steps.
Step 1. We show that the sequence {||w*+1 —w"||%, + 2a||w*+t — 2wk +wh=1(|Z, —
allw® —wh=1|2, 322, is nonincreasing. In fact, it follows from (2.2b) and w* € W that

(2.23) O(w") — O(w ) + (w* — Wt F(w* ) + AT 1G (M — wF)) > 0.
Note that (2.2b) is also true for the (k — 1)th iteration and w**! € W. Then, we can
deduce that
O(w ) — O(w®) + (Wt — Wk, F(w®) + A\T1G(w* — @* 1)) > 0,
which together with (2.23) yields that
(224) <wk _ wk+17G(wk+l _ ﬂ}k)> + <wk+1 _ ,wk7 G(wk _ ,uf}kfl)
> Mw® — ™, F(uw®) — F(w*)) > 0,

1

where the last “>” follows from Assumption 2. By using the definitions of w*~! and

w*, we know from (2.24) that

(2.25)
[k~ 2,
< (1 + Oé)<wk+1 o wk,G(wk _ wk—1)> o Oé<’LUk+1 o wk,G(wk_l o wk—2)>
1
= Sl = = b — ot - 20k kL)
=5 (et = w4 b2 = wh T — = — b b2 )
1 1
L A e T AR [P L
2 2 2 2
1+« _ « _ _
5 wktt — 2w + w1 )|E + §||warl —wh — T b2,
Note that

Hwarl _ wk _ wkfl +wkf2||2G < 2||wk+l _ 2wk _’_wkleé + 2||wk _ kail +wk72||2G'
By substituting the above inequality into (2.25), we have that
[w® —wh G < ot = wPlIE + allw T =0t |G = afwt T - W
— (1= a)|w*t = 2uw* 4w Z + 20wk — 2wF T w2,
which together with 1 — a > 2a proves that {[|w**t — wk||Z + 2afjwk*! — 2wk +
wh 2 — af|lwk — wk1|£189, is nonincreasing.

Step 2. We give an upper bound of the quantity |w*+! — w*||%. It follows from
Step 1 that

k(llw™ = w® g + 20l = 20® + 0" G - allw” — W)

M-z

< (™! = w'lfE + 20flw™" — 2w + 0" — aflw’ —w'E)

=1

-

< D (A +4da)|lw ™t —w'|[E + 3afw’ —wTHE]
=1
k+1
, ; 2(1+ Tar)
< (1 7 i =12 < 0 _  *(2
<+ Yt ™ < g e - 'l
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where the second “<” follows from the elementary inequality ||a + b||% < 2(||al|Z +
|1b]|Z), and the last inequality is due to (2.18). As a result, we have that, for any
k> 1,

_ _ 214+ T N
o+ =+ 2 =20 — a0t < S -0,

Moreover, it is easy to see that
o — b < 2t — b+ 2wt - 2w+t

and hence

2(1 4 7a) 0 -
A2y —sar ¥~ e

Step 3. We establish the O(1/k) convergence rate of the inertial PPA measured
by the residual |[w*+1 — w*||Z. In fact, it follows from the definition of w*~1 that

Jok* = @3 = et wk — au —ub )
4(1 + 7a)(1 + o? .
e
T —20)(1 - 3a)(k — 1)

This completes the proof of this theorem. a

3. Inertial linearized ALM and ADMM. In this section, we prove that
under suitable conditions both the linearized ALM and the linearized ADMM are
applications of PPA with weighting matrix G € ST, . As byproducts, global iterate
convergence and ergodic and nonergodic convergence rate results (measured by certain
residues) for linearized ALM and ADMM follow directly from existing results for the
PPA. Furthermore, inertial versions of the linearized ALM and ADMM are proposed,
whose convergence is guaranteed by Theorems 1, 2, and 3. In the following, we first
treat the linearized ALM in section 3.1 and then the linearized ADMM in section 3.2.

l™* — Wt <

< 2w = wF|fE + 202w — Wt <

3.1. Inertial linearized ALM. Let f : R” — R be a given convex function,
A € R™*™ and b € R™ be the given matrix and vector, respectively, and X be a
closed convex subset of R™. Consider convex optimization of the form

(3.1) min {f(z): s.t. Az =b,x € X}.

Assume that the set of KKT points of (3.1) is nonempty. We define W, w, 0, and F,
respectively, by W := X x R™,

B2 w=(1) dw=ra. rw=(5 o )(5)-(5):

Then, (3.1) can be equivalently represented as the mixed VI problem: find w* € W
such that

(3.3) O(w) — 0(w*) + (w — w*, F(w*)) > 0 Vw € W.
Given (2%, p*), the linearized ALM iterates as
(3.4a) gr = AT (Az* —b),

k1 _ : Ik _ Bk 2
(3.4b) x —arg;rélg{lf(gc) (p", Ax — b) + 27_Hx (" —1a)|l%,
(3.4c) PPt = pk — B(AZFTL —p).
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Here 7 > 0 is a parameter. It is elementary to verify that the linearized ALM (3.4) is
equivalent to finding w**!, with w* = (2*, p*) given, via
(3.5)  O(w) — O(w ) + (w — WP F(wP ) + GwF T — wh)) > 0vVw e W,
where G is defined by

(B —4TA) 0
(3.6) G:= ( 0 %I .

Clearly, G defined in (3.6) is positive definite if 0 < 7 < 1/p(AT A), and thus the
linearized ALM is an application of PPA with a weighting matrix G € 57 to the
primal-dual system (3.3).

The explanation of linearized ALM as a general PPA given in (3.5) enables us to
propose an inertial linearized ALM as follows:

(373) (Lfk,ﬁk) _ ({Ek,pk) + ak(xk o xkfljpk _pk*l)7

(3.7b) gr = AT(AZ* —b),

(3.7¢) #FH = argmin f(z) — (p*, Az — b) + ﬁHx — @ = 7))
zEX 2T

(3.7d) PPt = — B(AzFTL —b).

We note that in practice the penalty parameter 8 in both the linearized ALM and its
inertial variant can vary adaptively to accelerate convergence, though in our present
framework of analysis it must be fixed in order to freeze the weighting matrix G. The
convergence of (3.7) is guaranteed by the following theorem, which, by considering
(3.5)-(3.6), is a corollary of Theorems 2 and 3.

THEOREM 4. Let G be defined in (3.6) and {(z*,p*)}, C R" be gener-
ated by (3.7) from any starting point (z°,p°) = (@71, p~') € W. Suppose that
0<7<1/p(ATA) and {on )2, satisfies, for allk, 0 < o < apq1 < a < % Then,
{(z*,p*)}52, converges to some point in W*, the set of solutions of (3.3), as k —
00. Moreover, there exists a constant C7 > 0 such that ming<;<p—1 H(x”l,pi“) —
@ p%E < Ci/k for all k > 1. If we further assume that a, = « for all k and
0 < a < %, then there exists a constant Co > 0 such that ||(z* 1, p"T1) — (2%, p¥)[|Z <
Cy/(k—1) for all k > 2.

3.2. Inertial linearized ADMM. In this section, we prove results similar to
those presented in section 3.1. The results are given in detail with proofs and re-
marks. Furthermore, an inertial version of the linearized ADMM is proposed, whose
convergence is guaranteed by Theorems 1, 2, and 3.

Let f: R™ — R and g : R — R be convex functions and X C R and ) C k"2
be closed convex sets. Consider a linearly constrained separable convex optimization
problem of the form

(3.8) r;nyn{f(a:)—l—g(y) st. Av+ By=bx e X,y )V},

where A € RM>*™_ B € R™*™2 and b € R™ are given. We assume that the set of
KKT points of (3.8) is nonempty. Then (3.8) is equivalent to the mixed VI problem
(2.1) with W, w, 6, and F' given, respectively, by W := X x Y x R™,

(3.9)

x 0 0 -—AT x 0
w:=|y |, Ow):=f(z)+gly), Fw:=(0 0 -B"||y]|-[0
p A B 0 P b
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Since the coefficient matrix defining F' is skew-symmetric, F' is monotone, and thus

Assumption 2 is satisfied with H = 0. Let 5 > 0 and define the Lagrangian and the
augmented Lagrangian functions, respectively, as

(3.10a) L(z,y,p) = f(z) +g(y) — (p, Az + By — b),
(3.10b) L(x,y,p) = L(z,y,p) + §||Aa: + By — b|]>.

Given (y*, p¥), the classical ADMM in “z —p — y” order iterates as follows:

(3.11a) 2+ = argmin £(z,y*, p"),
TE
(3.11b) pFt = pF — B(Az" + ByF —b),
(3.11c) yF ! = arg min L(z"y, prh.
ye

Note that here we still use the latest value of each variable in each step of the al-
ternating computation. Therefore, it is equivalent to the commonly seen ADMM in
“y —x — p” order in a cyclic sense. We use the order “xz — p — y” because the re-
sulting algorithm can be easily explained as a proximal-like algorithm applied to the
primal-dual optimality conditions; see [15].

Given (2%, y*, p¥) and two parameters 7,77 > 0, the iteration of linearized ADMM
in “z —p —y” order appears as

(3.12a) ub = AT (Az* + By —b),
k+1 _ . ok ﬁ ok kY2
(3.12b) " = arggg}r(lf(x) (", Az) + 27_||ac (" — 1u")||%,
(3.12¢) pFH = pk — B(AZ* + Byf —b),
(3.12d) o* = BT (A" + ByF —b),
(312) ¥ = argming(y) — B+, By) + lly — (4 — o)
yeY 2n

In the following, we prove that under suitable assumptions (z**! y*+1 pF+1) gen-

erated by (3.12) conforms to the classical PPA with an appropriate symmetric and
positive definite weighting matrix G.

THEOREM 5. Given w® = (z%,9% p*) € W, then whtl = (ghtl yF+l phtl)
generated by the linearized ADMM framework (3.12) satisfies

(3.13)
WP e W, 0(w) — O(wh ) + (w — wht, PP + GwFt — wk)) >0 vw e W,

where
B(ir—-ATA) o 0
(3.14) G = 0 5 —BT
0 -B %I

Here I denotes identity matriz of appropriate size.
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Proof. The optimality conditions of (3.12b) and (3.12e) imply that

F@) — fEY) + (@ — xkﬂ)T{_ATpk T g(gckﬂ — %) + BAT (Ack + Byb — b)}
>0Vr e X,
9(y) = 9" ) + (y - y"“)T{—BTp’chl + g(y’“rl — )+ BBT(Az" + By* — b)}
>0vVy e ).
By noting (3.12c), the above relations can be rewritten as
(3.15a)
F@) — f@*Y) + (o — karl)T{_ATkarl +8 (%I _ ATA> (zF+1 — xk)}
>0Vre X,
(3.15b)
9(y) —9(y* ) + (y — y’““)T{—BTp’““ + g(y’“+1 —y") =BT - p’“)}
>0Vy e .
Note that (3.12¢) can be equivalently represented as
(3.16)
(p— pH1)T {(Axkﬂ + ByFt by — By — b) + %(karl _pk)} > 0Vp e R

By the notation defined in (3.9), we see that the addition of (3.15a), (3.15b), and
(3.16) yields (3.13), with G defined in (3.14). O

Remark 5. Clearly, the matrix G defined in (3.14) is symmetric and positive
definite provided that the parameters 7 and 7 are reasonably small. In particular, G
is positive definite if 7 < 1/p(ATA) and n < 1/p(BTB). Using similar analysis, it
is easy to verify that w1 = (zF*1 y*+1 pF+l) generated by the ADMM framework
(3.11) conforms to (3.13) with G defined by

0 0 0
(3.17) G=|0 pBTB -BT
0 -B %I

)

which is clearly never positive definite. See [15] for details.

Convergence results for the linearized ADMM (3.12) are summarized below in
Theorem 6. We note that the results in Theorem 6 are not new. Specifically, the
nonergodic convergence rate result (part (b) of the theorem) was first established in
[25] for ADMM and Douglas-Rachford operator splitting, while the global iterate
convergence (part (a) of the theorem) of PPA goes back to [41] for the monotone
operator inclusion problem. See also [26] for an ergodic O(1/k) convergence rate
result for the ADMM, which is extendable to the linearized ADMM (3.12) too. Since
this ergodic convergence result is less relevant to our results for the inertial PPA, we
omit it here. It is also worth noting that similar convergence results and remarks are
also valid for the linearized ALM (3.4).

THEOREM 6. Assume that 0 < 7 < 1/p(ATA) and 0 < n < 1/p(BTB). Let
{wh = (a*,y*, p*) )2, be generated by the linearized ADMM framework (3.12) from
any starting point w® = (2°,y°, p°) € W. The following results hold:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/20/15 to 58.192.50.48. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

A GENERAL INERTIAL PPA FOR MIXED VI 2133

(a) The sequence {w* = (x*,y* pF)}2° converges to a solution of (2.1), i.e.,
there exists w* = (x*,y*,p*) € W* such that limj_,., w* = w*. Moreover,
(x*,y*) is a solution of (3.8).

(b) After k > 0 iterations, we have

[w® — w*|[

3 .

Remark 6. It is easy to see from (3.13) that w**! must be a solution if w*+! = wk.

As such, the difference of two consecutive iterations can be viewed in some sense as

a measure of how close the current point is to the solution set. Therefore, the result

(3.18) estimates the convergence rate of w® to the solution set using the measure

ok — wh1 2.

Remark 7. We note that all the results given in Theorem 6 remain valid if the
conditions on 7 and 7 are relaxed to 0 < 7 < 1/p(ATA) and 0 < 1 < 1/p(BTB),
respectively. The proof is a little bit complicated and we refer interested readers to
[21, 16].

Now we state the inertial version of the linearized ADMM, which is new to the
best of our knowledge. Given 3,7,17 > 0, a sequence {ay > 0}72, (xF y* pF), and

(3.18) [wF —wh g <

(xF=1 y*=1 pk=1) the inertial linearized ADMM iterates as follows:
(3.19a) (2%, 9%, 9") = (2", 4", ") + aw(® — 2" yF —F =y,
(3.19b) uf = AT(Az* + By® —b),
(3.19¢) 2FH = argmin f(z) — (p*, Az) + ﬁHx — (2% — rub)|?,
TEX 2T
(3.19d) pFtt =% — B(Az* 4+ By* —b),
(3.19¢) o* = BT (Az"Tt + By* —b),
: B _
(3.19¢) y**t = argmin g(y) — (0", By) + —|ly — (7° — ")
yey 2n

The following convergence result is a consequence of Theorems 2, 3, and 5.

THEOREM 7. Let G be defined in (3.14) and {(z"*,y*,p*)}32, C R" be generated
by (3.19) from any starting point (x2°,y°,p°) = (z=1,y~L,p~t) € W. Suppose that
0<7<1/p(ATA), 0 <n < 1/p(BTB), and {ax}32, satisfies, for all k, 0 < oy, <
a1 L a < % Then, {(xk,yk,pk)}zozo converges to some point in W*, the set of
solutions of (2.1), as k — oco. Moreover, there exists a constant Cy > 0 such that, for
all k > 1, ming<j<p—1 ||(, y"T pt T — (2%, 4%, pY)||Z, < C1/k. If we further assume
that ap = « for all k and 0 < a < %, then there exists a constant Cy > 0 such that
for allk > 2,

[y ) — (@8, 55, )18 < Caf (k= 1).

4. Numerical results. In this section, we present numerical results to compare
the performance of the linearized ADMM (LADMM) (3.12) and the proposed inertial
linearized ADMM (iLADMM) (3.19). Both algorithms were implemented in MAT-
LAB. All the experiments were performed with Microsoft Windows 8 and MATLAB
v7.13 (R2011b), running on a 64-bit Lenovo laptop with an Intel Core i7-3667U CPU
at 2.00 GHz and 8 GB of memory.

4.1. Compressive principal component pursuit. In our experiments, we fo-
cused on the compressive principal component pursuit problem [43], which aims to
recover low-rank and sparse components from compressive or incomplete measure-
ments. Let A : R™*"™ — R? be a linear operator and Ly and Sy be, respectively,
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low-rank and sparse matrices of size m x n. The incomplete measurements are given
by b = A(Lo + Sp). Under certain technical conditions, such as Ly is p-incoherent,
the support of Sy is randomly distributed with nonzero probability p, and the signs
of Sy conform to Bernoulli distribution, it was proved in [43] that the low-rank and
the sparse components Ly and Sy can be exactly recovered with high probability via
solving the convex optimization problem

(4.1) I?iél{HLH*-l-/\HSHl : st AL+ S) =0},

as long as the range space of the adjoint operator A* is randomly distributed according
to the Haar measure and its dimension ¢ is in the order O ((pmn + mr)log®m).
Here A = 1/y/m is a constant, and || L]/, and ||S||1 denote the nuclear norm of L
(sum of all singular values) and the ¢; norm of S (sum of absolute values of all
components), respectively. Note that to determine a rank r matrix, it is sufficient
to specify (m + n — r)r elements. Let the number of nonzeros of Sy be denoted by
nnz(Sp). Without considering the distribution of the support of Sy, we define the
degree of freedom of the pair (Lo, Sy) by

(4.2) dof := (m 4+ n — r)r +nnz(Sp).

The augmented Lagrangian function of (4.1) is given by

L(L,S,p) := LIl + AllS[l = {p, A(L + 5) — b) + gI\A(L +8) = b||*.

One can see that the minimization of £ with respect to either L or S, with the other
two variables being fixed, does not have a closed form solution. To avoid inner loops
for iteratively solving ADMM-subproblems, the linearized ADMM framework (3.12)
and its inertial version (3.19) can obviously be applied. Note that it is necessary
to linearize both ADMM-subproblems in order to avoid inner loops. Though the
iterative formulas of LADMM and inertial LADMM for solving (4.1) can be derived
very easily based on (3.12) and (3.19), we elaborate them below for clearness and
subsequent references. Let (L¥, S*,p*) be given. The LADMM framework (3.12) for
solving (4.1) appears as

(4.3a) U* = A*(A(LF + S*) —b),
A3b) LM = argmin Ll — (5 A(L) + 2L~ (L~ UM

4.3c) Pt =p" = BALMT + 5%) —b),
4.3d) VF = AT (AR + S*) —b),

(
(
(
(@3e) S = argmim S|~ (4, AS)) + 45 - (S* V-

The inertial LADMM framework (3.19) for solving (4.1) appears as

(443) (Ek75'k,]§k) _ (Lk,Sk,pk) +ak(Lk o kaljsk o Skil,pk _pk*l)7
(4.4b) U* = A" (A(LF + SF) —b),

(tde) LM = argmin L] — (5 A(L) + L — (EF — 7U")
(4.44) P =" = BALST + %) =),

(4.4e) VE = A (ALFY 4+ §%) — ),

@i S = argmin S| - (L AS)) + oIS - (5 - aVh
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Note that the subproblems (4.3b) (or (4.4c)) and (4.3e) (or (4.4f)) have closed form
solutions given, respectively, by the shrinkage operators of matrix nuclear norm and
vector £ norm; see, e.g., [29, 45]. The main computational cost per iteration of
both algorithms is one singular value decomposition (SVD) required in solving the
L-subproblem.

4.2. Generating experimental data. In our experiments, we set m = n and
tested different ranks of Ly (denoted by r), sparsity levels of Sy (i.e., nnz(Sp)/(mn)),
and sample ratios (i.e., ¢/(mn)). The low-rank matrix Ly was generated by
randn(m, r) % randn(r,n) in MATLAB. The support of Sy is randomly determined
by uniform distribution, while the values of its nonzeros are uniformly distributed
in [-10,10]. Such types of synthetic data are roughly those tested in [43]. As for
the linear operator A, we tested three types of linear operators, i.e., two-dimensional
partial discrete cosine transform (DCT), fast Fourier transform (FFT), and Walsh-
Hadamard transform (WHT). The rows of these transforms are selected uniformly at
random.

4.3. Parameters, stopping criterion, and initialization. The model pa-
rameter A was set to 1/y/m in our experiments, which is determined based on the
exact recoverability theory in [43]. As for the other parameters (/3, 7 and 1) common
to LADMM and iLADMM, we used the same set of values and adaptive rules in all
the tests. Now we elaborate how the parameters are chosen. Since A contains rows
of orthonormal transforms, it holds that AA* = Z, the identity operator. Therefore,
it holds that p(A*A) = 1. We set 7 = n = 0.99, which satisfies the convergence
requirement specified in Theorems 6 and 7. The penalty parameter 8 was initialized
at 0.1¢/||b||1 and was tuned at the beginning stage of the algorithm. Specifically, we
tuned S within the first 30 iterations according to the following rule:

max(0.58,1073) if rp < 0.1; i i )

9 ) I b

Brt1 = { min(284, 10?) if rp. >5;  where 7} := Brll A - +57) - =,
Bk otherwise, 251 ([|L¥]|+ + Al[S*[|1)

Here si is a parameter attached to the objective function ||L|. + Al|S]|1 and was
chosen adaptively so that the quadratic term gHA(L + S) — b]|? and the objective
term ||L|[. + A||S|l1 remain roughly in the same order. Note that the choice of
does not have much theory and is usually determined via numerical experiments; see,
e.g., [44] for the influence of different 5’s in linearized ADMM for matrix completion
problem. The extrapolation parameter «j for iLADMM was set to be 0.28 and held
constant in all our experiments. Note that this value of «y is determined based on
experiments and may be far from optimal. How to select «aj adaptively to achieve
stable and faster convergence remains a research issue. Here our main goal is to
illustrate the effect of the extrapolation steps. We also present some numerical results
to compare the performance of iLADMM with different constant strategies for «y.

It is easy to see from (3.13) that if two consecutive iterates generated by PPA are
identical, then a solution is already obtained. Since LADMM is an application of a
general PPA, we terminated it by the following rule:

(Lk+17 Sk+17pk+1) — (Lka Skvpk)”

H
4.5 < e,
(4:5) T I, S5 :

where € > 0 is a tolerance parameter. Here ||(L,S,p)| = /| L% + |S]|% + [Ip[]2-
Since iLADMM generates the new point (LF+!1 S*+1 pk+1) by applying PPA to
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(L*, S*,p*), we used the same stopping rule as (4.5) except that (L*, 5% p¥) is re-
placed by (L*,S* p*). That is,
[[(LFH, SR L phtl) — (LF, S%, p%)||

L+ [[(LF, S*, %)

(4.6)

In our experiments, we initialized all variables L, S, and p at zeros.

4.4. Experimental results. Recall that the matrix size is m x n, the number
of measurements is ¢, the rank of Ly is r, and the degree of freedom of the pair
(Lo, Sp) is defined in (4.2). In our experiments, we tested m = n = 1024. Let k be
the number of nonzeros of Sy. We tested four different ranks for Lo, three levels of
sparsity for Sy, and four levels of sample ratios. Specifically, in our experiments we
tested r € {5,10,15,20}, k/m? € {0.01,0.05,0.10}, and q/m? € {0.4,0.6,0.8}.

Let (L,S) be the recovered solution. For each setting, we report the relative
errors of L and S to the true low-rank and sparse matrices Lo and Sy, i.e., |L —
Lollr/||Lo||r and || S—So || #/]|So|| 7, and the number of iterations to meet the condition
(4.5) or (4.6), which are denoted by iterl and iter2 for LADMM and iLADMM,
respectively. We terminated both algorithms if the number of iterations reached 1000
but the stopping rule (4.5) or (4.6) still did not hold. For each problem scenario, we
run 10 random trials for both algorithms and report the averaged results. Detailed
experimental results for ¢ = 107° and » = 5,10, 15, and 20 are given in Tables 1-4,
respectively. In each table, a dash represents that the maximum iteration number
was reached.

It can be seen from Tables 1-4 that iLADMM is generally faster than LADMM
to obtain solutions satisfying the aforementioned conditions. Specifically, within our
setting the numbers of iterations consumed by iLADMM range, roughly, from 60%
to 80% of those consumed by LADMM. If we take into account all the tests (ex-
cept those cases where either LADMM or iLADMM failed to terminate within 1000
iterations, e.g., (v, k/m?, q/m?) = (5,0.1,40%), and A is partial DCT), the overall av-
erage number of iterations used by iLADMM is about 74% of that used by LADMM.
Note that in some cases iLADMM obtained satisfactory results within the number
of allowed iterations (1000 in our setting), while LADMM did not. For example,
(r,k/m? q/m?) = (5,0.1,40%) and A is partial DCT or partial WHT. In most cases,
the recovered matrices L and S are close to the true low-rank and sparse components
Lo and Sy, respectively. The relative errors are usually on the order 107°-107°. For
some cases, the recovered solutions are not of high quality (relative errors are large),
which is mainly because the number of samples is small relative to the degree of
freedom of (Lo, Sp). This can be seen from the values of ¢/dof listed in the tables.
Roughly speaking, the recovered solutions are satisfactory (say, relative errors are less
than 10~?) provided that g/dof is no less than 3.5.

We note that the per-iteration cost of both LADMM and iLADMM for the com-
pressive principal pursuit model (4.1) is dominated by one SVD and thus is roughly
identical. The extra cost of the extrapolation inertial step in (4.4a) is negligible
compared to the computational load of SVD. This is the main reason that we only
reported the number of iterations but not CPU time consumed by both algorithms.
The inertial technique actually accelerates the original algorithm to a large extent but
without increasing the total computational cost.

To better understand the behavior of iLADMM relative to LADMM, we also
tested different matrix sizes (m = n = 256,512, and 1024) with different levels of
stopping tolerance (¢ = 1072,107%, and 107° in (4.5)). For each case, we tested
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TABLE 1
Results of rank(Lg) = 5: € = 1072, average results of 10 random trials.

= = 1024 LADMM TLADMM
2 2 IL=Lollr | IS=SollF ‘ : IL=Lollr | [S=Sollr ‘ : iter2
r[kjm? [ (a/m? qjaof) | A || Lighple [ Lo Bl [iery || Liphole [ 1o Bl [igers | o2

5] 1% | (40%,20.26) | pdet || 2.24e-5 | 4.45e-5 [260.6]] 1.46e-5 | 3.97e-5 |199.4] 0.77
Pt || 1.68¢5 | 3.78¢5 |223.8]] 1.3565 | 4.0005 |173.3] 0.77
pwht || 2.9265 | 5.24c5 |271.8| 1.73¢-5 | 3.09¢.5 |206.1] 0.76
(60%, 30.39) | pdct || 1.11e-5 | 2.24e-5 [170.3] 1.2de-5 | 2.65e-5 |123.1] 0.72
pit || L.14e5 | 2.24e5 |134.6] L1.13c5 | 2.67c5 | 98.4( 0.73
pwht || 1.2365 | 2.32¢5 |160.0| 1.12¢5 | 2.37c5 |119.3] 0.74
(80%, 40.52) | pdct || 1.20e-5 | 1.28e-5 | 89.7| 8.51e-6 | 1.52e-5 | 61.5| 0.69
Pt || 3.68¢6 | 1.00e5 | 67.2] 7.0606 | 1.4dc5 | 42.2] 0.63
pwht || 8.1006 | 1.09c5 | 88.3| 6.80e-6 | 1.226.5 | 60.4] 0.63
5% | (40%,6.70) |pdct|| 1.03e-5 | 4.07e-5 |409.7|| 1.02e-5 | 3.72e-5 |321.5] 0.78
pitt || 1.32¢5 | 4.82¢5 |349.5] 1.10c5 | 3.80c5 |278.4 0.80
pwht || 1.0d05 | 4.1dc5 |408.8| 1.0de5 | 3.74c-5 |320.4] 0.78
(60%, 10.04) | pdct || 8.54e-6 | 2.68¢-5 |198.5] 5.35¢-6 | 1.99e-5 |149.5| 0.75
Pt || 7.926-6 | 3.13¢5 |188.4] 5.03c.6 | 1.84c5 |136.9] 0.73
pwht || 8.1266 | 2.756.5 |204.0|] 5.19¢-6 | 1.86c5 |150.1] 0.74
(80%, 13.39) | pdct || 9.39e-6 | 1.93e-5 |107.9] 4.326 | 1.39e-5 | 77.9| 0.72
Pt || 5.9466 | 1.78¢5 | 99.7| 3.54c.6 | 1.40c5 | 70.1| 0.70
pwht || 5.6266 | 1.50c5 |107.6|| 4.1066 | 1.43c5 | 77.4] 0.72
10% | (40%,3.64) |pdet || 2.58e-2 | 7.19e-2 | — || 1.20e-5 | 4.08¢-5 |879.0( —

pitt || 1.53e5 | 5.2leb |757.1] 1.21c5 | 4.02c5 |563.3] 0.74
pwht || 25002 | 6.9362 | — || 1.21e5 | 4.02¢5 [872.7| —
(60%, 5.47) | pdct || 8.58¢-6 | 3.03e-5 |344.9] 7.64e-6 | 2.50e-5 |243.9]( 0.71
pitt || 9.196-6 | 3.23¢-5 |300.5] 7.276.6 | 2.42c5 |230.8] 0.77
pwht || 8.4966 | 3.08c5 |345.5| 7.77e6 | 2.50e5 |243.8] 0.71
(80%,7.29) | pdct || 8.02¢6 | 2.13e-5 |170.7]| 6.45¢-6 | 1.7le-5 |123.8] 0.73
pitt || 7.826-6 | 1.79¢-5 |160.7| 5.0806-6 | 1.3965 |116.0( 0.72
pwht || 8.126.6 | 2.0065 |171.0|] 6.5de6 | 1.83c5 |124.0] 0.73

e=10"° e=107" e=10"°

Il L (m=256)

Il L (m=256)
L (m=256)
L (m=512)
ik (m=512)
[ L (m=1024)
ML (m=1024)

300

s
a
=3
S

ber:

Numl
NN
S o
S oS

[ L (m=1024)
ML (m=1024)

ion Nu
Iteration Numbers

Iteration Numbers
©
S
S

Iterati

40% 60% 80% 40% 60% 80% 40% 60% 80%
q/m? (L = LADMM, iL = iLADMM) g/m? (L = LADMM, iL = iLADMM) q/m? (L = LADMM, iL = iLADMM)

Fra. 1. Comparison results on different matriz sizes and stopping tolerance: Average results of
10 random trials (m = n = 256, 512,1024, and from left to right e = 1073,1074,1077, respectively).

r € {5,10,15,20} and k/m? € {0.01,0.05,0.10} for a fixed ¢ such that ¢/m? €
{0.4,0.6,0.8}. For each ¢, we accumulated the iteration numbers for different (r, k)
and the three types of linear operators and took an average finally. The results are
summarized in Figure 1. Again, these results are the average of 10 random trials
for each case. From the results we can see that iLADMM is faster and terminates
earlier than LADMM with different levels of stopping tolerance. Roughly speaking,
iLADMM reduced the cost of LADMM by about 30%.

We also run iLADMM with various constant strategies for ay. In particular, we
set m = n = 512 and tested different values of ¢ such that ¢/dof € {5,10, 15}. For each
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TABLE 2

Results of rank(Lg) = 10: € = 1075, average results of 10 random trials.

m=n = 1024 LADMM iLADMM
8 O O e e e e e e
10| 1% | (40%,13.59) | pdct || 2.20e-5 5.42e-5 | 340.5| 1.74e-5 5.33e-5 [253.01| 0.74
pfft 1.87e-5 5.09e-5 |[300.1| 1.65e-5 5.46e-5 [226.8| 0.76
pwht || 2.22e-5 5.50e-5 |350.5|| 1.91e-5 5.54e-5 |257.41 0.73
(60%,20.38) | pdct || 2.12e-5 3.85e-5 |198.1|| 1.20e-5 3.16e-5 |141.6| 0.71
pfft 1.03e-5 2.75e-5 [163.1|| 9.56e-6 3.07e-5 |[117.0]] 0.72
pwht || 1.84e-5 3.6le-5 |[191.0|| 1.32e-5 3.38e-5 |135.9] 0.71
(80%,27.18) | pdct || 7.82e-6 1.55e-5 |101.1| 7.16e-6 1.60e-5 66.6 || 0.66
pift 8.63e-6 1.67e-5 79.3|| 6.36e-6 1.70e-5 47.0 0.59
pwht || 7.43e-6 1.40e-5 97.8 || 6.74e-6 1.56e-5 64.5 || 0.66
5% (40%,5.76) | pdct || 9.22e-6 3.91e-5 |536.2|| 1.41e-5 4.95e-5 |406.5 || 0.76
pfft 1.30e-5 5.29e-5 [448.9| 1.15e-5 4.31e-5 |346.6 | 0.77
pwht || 9.16e-6 3.93e-5 |537.4]|| 1.42e-5 5.08e-5 [407.71 0.76
(60%, 8.64) | pdct || 7.86e-6 3.18e-5 |241.9]|| 9.93e-6 3.28e-5 |183.4 0.76
pfft 8.45¢e-6 3.55e-5 [223.3]|| 9.87e-6 3.24e-5 |170.1]] 0.76
pwht || 1.42e-5 3.7le-5 |244.6|] 9.32e-6 3.21e-5 |184.4] 0.75
(80%,11.52) | pdct || 8.78e-6 2.17e-5 [120.4| 4.36e-6 1.78e-5 84.5 0.70
pfft 6.74e-6 2.82e-5 [109.8|| 4.22¢-6 1.76e-5 76.3 | 0.69
pwht || 8.55e-6 2.0le-5 [121.2|| 4.61e-6 1.68e-5 85.11] 0.70
10% | (40%,3.35) | pdct || 6.84e-2 2.24e-1 — 2.54e-2 8.67e-2 — —
pfft 1.09e-5 4.23e-5 |965.2|| 1.26e-5 4.39e-5 |702.5] 0.73
pwht || 6.79e-2 2.21e-1 — 2.48e-2 8.38e-2 — —
(60%,5.02) | pdct || 8.02e-6 3.27e-5 |398.4| 7.75e-6 2.76e-5 [299.1]| 0.75
pfft 9.53e-6 3.58e-5 [352.3]|| 7.75e-6 2.75e-5 [266.9 0.76
pwht || 8.13e-6 3.27e-5 |397.6|| 7.70e-6 2.75e-5 [298.4 1 0.75
(80%,6.70) | pdct || 8.49e-6 2.57e-5 [185.9| 7.08e-6 2.08e-5 [132.6 0.71
pfft 8.62¢-6 2.59e-5 [172.8 | 6.85e-6 1.84e-5 [121.2 0.70
pwht || 8.49e-6 2.43e-5 [185.9|| 7.06e-6 2.21e-5 [132.41 0.71

e=10"°

e=107"

e=10"°

Iteration Numbers
@
8

10
qg/dof

Iteration Numbers

10
q/dof

Iteration Numbers

10
qg/dof

Fia. 2. Comparison results on different a, = o and stopping tolerance: Average results of 10
random trials (m = n = 512, o ranges from 0.05 to 0.35, and from left to right ¢ = 1073,107%,1075,
respectively).

case, we varied r € {5,10, 15,20} and k/m? € {0.01,0.05,0.10} for the three types of
aforementioned measurement matrices. We accumulated the number of iterations and
took an average finally. The detailed average results of 10 random trials for a = «
from 0.05 to 0.35 are given in Figure 2.
From the results in Figure 2 we see that, for the tested seven values of o, iILADMM
is slightly faster if « is larger, provided that o does not exceed 0.3. We have also
observed that for a > 0.3 iLADMM either slows down or performs not very stably,
especially when ¢/dof is small. This is the main reason that we set «aj a constant
value that is near 0.3 but not larger.
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Results of rank(Lo) = 15: € = 1075, average results of 10 random trials.
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m=mn = 1024 LADMM iLADMM
T [ ajaon | | Bl S [ | T [ gl T s
15| 1% | (40%,10.23) | pdct || 1.87e-5 5.29e-5 |418.6| 1.78e-5 5.87e-5 [310.51| 0.74
pitt 1.78e-5 5.23e-5 |[367.5| 1.57e-5 5.68e-5 [276.11 0.75
pwht 1.59e-5 4.86e-5 |415.5 1.59e-5 5.49e-5 [311.11 0.75
(60%,15.35) | pdct || 2.01e-5 4.31le-5 |223.7|| 1.26e-5 3.59e-5 |158.2| 0.71
pfft 1.53e-5 3.73e-5 [193.9]| 1.16e-5 3.77e-5 [137.0]] 0.71
pwht || 2.20e-5 4.55e-5 [225.1(] 1.20e-5 3.47e-5 | 159.0 | 0.71
(80%,20.47) | pdct || 8.30e-6 1.72e-5 |112.7| 6.86e-6 1.67e-5 72.71| 0.64
pift 1.06e-5 1.98e-5 90.5|| 7.07e-6 2.08e-5 51.2| 0.57
pwht || 1.17e-5 2.28e-5 |[117.4]| 8.37e-6 1.95e-5 76.5 | 0.65
5% (40%,5.06) | pdct || 2.08e-5 7.79e-5 |674.1|| 1.33e-5 5.12e-5 [506.5 || 0.75
pitt 1.28e-5 5.46e-5 |548.2 (| 1.60e-5 5.84e-5 [414.01| 0.76
pwht || 2.07e-5 7.40e-5 [673.6| 1.34e-5 5.20e-5 |[505.0 (| 0.75
(60%,7.59) | pdct || 7.46e-6 3.45e-5 |282.4| 1.02e-5 3.79e-5 |209.0 || 0.74
pfft 9.17e-6 3.94e-5 [256.7|| 1.12e-5 3.91e-5 [190.8 (] 0.74
pwht || 6.90e-6 3.41e-5 |282.6]|| 1.02e-5 3.80e-5 |210.3 ]| 0.74
(80%,10.12) | pdct || 6.76e-6 2.29e-5 |[134.1| 5.00e-6 2.02e-5 93.3]| 0.70
pfft 7.24e-6 2.66e-5 |121.3|| 4.96e-6 2.01e-5 82.5 || 0.68
pwht || 7.42e-6 2.06e-5 |[136.5| 5.58¢-6 2.02e-5 93.3 ] 0.68
10% | (40%,3.10) | pdct || 1.0le-1 3.50e-1 — 6.15e-2 2.25e-1 — —
pfft 2.61e-2 8.19e-2 — 1.40e-5 4.98e-5 |888.4| —
pwht || 1.02e-1 3.51e-1 — 6.22e-2 2.27e-1 — —
(60%,4.65) | pdct || 7.98e-6 3.37e-5 |455.3|| 7.99e-6 2.93e-5 [336.5]| 0.74
pfft 9.79¢-6 3.87e-5 [394.3|| 8.41le-6 3.07e-5 [294.9] 0.75
pwht || 7.78e-6 3.35e-5 |454.9|| 7.90e-6 2.86e-5 |336.6| 0.74
(80%,6.20) | pdct || 8.96e-6 2.81le-5 [201.9| 7.75e-6 2.16e-5 |143.2 0.71
pfft 9.38e-6 3.12e-5 [186.0|| 7.63e-6 2.53e-5 [129.0 || 0.69
pwht || 8.93e-6 2.75e-5 [202.6| 7.86e-6 2.48e-5 |142.51 0.70

5. Concluding remarks. In this paper, we proposed and analyzed a general

inertial PPA within the setting of a mixed VI problem (2.1). The proposed method
adopts a weighting matrix and allows more flexibility. Our convergence results require
weaker conditions in the sense that the weighting matrix G is not necessarily positive
definite, as long as the function F' is H-monotone and G is positive definite in the null
space of H. We also established a nonasymptotic O(1/k) convergence rate result of
the proposed method, which was previously not known. The convergence analysis can
be easily adapted to the monotone inclusion problem (1.1). We also showed that both
the linearized ALM and the LADMM for the structured convex optimization problem
are applications of the PPA to the primal-dual optimality conditions, as long as the
parameters are reasonably small. As a result, the global convergence and convergence
rate results of the linearized ALM and LADMM follow directly from results existing in
the literature. This proximal reformulation also allows us to propose inertial versions
of the linearized ALM and LADMM, whose convergence is guaranteed under suitable
conditions. Our preliminary implementation of the algorithms and extensive experi-
mental results on the compressive principal component pursuit problem have shown
that the inertial LADMM is generally faster than the original LADMM. Though in a
sense the acceleration is not very significant, we note that the inertial LADMM does
not require any additional and unnegligible computational cost either.

Throughout our experiments the extrapolation steplength ay, held constant. How
to select «p adaptively based on the current information such that the overall
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TABLE 4

Results of rank(Lg) = 20: € = 1075, average results of 10 random trials.

m=n = 1024 LADMM iLADMM
8 I O e e e e e e
20| 1% (40%,8.22) | pdct || 2.21e-5 6.28e-5 |506.4|| 1.83e-5 6.41e-5 |374.9] 0.74
pfft 1.83e-5 6.62¢-5 [434.6|| 1.81le-5 6.93e-5 |327.7] 0.75
pwht || 1.55e-5 5.48e-5 |500.9|| 1.62e-5 6.12e-5 |375.2 (| 0.75
(60%,12.33) | pdct 1.19e-5 3.38e-5 |249.8|| 1.15e-5 3.83e-5 |176.1| 0.70
pfft 1.12e-5 3.32e-5 [218.2]| 1.00e-5 3.88e-5 [155.9] 0.71
pwht || 2.11e-5 4.71e-5 |253.6|| 1.57e-5 4.68e-5 |176.4 0.70
(80%, 16.43) | pdct 1.29e-5 2.84e-5 |123.8| 7.86e-6 2.31e-5 78.51| 0.63
pfft 1.03e-5 2.47e-5 [100.4| 5.63e-6 2.08e-5 56.6 || 0.56
pwht || 1.20e-5 2.50e-5 |[128.2| 7.84e-6 2.51e-5 81.2( 0.63
5% (40%,4.51) | pdct 1.89e-5 7.60e-5 |837.6| 1.72e-5 6.57e-5 |616.0 || 0.74
pfft 1.22e-5 5.35e-5 |655.8| 1.73e-5 6.64e-5 |488.6( 0.75
pwht || 1.89e-5 7.65e-5 [832.9| 1.73e-5 6.52e-5 |[613.1]] 0.74
(60%,6.77) | pdct || 7.29e-6 3.62e-5 |325.5]|| 1.04e-5 4.31e-5 |237.8 0.73
pfft 9.55e-6 4.30e-5 [292.2]| 1.17e-5 4.06e-5 |214.4] 0.73
pwht || 7.11e-6 3.66e-5 |323.8]|| 1.09e-5 4.24e-5 |236.9] 0.73
(80%,9.02) | pdct 1.10e-5 2.85e-5 [149.2|| 5.43e-6 2.28e-5 [101.9]| 0.68
pfft 7.68e-6 3.13e-5 |133.7|| 5.26e-6 2.47e-5 88.6 || 0.66
pwht || 9.83e-6 2.67e-5 |151.4]| 6.33e-6 2.30e-5 [102.8 | 0.68
10% | (40%,2.88) | pdct 1.32e-1 4.65e-1 — 9.35e-2 3.52e-1 — —
pfft 6.03e-2 1.98e-1 — 1.25e-2 4.32e-2 — —
pwht || 1.32e-1 4.62e-1 — 9.35e-2 3.49e-1 — —
(60%,4.33) | pdct || 7.23e-6 3.27e-5 |517.0|| 1.22e-5 4.09e-5 |375.3|| 0.73
pfft 9.63e-6 4.08¢-5 [441.0]| 8.89e-6 3.32e-5 [325.2] 0.74
pwht || 7.41e-6 3.33e-5 | 516.5|| 1.24e-5 4.26e-5 |374.9] 0.73
(80%,5.77) | pdct || 9.20e-6 3.05e-5 |219.3|| 8.41le-6 2.43e-5 [154.11| 0.70
pfft 9.81e-6 3.23e-5 [200.1|| 8.14e-6 2.79e-5 [137.3 | 0.69
pwht || 9.23e-6 3.16e-5 |219.7|| 8.46e-6 2.49e-5 [154.01| 0.70

algorithm performs more efficiently and stable is a practically very important ques-
tion and deserves further investigation. Another theoretical issue is to investigate
worst-case complexity analysis for general inertial type algorithms. In fact, complex-
ity results of inertial type algorithms for minimizing closed proper convex functions
already exist in the literature. The pioneering work in this direction is due to Nes-
terov [35], where the algorithm can also be viewed in the perspective of inertial al-
gorithms. Refined analyses for more general problems can be found in [7, 24]. Let
f R = RU{+oo} be an extended real-valued proper convex function and be
bounded below. Based on [35, 7, 24], the following algorithm can be studied. Let
w® € N” be given. Set w® = w™!, tg = 1, and k = 0. For k > 0, the algorithm

iterates as
1+ /14483

(5.1a) lgt1 = 5
tr—1
(5.1b) W = wh 4+ 2w — wh,
tet1
1
(5.1c) wh T = argmin f(w) + ——||w — w*|>.
w 2\

Using analyses similar to those in [35, 24, 7], one can show that the sequence {w*}2°
satisfies

fw®) = min f(w) = O(1/k?).

weR"
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Algorithm (5.1) is nothing but an inertial PPA with steplength «y = i’;;l It is
interesting to note that ay is monotonically increasing as k — oo and converges to 1,
which is much larger than the upper bound condition « < 1/3 required in Theorem 2.
Also note that the convergence for (5.1) is measured by the objective residue. Without
further assumptions on f, it seems difficult to establish convergence of the sequence
{wh}2 ; see, e.g., [24]. In comparison, our results impose a smaller upper bound on
ay; but guarantee the convergence of the sequence of iterates {w”}2° ;. Even though
we have derived some nonasymptotic O(1/k) convergence rate results, there seems to
be a certain gap between the classical results [35, 7, 24] for minimizing closed proper
convex functions and the results presented in the present paper. Further research in
this direction is interesting.
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